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SPHERICAL COMPACTIFICATIONS OF CENTRAL FORCE EQUATIONS

HARRY GINGOLD, JOCELYN QUAINTANCE

Abstract. A spherical compactification is a map between an unbounded set of Rn and a

bounded set on a sphere in Rn+1. This article rigorously defines a parameterized family of

spherical compactifcations and applies such compactifications to systems and solutions of ordi-
nary differential equations (ODEs) associated with central force equations. Spherical compact-

ification provides a means of embedding Rn into a complete metric space. The compactified

differential equation may have critical points that represent “critical points at infinity” of the
original equation. These “critical points at infinity” in Rn may be appropriately labeled by

∞U , where U is a unit vector in Rn, and are “visualized” as points on the rim of a spherical

compactifaction. To further legitimize objects of the form ∞U , we develop a new calculus which
interprets objects of the form ∞U1 + ∞U2. We then utilize these spherical compactifications,

which are of the form w(t) = θ−1(t)z(t), to transform a first order vector valued differential
equation w′(t) = F (w(t)) into the first order vector valued differential equation z′(t) = H(z(t))

and provide two theorems which manifest the correspondence between finite critical points of

w′(t) = F (w(t)) and z′(t) = H(z(t)).

1. Introduction

The overarching purpose of this article is to rigorously fill in gaps in the compactification
methods for ordinary differential equations (ODEs). The secondary purpose is to apply such
compactification methods to central force equations, especially Kepler’s problem. Recall that
central force equations model the motion of a particle under a central force field F (t) ∈ R3. If
r(t) ∈ R3 is the position of the particle, the central force equations are given by

F (t) = F (r)
r(t)

∥r(t)∥
, F (r) ∈ R. (1.1)

The Newtonian laws of motion

F (t) =
d

dt
(mr′(t)) = ma(t), (1.2)

are special cases of (1.1) since the laws of gravitation imply that

a(t) := r′′(t) =
K

∥r∥3
r(t), K ∈ R. (1.3)

Observe that (1.1) and (1.2) insinuate that F (r) = mK/∥r(t)∥2.
A compactification is a continuous mapping that maps an unbounded set of Rn into a bounded

set of Rd. The concept of using compactification to visualize “objects at infinity” was known
to the ancient Greek astronomer-mathematician Ptolemy (circa 100 to 170, C.E.) in the form of
stereographic projection [54, Section 3.6]. Compactifications methods, when applied to ODEs,
take an unbounded set of solutions into a bounded set of solutions. Many books prefer to apply
Poincaré compactifaction to solutions of ODEs [54, Section 3.10],. The Poincaré compactification
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maps the hyperplane of Rn+1 with the equation xn+1 = 0 (itself homeomorphic to Rn) onto the
“hemisphere” Sn+1, where

Sn+1 := {(x1, x2, . . . , xn, xn+1)
T :

n∑
i=1

x2
i + (xn+1 − 1)2 = 1, 0 ≤ xn+1 ≤ 1}.

However, when using the Poincaré compactification, these books avoid “rim” of hemisphere and
work with

S̊n+1 := {(x1, x2, . . . , xn, xn+1)
T :

n∑
i=1

x2
i + (xn+1 − 1)2 = 1 0 ≤ xn+1 < 1};

see [13, 14, 54]. This is because they did not turn the hyperplane with equation xn+1 = 0 (or
equivalently Rn) into a complete metric space. Theorem 3.8 herein shows how to turn Rn into
a complete metric spaces and addresses this gap in the literature. Theorem 3.8 is an extension
of the initial work done by Y. Gingold and H. Gingold in which they embed R2 into a complete
metric space [25].

The compactified differential systems and equations may have critical points that represent
“critical points at infinity” of the original (uncompactificed) systems and equations. These “critical
points at infinity” in Rn may be appropriately labeled by ∞U , where U is a unit vector in Rn.
Kepler’s problem, and more generally, Newton’s equations of celestial mechanics, are shown to
have such “critical points at infinity” [24]. The existence of such “critical points at infinity”
necessitates developing a calculus which interprets objects of the form ∞U1 +∞U2; see Theorem
2.9. Such a calculus, at least as far as we know, is not found in the literature. Section 2 provides the
algebraic underpinning of this calculus and is the first step in legitimizing these objects. Further
legitimization of ∞U requires the extension of Rn to a complete metric space UERn equipped
with a proper metric given by Theorem 3.8.

In this article we use a parametrized family of spherical compactifications to “compactify” these
differential equations. This parametrized family [25] generalizes the stereographic and Poincaré
projections by generating a spectrum of spherical compactifications of which the stereographic
and Poincaré projections are special cases. We use a parametrized family of compactifications
rather than just one spherical compactification for several reasons. When transforming w(t) =
F (w(t)) into z(t) = H(z(t)), where w(t) = θ−1(t)z(t), there are critical points at infinity for
z(t) = H(z(t)) which vary with the compactifications that are employed since these critical points

are contained within {z(t) ∈ Rn : ∥z(t)∥ =
√
1− γ2}. Alternatively, a critical point obtained via

compactification is not an invariant of the original equation w′ = F (w). What is invariant under
the inverse transformation is the “direction of infinity”, namely that

lim
t→∞

w(t)

∥w(t)∥
= lim

t→∞

z(t)

∥z(t)∥
= U.

Secondly, the parametrized family brings out the fact that the stereographic projection is unfit
for celestial mechanics as it leads to an unbounded compactified equation with the condition
1− γ2 = 0.

We end this paper by utilizing spherical compactifications to transform a first order vector
valued differential equation w′(t) = F (w(t)) into the first order vector valued differential equation
z′(t) = H(z(t)). We then provide two theorems which manifest the correspondence between finite
critical points of w′(t) = F (w(t)) and z′(t) = H(z(t)); see Theorem 4.3 and Theorem 4.11.

2. Algebraic structure of the ultra extended Rn

In this section we provide the mathematical framework for the Ultra Extended Rn, herein
referred to as UERn, whenever n is any fixed positive integer. We begin with the algebraic
definition of ∞U .

Definition 2.1. Let n be a fixed positive integer. For any constant U ∈ Rn such that

U := (u1, u2, . . . , un)
T
, ∥U∥ =

√
u2
1 + u2

2 + · · ·+ u2
n = UTU = 1,
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and for any (Vm)m∈N ⊂ Rn such that

(a) lim
m→∞

∥Vm∥ = ∞, (b) lim
m→∞

Vm

∥Vm∥
= U,

we say Vm → ∞U (as m → ∞) and that (Vm)m∈N is an approximation sequence of ∞U . See
Figure 1.
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Figure 1. Manifestation of ∞U via the approximation sequence (Vm)m∈N.

Definition 2.2. Let Sn−1 denote the unit sphere in Rn centered at the origin, i.e. Sn−1 := {U ∈
Rn : ∥U∥ = 1}. The ideal set IDn associated with Rn is defined as

IDn := {∞U : U ∈ Sn−1}, (2.1)

while the ultra extended Rn, which we denote as UERn, is defined as

UERn := IDn∪̇Rn. (2.2)

We define the algebraic operations of addition and scalar multiplication on UERn. The defini-
tion of these operations are provided by the following series of propositions.

Proposition 2.3. Let U ∈ Sn−1. If (Vm)m∈N ⊂ Rn such that Vm → ∞U , and if k ∈ R/{0}, then
kVm → ∞kU/|k|.

Proof. Since Definition 2.1 implies that limm→∞ ∥Vm∥ = ∞ and that limm→∞
Vm

∥Vm∥ = U , we

deduce that

lim
m→∞

kVm

|k|∥Vm∥
=

kU

|k|
,

and the result follows. □

Proposition 2.3 justifies the following definition of scalar multiplication in UERn.



4 H. GINGOLD, J. QUAINTANCE EJDE-2025/33

Definition 2.4. Let X ∈ UERn and k ∈ R. If X ∈ Rn, then kX ∈ Rn. If X ∈ IDn, i.e.
X = ∞U for U ∈ Sn−1, then

k∞U := ∞kU

|k|
, k ∈ R/{0}. (2.3)

In particular, −∞U = ∞(−U). Note that 0∞U is undefined.

Next we define various additions operations in UERn. First a proposition which will be used
to define V +∞U .

Proposition 2.5. Let V ∈ Rn and U ∈ Sn−1. Let (Vm)m∈N ⊂ Rn such that Vm → ∞U . Then
V + Vm → ∞U .

Proof. By Definition 2.1 we know that limm→∞
Vm

∥Vm∥ = U with limm→∞ ∥Vm∥ = ∞. Since ∥V ∥ <

∞, and since ∥Vm∥ ≤ ∥V ∥ + ∥V + Vm∥, we deduce that limm→∞ ∥V + Vm∥ = ∞. Furthermore,
since

∥Vm∥
∥Vm∥+ ∥V ∥

≤ ∥Vm∥
∥V + Vm∥

≤ ∥Vm∥
| ∥Vm∥ − ∥V ∥ |

,

the squeeze theorem implies that limm→∞
∥Vm∥

∥V+Vm∥ = 1. Then

lim
m→∞

V + Vm

∥V + Vm∥
= lim

m→∞

V

∥V + Vm∥
+ lim

m→∞

Vm

∥V + Vm∥

= 0 + lim
m→∞

Vm

∥Vm∥
lim

m→∞

∥Vm∥
∥V + Vm∥

= U. □

Remark 2.6. In Proposition 2.5 the constant vector V ∈ Rn can be replaced with a vector
function V (t) ∈ Rn such that for all t ∈ R, ∥V (t)∥ < M , where M is a fixed nonnegative real
number independent of t.

It remains to determine the meaning of ∞U + ∞Û . The proof of Proposition 2.3 shows for
all fixed k > 0, (kVm)m∈N is an approximation sequence of ∞U . We extend this result by
(αm)m∈N ⊂ R+ which satisfies lim infm→∞ αm > 0, where R+ := {x ∈ R : 0 < x < ∞}. Then
given Vm → ∞U , since

lim inf
m→∞

αm lim
m→∞

∥Vm∥ ≤ lim
m→∞

∥αmVm∥,

and since lim infm→∞ αm ∈ R+ implies that

lim inf
m→∞

αm lim
m→∞

∥Vm∥ = ∞,

we find that

lim
m→∞

∥αmVm∥ = ∞, lim
m→∞

αmVm

∥αmVm∥
= lim

m→∞

Vm

∥Vm∥
= U. (2.4)

The calculations of (2.4) show that (αmVm)m∈N is also an approximation sequence of ∞U . Hence
we may consider ∞U as an infinite family of approximation sequences.

Definition 2.7. Let n be a fixed positive integer. For any U ∈ Sn−1, define ∞U via

∞U :=
{
(Vm)m∈N ⊂ Rn : lim

m→∞
∥Vm∥ = ∞, lim

m→∞

Vm

∥Vm∥
= U

}
:= {(Vm)m∈N}U . (2.5)

Equation (2.5) provides an alternative definition for ∞U . Every statement Vm → ∞U is
equivalent to ∞U = {(Vm)m∈N}U , i.e. Vm → ∞U for all (Vm) ∈ {(Vm)m∈N}U . Hence we consider
(Vm)m∈N as a representative of the set {(Vm)m∈N}U .

Definition 2.8. Let p ∈ R+ and let U, Û ∈ Sn−1. We define Sp as

Sp :=
{(

(Vm), (Wm)
)
: (Vm) ∈ {(Vm)m∈N}U , (Wm) ∈ {(Wm)m∈N}Û , lim

m→∞

∥Vm∥
∥Wm∥

= p
}
, (2.6)

where (Vm) := (Vm)m∈N ∈ {(Vm)m∈N}U and (Wm) := (Wm)m∈N ∈ {(Wm)m∈N}Û are defined via
(2.5). We define S0 as

S0 :=
{
((Vm), (Wm) ) : (Vm) ∈ {(Vm)m∈N}U , (Wm) ∈ {(Wm)m∈N}Û , lim

m→∞

∥Vm∥
∥Wm∥

= 0
}
, (2.7)
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and we define S∞ as

S∞ :=
{(

(Vm), (Wm)
)
: (Vm) ∈ {(Vm)m∈N}U , (Wm) ∈ {(Wm)m∈N}Û , lim

m→∞

∥Vm∥
∥Wm∥

= ∞
}
. (2.8)

The following theorem will be used to justify ∞U +∞Û = ∞VU,Û .

Theorem 2.9. Let U, Û ∈ Sn−1. Assume that θ1U + (1− θ1)Û ̸= 0⃗ whenever 0 ≤ θ1 ≤ 1.

(a) Let p ∈ R+ and let ((Vm), (Wm)) ∈ Sp. For every 0 < θ1 < 1, there exists a unique

0 < θ̂1 < 1 such that

θ1Vm + (1− θ1)Wm → ∞ θ̂1U + (1− θ̂1)Û

∥θ̂1U + (1− θ̂1)Û∥
. (2.9)

(b) For ((Vm), (Wm)) ∈ S0, let θ1 = 0 = θ̂1. Then

θ1Vm + (1− θ1)Wm → ∞Û . (2.10)

(c) For ((Vm), (Wm)) ∈ S∞, let θ1 = 1 = θ̂1. Then

θ1Vm + (1− θ1)Wm → ∞U. (2.11)

Proof. For (a) we need to prove that

lim
m→∞

∥θ1Vm + (1− θ1)Wm∥ = ∞

lim
m→∞

θ1Vm + (1− θ1)Wm

∥θ1Vm + (1− θ1)Wm∥
=

θ̂1U + (1− θ̂1)Û

∥θ̂1U + (1− θ̂1)Û∥
.

(2.12)

To prove the first relation of (2.12), we put

Ψm := θ1Vm + (1− θ1)Wm = θ1∥Vm∥ Vm

∥Vm∥
+ (1− θ1)∥Wm∥ Wm

∥Wm∥
, (2.13)

and observe that

Ψm = ∥Wm∥
[
θ1

∥Vm∥
∥Wm∥

Vm

∥Vm∥
+ (1− θ1)

Wm

∥Wm∥

]
,

Ψm = ∥Vm∥
[
θ1

Vm

∥Vm∥
+ (1− θ1)

∥Wm∥
∥Vm∥

Wm

∥Wm∥

]
.

(2.14)

Notice that both representations are well defined because (Vm)m∈N is an approximation se-

quence for ∞U and (Wm)m∈N is an approximation sequence for ∞Û . Our goal is to show that
limm→∞ ∥Ψm∥ = ∞. If we can show that there exists an m1 > 0 and a constant δ(m1) > 0 such
that for all m ≥ m1 we have∥∥∥θ1 ∥Vm∥

∥Wm∥
Vm

∥Vm∥
+ (1− θ1)

Wm

∥Wm∥

∥∥∥ = δ(m1) > 0, (2.15)

then since limm→∞ ∥Wm∥ = ∞, the first representation of Ψm in (2.14) will indeed imply that
limm→∞ ∥Ψm∥ = ∞.

We prove (2.15) via contradiction. Assume by contradiction that there exists a subsequence
(Vmk) of (Vm) and a subsequence (Wmk) of (Wm) such that

lim
k→∞

∥Vmk∥
∥Wmk∥

= p,

lim
k→∞

[
θ1

∥Vmk∥
∥Wmk∥

Vmk

∥Vmk∥
+ (1− θ1)

Wmk

∥Wmk∥

]
= θ1pU + (1− θ1)Û = 0⃗.

(2.16)

By construction, 0 < p < ∞, and

θ1pU + (1− θ1)Û = 0⃗ ⇐⇒ θ1pU + (1− θ1)Û

θ1p+ 1− θ1
= 0⃗. (2.17)
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This statement is equivalent to

θ1pU + (1− θ1)Û

θ1p+ 1− θ1
= 0⃗ = θ̂1U + (1− θ̂1)Û , (2.18)

where

0 < θ̂1 =
θ1p

θ1p+ 1− θ1
< 1, (2.19)

which is a contradiction to the assumption that θ1U + (1− θ1)Û ̸= 0⃗ whenever 0 ≤ θ1 ≤ 1. Hence
(2.15) is true, which in turn implies that the first relation of (2.12) holds.

A similar proof shows that there exists an m2 > 0 and a constant δ(m2) > 0 such that for all
m ≥ m2 we have ∥∥∥θ1 Vm

∥Vm∥
+ (1− θ1)

∥Wm∥
∥Vm∥

Wm

∥Wm∥

∥∥∥ = δ(m2) > 0. (2.20)

Now we focus on proving the second relation of (2.12). Equations (2.15) and (2.20), when
combined with (2.14), show that the denominators in the following calculation are nonzero for
large enough m. Recall that limm→∞ ∥Vm∥/∥Wm∥ = p ∈ R+.

lim
m→∞

θ1Vm + (1− θ1)Wm

∥θ1Vm + (1− θ1)Wm∥
= lim

m→∞

θ1Vm

∥θ1Vm∥
lim

m→∞

∥θ1Vm∥
∥θ1Vm + (1− θ1)Wm∥

+ lim
m→∞

(1− θ1)Wm

∥(1− θ1)Wm∥
lim

m→∞

∥(1− θ1)Wm∥
∥(1− θ1)Wm + θ1Vm∥

= U lim
m→∞

1
∥θ1Vm+(1−θ1)Wm∥

∥θ1Vm∥

+ Û lim
m→∞

1
∥θ1Vm+(1−θ1)Wm∥

∥(1−θ1)Wm∥

= U lim
m→∞

1∥∥ θ1Vm

∥θ1Vm∥ + (1−θ1)Wm

∥(1−θ1)Wm∥
∥(1−θ1)Wm∥

∥θ1Vm∥
∥∥

+ Û lim
m→∞

1∥∥ θ1Vm

∥θ1Vm∥
∥θ1Vm∥

∥(1−θ1)Wm∥ + (1−θ1)Wm

∥(1−θ1)Wm∥
∥∥

=
U

∥U + 1−θ1
pθ1

Û∥
+

Û

∥ pθ1
1−θ1

U + Û∥
.

(2.21)

The calculation of (2.21) implies that

lim
m→∞

θ1Vm + (1− θ1)Wm

∥θ1Vm + (1− θ1)Wm∥
=

pθ1U + (1− θ1)Û

∥pθ1U + (1− θ1)Û∥
=

pθ1
pθ1+(1−θ1)

U + 1−θ1
pθ1+(1−θ1)

Û

∥ pθ1
pθ1+(1−θ1)

U + 1−θ1
pθ1+(1−θ1)

Û∥
,

and we complete the proof by setting

θ̂1 :=
pθ1

pθ1 + 1− θ1
=

pθ1
(p− 1)θ1 + 1

. (2.22)

Proof of (b). Since ((Vm), (Wm)) ∈ S0, a carefully reading of the proof of (2.15) shows that it

is still valid for p = 0 as long as θ1 ̸= 1. Thus we can choose θ1 = 0 = θ̂1 and obtain (2.10). The
choice of θ1 = 0 is justified by assuming that p = 0 in (2.21) and θ1 ̸= 1, in which case we obtain

lim
m→∞

θ1Vm + (1− θ1)Wm

∥θ1Vm + (1− θ1)Wm∥
= Û , (2.23)

since ∥∥U +
1− θ1
θ1p

Û
∥∥ = ∞. (2.24)
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For the proof of (c), we make the following adjustments to the proof of (2.15). We choose a
subsequence (Vmk) of (Vm) and a subsequence (Wmk) of (Wm) such that

lim
k→∞

∥Vmk∥
∥Wmk∥

= ∞,

lim
k→∞

∥∥∥θ1 ∥Vmk∥
∥Wmk∥

Vmk

∥Vmk∥
+ (1− θ1)

Wmk

∥Wmk∥

∥∥∥ = 0.

(2.25)

We can see the contradiction by noticing that∥∥∥θ1 ∥Vmk∥
∥Wmk∥

Vmk

∥Vmk∥
+ (1− θ1)

Wmk

∥Wmk∥

∥∥∥ ≥ ∥θ1
∥Vmk∥
∥Wmk∥

Vmk

∥Vmk∥
∥ − ∥(1− θ1)

Wmk

∥Wmk∥
∥

≥ θ1
∥Vmk∥
∥Wmk∥

− (1− θ1).

(2.26)

By taking the limit of (2.26), as long as θ1 ̸= 0, we find that

0 = lim
k→∞

∥θ1
∥Vmk∥
∥Wmk∥

Vmk

∥Vmk∥
+ (1− θ1)

Wmk

∥Wmk∥
∥

≥ θ1 lim
k→∞

∥Vmk∥
∥Wmk∥

− (1− θ1) = ∞,

(2.27)

which is an obvious contradiction. Thus we can choose θ1 = 1 = θ̂1 and obtain (2.11). The choice
of θ1 = 1 is justified by assuming that p = ∞ and θ1 ̸= 0 in (2.21), in which case we obtain

lim
m→∞

θ1Vm + (1− θ1)Wm

∥θ1Vm + (1− θ1)Wm∥
= U, (2.28)

since ∥∥ pθ1
1− θ1

U + Û
∥∥ = ∞. (2.29)

□

Remark 2.10. Equation (2.9) shows that not only are all 0 ≤ θ1 ≤ 1 attained but also that

additional values of 0 ≤ θ1 ≤ 1 are not possible. Also observe that given U, Û ∈ Sn−1, if there
exists a nonzero vector N ∈ Rn such that ⟨N,U⟩ and ⟨N, Û⟩ are of the same sign, then

⟨N, θ1U + (1− θ1)Û⟩ ≠ 0, 0 ≤ θ1 ≤ 1,

and consequently θ1U + (1− θ1)Û ̸= 0̂ as desired.

When deriving (2.21), since 0 < θ1 < 1 and 0 < p < ∞, we implicitly use that

∥U +
1− θ1
θ1p

Û∥ ≠ 0 ⇐⇒ ∥θ1pU + (1− θ1)Û∥ ≠ 0 ⇐⇒
∥∥ θ1pU

pθ1 + 1− θ1
+

(1− θ1)Û

pθ1 + 1− θ1

∥∥ ̸= 0, (2.30)

and that∥∥ θ1p

1− θ1
U + Û

∥∥ ̸= 0 ⇐⇒ ∥θ1pU +(1− θ1)Û∥ ≠ 0 ⇐⇒
∥∥ θ1pU

pθ1 + 1− θ1
+

(1− θ1)Û

pθ1 + 1− θ1

∥∥ ̸= 0. (2.31)

Since

∥θ1pU + (1− θ1)Û∥ ≠ 0 ⇐⇒ ∥θ1pU + (1− θ1)Û∥2 ̸= 0,

and
∥θ1pU + (1− θ1)Û∥2 = ⟨θ1pU + (1− θ1)Û , θ1pU + (1− θ1)Û⟩

= (θ1p)
2∥U∥2 + (1− θ1)

2∥Û∥2 + 2θ1(1− θ1)p⟨U, Û⟩

= (θ1p)
2 + (1− θ1)

2 + 2θ1(1− θ1)p⟨U, Û⟩,

(2.32)

if ⟨U, Û⟩ > 0, then ∥θ1pU + (1− θ1)Û∥2 ̸= 0.

We use ⟨U, Û⟩ > 0 to replace θ1U + (1− θ1)Û ̸= 0⃗ whenever 0 ≤ θ1 ≤ 1 as follows.

Proposition 2.11. Let U, Û ∈ Sn−1, where ⟨U, Û⟩ > 0.
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(a) Let p ∈ R+ and let ((Vm), (Wm)) ∈ Sp. For every 0 < θ1 < 1, there exists a unique

0 < θ̂1 < 1 such that

θ1Vm + (1− θ1)Wm → ∞ θ̂1U + (1− θ̂1)Û

∥θ̂1U + (1− θ̂1)Û∥
. (2.33)

(b) For ((Vm), (Wm)) ∈ S0, let θ1 = 0 = θ̂1. Then

θ1Vm + (1− θ1)Wm → ∞Û . (2.34)

(c) For ((Vm), (Wm)) ∈ S∞, let θ1 = 1 = θ̂1. Then

θ1Vm + (1− θ1)Wm → ∞U. (2.35)

Proof. By assumption Vm → ∞U and Wm → ∞Û . This implies that

lim
m→∞

〈 Vm

∥Vm∥
,

Wm

∥Wm∥

〉
= ⟨U, Û⟩,

and hence there exists m1 > 0 and ϵ(m1) > 0 such that〈 Vm

∥Vm∥
,

Wm

∥Wm∥

〉
> ϵ(m1) > 0, whenever m ≥ m1. (2.36)

Since limm→∞ ∥Vm∥ = ∞ and limm→∞ ∥Wm∥ = ∞, inequality (2.36) implies that

⟨Vm,Wm⟩ > ∥Vm∥∥Wm∥ϵ(m1) > 0, whenever m ≥ m1. (2.37)

We are now in a position to prove (a). Once again we need to verify the two limits of (2.12).
Observe that for n ≥ m1, Inequality (2.37) implies that

∥θ1Vm + (1− θ1)Wm∥2 = ⟨θ1Vm + (1− θ1)Wm, θ1Vm + (1− θ1)Wm⟩
= θ21∥Vm∥2 + (1− θ1)

2∥Wm∥2 + 2θ1(1− θ1)⟨Vm,Wm⟩
> θ21∥Vm∥2 + (1− θ1)

2∥Wm∥2.
(2.38)

Inequality (2.38) implies that

lim
m→∞

∥θ1Vm + (1− θ1)Wm∥2 > θ21 lim
m→∞

∥Vm∥2 + (1− θ1)
2 lim
m→∞

∥Wm∥2 = ∞,

which shows that limm→∞ ∥θ1Vm + (1 − θ1)Wm∥ = ∞, which is the first limit of (2.12). The
calculations of (2.21) and (2.22) are still valid and prove the second limit of (2.12). The proof
of Part (b) follows from (2.23) and (2.24), while the proof of Part (c) follows from (2.28) and
(2.29). □

Theorem 2.9 implies that we set

∞U +∞Û =
{
∞V : V =

θ1U + (1− θ1)Û

∥θ1U + (1− θ1)Û∥
, 0 ≤ θ1 ≤ 1

}
(2.39)

whenever θ1U + (1− θ1)Û ̸= 0⃗, for 0 ≤ θ ≤ 1. We propose to use the notation

∞VU,Û :=
{
∞V : V =

θ1U + (1− θ1)Û

∥θ1U + (1− θ1)Û∥
, 0 ≤ θ1 ≤ 1

}
(2.40)

to represent the right side of (2.39). Proposition 2.5 and Theorem 2.9 justify the following defini-
tion of additions in UERn.

Definition 2.12. Let V,W ∈ Rn, and let U, Û ∈ Sn−1 such that θ1U + (1− θ1)Û ̸= 0⃗, whenever
0 ≤ θ1 ≤ 1. Then V +W ∈ Rn and

(a) V +∞U := ∞U ,

(b) ∞U +∞Û := ∞VU,Û .

Remark 2.13. Formula (2.40) immediately shows that ∞U +∞Û = ∞Û +∞U .
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3. Spherical compactification of UERn

We now extend the construction in [25, 27] and derive a compactification of UERn as a spherical
bowl of Sn, where Sn = {U ∈ Rn+1 : ∥U∥ = 1}, and ∥ · ∥ is the Euclidean norm in Rn+1. This
construction provides a geometric realization of IDn as points in Sn and allows us to turn UERn

into a complete metric space.

Definition 3.1. Let γ be a fixed positive number with 0 < γ < 1. The spherical bowl associated
with γ, namely SBn

γ , is defined as

SBn
γ := {(x1, x2, . . . , xn+1)

T ∈ Sn : −1 ≤ xn+1 ≤ γ}. (3.1)

The open spherical bowl is defined as

OSBn
γ := {(x1, x2, . . . , xn+1)

T ∈ Sn : −1 ≤ xn+1 < γ}. (3.2)

The “open upper hemisphere” of SBn
γ is defined as

SBn,+
γ := {Z = (x1, x2, . . . , xn+1)

T ∈ SBn
γ : 0 < xn+1 < γ}. (3.3)

The “open lower hemisphere” of SBn
γ is defined as

SBn,−
γ := {Z = (x1, x2, . . . , xn+1)

T ∈ SBn
γ : xn+1 < 0}. (3.4)

The boundary or “rim” of the spherical bowl is defined as

SBn
γ /OSBn

γ := {(x1, x2, . . . , xn+1)
T ∈ Sn : xn+1 = γ}. (3.5)

See Figure 2.

P = (0,0,γ )

(0,0,-1)

(0,0,1)

(1,0,0)
(0,1,0)

(1,0,0)

 )

(1,0,0)

 ) ) ) ) ) )P =P =P =P = (0,0, (0,0,P = (0,0, (0,0,P = (0,0, (0,0,γγγγ ) ) ) )γγγγγ ) ) ) ) ) ) ) ) )γγ )γγγ ) ) ) ) )γγ ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

(1,0,0)(1,0,0)(1,0,0)

Figure 2. Spherical bowl in R3.

Remark 3.2. We illustrate the compactification of UER2 onto a spherical bowl SB2
γ = {X ∈

R3 : ∥X∥ = 1, −1 ≤ z ≤ γ}, where the vectors are written in row form with the transpose notation
suppressed.
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Remark 3.3. Definition 3.1 can be extended to the case of γ = 1. In this case the compactifi-
cation coincides with the stereographic projection; see [16] and [25]. We will not work with the
stereographic projection since it does not preserve directions at infinity. Also the stereographic
projection, unlike the spherical projections for 0 < γ < 1 of Definition 3.6, fails to locate critical
points for the compactified equations of the expanding universe.

We now describe a radial projection between OSBn
γ and a copy of Rn embedded in Rn+1, which

we denote as R̃n; see (3.6). To construct the radial lines of this projection, since OSBn
γ ⊂ Rn+1,

we need to use R̃n. However, since Rn is homeomorphic to R̃n, we use Rn as the domain of the
bijective map; see Proposition 3.5.

We define
R̃n := {(x1, x2, . . . , xn, xn+1)

T ∈ Rn+1 : xn+1 = 0}. (3.6)

Let Z = (x1, x2, . . . , xn, xn+1)
T ∈ OSBn

γ , and let Q = (q1, q2, . . . , qn, 0)
T ∈ R̃n. We define the

projection point P as
P := (0, 0, . . . , γ)T ∈ Rn+1. (3.7)

Since xn+1 is determined from (xi)
n
i=1, i.e. x

2
n+1 = 1−

∑n
i=1 x

n
i , and since Proposition 3.5 will only

depend of the first n coordinates of Q, we will emphasize the importance of the first n coordinates
in Z and Q by defining

Z = (Z̃, xn+1)
T ∈ OSBn

γ , Z̃ := (x1, x2, . . . , xn)
T

Q = (Q, 0)T ∈ R̃n, Q := (q1, q2, . . . , qn)
T ∈ Rn.

(3.8)

Next define the nonnegative real valued quantities

R2 := x2
1 + x2

2 + · · ·+ x2
n = Z̃T Z̃,

r2 := QTQ = QTQ = q21 + q22 + · · ·+ q2n.
(3.9)

We require that P , Z, and Q be collinear in a positive direction, namely that

P⃗Z = θP⃗Q ⇐⇒ θ−1P⃗Z = P⃗Q, 0 < θ. (3.10)

See Figure 3.

(0,0,-1)

(0,0,1)

(1,0,0)
(0,1,0)

(1,0,0)(1,0,0)(1,0,0)

2(x    , x    , x   )1 3Z =

(q  , q  , 0)Q =

radius = (1 - γ  )γ2  )  )
1/2

radius = (1 - 

1 2

P = (0,0,γ )

Figure 3. Relationship between P , Z, and Q in R3.

Equation (3.10) implies that

xi = θqi ⇐⇒ qi =
xi

θ
, 1 ≤ i ≤ n, xn+1 = (1− θ)γ. (3.11)
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The equation for xn+1 of (3.11) shows that if 0 < θ < 1, then Z ∈ SBn,+
γ , while if θ > 1, then

Z ∈ SBn,−
γ . The left relations of (3.11) imply that if 0 < θ < 1, then

Q ∈ B+
n,n+1 := {(q1, q2, . . . , qn, 0)T ∈ R̃n : q21 + q22 + · · · q2n > 1},

while if θ > 1, then

Q ∈ B−
n,n+1 := {(q1, q2, . . . , qn, 0)T ∈ R̃n : q21 + q22 + · · · q2n < 1}.

Thus, the radial projection of (3.10) maps SBn,+
γ to B+

n,n+1, and it maps SBn,−
γ to B−

n,n+1; see
Figure 3.

To show that radial projection of (3.10) is a continuous bijection, given Q ∈ R̃n, we uniquely
solve for θ in order to determine the corresponding Z ∈ OSBn

γ . Recall that Z ∈ SBn
γ , which

means

x2
1 + x2

2 + · · ·+ x2
n+1 = 1. (3.12)

Substitute (3.11) in (3.12) to obtain

θ2q21 + θ2q22 + · · ·+ θ2q2n + (1− θ)2γ2 = 1,

which is equivalent to

θ2(q21 + q22 + · · ·+ q2n + γ2)− 2θγ2 + γ2 − 1 = θ2(r2 + γ2)− 2θγ2 + γ2 − 1 = 0. (3.13)

Thus

θ =
2γ2 ±

√
4γ4 − 4(r2 + γ2)(γ2 − 1)

2(r2 + γ2)
=

γ2 ±
√
γ2 + (1− γ2)r2

r2 + γ2
,

and since we require that θ > 0, we choose

θ =
γ2 +

√
γ2 + (1− γ2)r2

r2 + γ2
. (3.14)

Conversely given Z ∈ OSBn
γ , we uniquely solve for θ in order to determine the corresponding

Q ∈ R̃n. We use (3.12) and substitute in the relationship for xn+1 given by (3.11) to obtain

x2
1 + x2

2 + · · ·+ x2
n + (1− θ)2γ2 = R2 + (1− θ)2γ2 = 1,

which implies that

θ = 1±
√
1−R2

γ
. (3.15)

If Z ∈ SBn,+
γ , i.e. xn+1 > 0, then 0 < θ < 1, and we choose

θ = 1−
√
1−R2

γ
. (3.16)

If Z ∈ SBn,−
γ , i.e. xn+1 < 0, then θ > 1, and we choose

θ = 1 +

√
1−R2

γ
. (3.17)

If θ = 1, then R2 = 1, and Z = Q.

Remark 3.4. Observe that (3.16) and (3.17) are undefined when γ = 0. This degeneracy is why
we required 0 < γ < 1.

Since Rn is homeomorphic to R̃n with the induced topology, the above calculations prove the
following proposition.

Proposition 3.5. Given P = (0, 0, . . . , γ)T ∈ Rn+1, where 0 < γ < 1, for any Q = (q1, q2, . . . , qn)
T ∈

Rn define G : Rn → OSBn
γ as

G(Q) = (θq1, θq2, . . . , θqn, (1− θ)γ)T , θ =
γ2 +

√
γ2 + (1− γ2)QTQ

QTQ+ γ2
. (3.18)
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For each Z = (x1, x2, . . . , xn, xn+1)
T ∈ OSBn

γ , we define L̂ : OSBn
γ → Rn via

L̂(Z) =


γ

γ−
√

1−
∑n

i=1 x2
i

(x1, x2, . . . , xn)
T , Z ∈ SBn,+

γ

γ

γ+
√

1−
∑n

i=1 x2
i

(x1, x2, . . . , xn)
T , Z ∈ SBn,−

γ

(x1, x2, . . . , xn)
T ,

∑n
i=1 x

2
i = 1 ⇐⇒ xn+1 = 0.

(3.19)

If OSBn
γ inherits the induced topology from Rn+1, then G is a continuous bijection with G−1 ≡ L̂.

To obtain a bijection between IDn and SBn
γ /OSBn

γ , we need a limiting argument to extend to
θ = 0. Geometrically SBn

γ /OSBn
γ is the rim of the spherical bowl SBn

γ , namely the (n−1)-sphere

centered at P = (0, 0, . . . , γ)T with radius
√
1− γ2; see Figure 3. We define

ω := γ2 + (1− γ2)r2 = γ2 + (1− γ2)(q21 + q22 + · · ·+ q2n). (3.20)

Then (3.14) can be rewritten as

θ =
γ2 +

√
ω

r2 + γ2
. (3.21)

Given an approximation sequence (Qm)m∈N ⊂ R̃n to a unit vector U = (u1, · · · , un, 0)
T , i.e.

Qm := (q1m, q2m, . . . , qnm, 0)T , Um := (u1m, u2m, . . . , unm, 0)T =
Qm

∥Qm∥
, rm := ∥Qm∥,

Qm = rmUm = (rmu1m, rmu2m, . . . , rmunm, 0)T , lim
m→∞

rm = ∞, lim
m→∞

Um = U,

Since Qm = (Qm, 0)T , (see (3.8)), Proposition 3.5 implies that each Qm is mapped to the point
Zm in OSBn

γ , where

Zm := (θmrmu1m, θmrmu2m, . . . , θmrmunm, γ(1− θm))T

θm :=
γ2 +

√
ωm

r2m + γ2
, ωm := γ2 + (1− γ2)r2m.

Since γ is a fixed positive constant and since rm → ∞, we deduce that

√
ωm ∼

√
1− γ2rm, θm ∼

√
1− γ2

rm
, m → ∞ (3.22)

which in turn implies

Zm ∼ (
√

1− γ2u1,
√
1− γ2u2, . . . ,

√
1− γ2un, γ)

T ∈ SBn
γ /OSBn

γ , m → ∞.

Conversely, given Z = (x1, x2, . . . , xn, γ)
T ∈ SBn

γ /OSBn
γ , observe that

n∑
i=1

x2
i + γ2 = 1 ⇐⇒

√√√√ n∑
i=1

x2
i =

√
1− γ2. (3.23)

For any sequence (Zm)m∈N ⊂ SBn,+
γ where

Zm = (x1m, x2m, . . . xnm, xn+1m)T , and lim
m→∞

Zm = Z,

since Proposition 3.5 implies that each Zm is mapped to

G−1(Zm) =
γ

γ −
√

1−
∑n

i=1 x
2
im

(x1m, x2m, . . . , xnm)T

we apply (3.23) and find that

lim
m→∞

G−1(Zm) = lim
m→∞

γ

γ −
√
1−

∑n
i=1 x

2
im

(x1m, x2m, . . . , xnm)T

= lim
m→∞

γ
√∑n

i=1 x
2
im

γ −
√
1−

∑n
i=1 x

2
im

(x1m, x2m, . . . , xnm)T√∑n
i=1 x

2
im
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=
γ
√∑n

i=1 x
2
i

γ −
√
1−

∑n
i=1 x

2
i

(x1, x2, . . . , xn)
T√∑n

i=1 x
2
i

= ∞ (x1, x2, . . . , xn)
T√

1− γ2
.

In summary, the preceding calculations justify the construction of the following bijection be-
tween SBn

γ and UERn.

Proposition 3.6. Given P = (0, 0, . . . , γ)T ∈ Rn+1, where 0 < γ < 1, let G : Rn → OSBn
γ be the

continuous bijection defined in Proposition 3.5. Define Ĝ : UERn → SBn
γ as

Ĝ(Q) =

{
G(Q), Q ∈ Rn

(
√

1− γ2u1,
√
1− γ2u2, . . . ,

√
1− γ2un, γ)

T , Q = ∞U ∈ IDn.
(3.24)

Then Ĝ is a set-theoretic bijection with inverse Ĝ−1 : SBn
γ → UERn defined via

Ĝ−1(Z) =

G−1(Z), Z ∈ OSBn
γ

∞
(

x1√
1−γ2

, x2√
1−γ2

, . . . , xn√
1−γ2

)T

, Z ∈ SBn
γ /OSBn

γ .
(3.25)

Definition 3.7. The map Ĝ : UERn → SBn
γ of Proposition 3.6 is the spherical compactification

of UERn associated with the parameter γ.

By using the chordal distance between any two points Z, Ẑ ∈ SBn
γ , i.e. the standard Euclidean

distance in Rn+1, we can induce a complete metric on UERn and turn the bijection of Proposition
3.6 into a continuous bijection.

Theorem 3.8. Let Ĝ be as defined in Proposition 3.6. Let ∥ ∥ denote the Euclidean norm in Rn+1.
Then UERn is a complete metric space with respect to the chordal metric χ : UERn×UERn → R+,
where

χ(Q, Q̂) = ∥Ĝ(Q)− Ĝ(Q̂)∥. (3.26)

In particular, if Q = (q1, q2, . . . , qn)
T ∈ Rn, Q̂ = (q̂1, q̂2, . . . , q̂n)

T ∈ Rn, Z = Ĝ(Q), and Ẑ =

Ĝ(Q̂), Equation (3.26) becomes

χ2(Q, Q̂) = ∥Z − Ẑ∥2

= 2− 2
(γ2 +

√
ω

r2 + γ2

)(γ2 +
√
ω̂

r̂2 + γ2

)( n∑
i=1

qiq̂i + γ2
)

− 2
[
γ2 − γ2

(γ2 +
√
ω

r2 + γ2

)
− γ2

(γ2 +
√
ω̂

r̂2 + γ2

)]
,

(3.27)

where

r2 := QTQ, r̂2 := Q̂T Q̂, ω := γ2 + (1− γ2)r2, ω̂ := γ2 + (1− γ2)r̂2;

see Figure 4. If Q = (q1, q2, . . . , qn)
T ∈ Rn and Q̂ = ∞Û , with Û = (û1, û2, . . . , ûn)

T ∈ Sn−1,
Equation (3.26) becomes

χ2(Q, Q̂) = 1− γ2 +
(γ2 +

√
ω

r2 + γ2

)2

(r2 + γ2)− 2
(γ2 +

√
ω

r2 + γ2

)√
1− γ2

n∑
i=1

qiûi; (3.28)

see Figure 5. If Q = ∞U , with U = (u1, u2, . . . , un)
T ∈ Sn−1, and Q̂ = ∞Û , with Û =

(û1, û2, . . . , ûn)
T ∈ Sn−1, then (3.26) becomes

χ2(Q, Q̂) = 2(1− γ2)
[
1−

n∑
i=1

uiûi

]
; (3.29)

see Figure 6.
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P = (0,0,γ )

(0,0,-1)

(0,0,1)

(1,0,0)
(0,1,0)

 ) ) ) ) ) ) ) )P =P = (0,0,γ )γ ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )γγ )γ (0,0, (0,0,  ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

2(x    , x    , x   )
1 3

Z =

(q  , q  , 0)Q =

^
2

(x    , x    , x   )
1 3 ^ ^ ^

^   ^

Z =

^

1 2 
= (Q, 0)

(q  , q  , 0)Q =
1 2 

= (Q, 0)

^

^

P = (0,0,γ )

Figure 4. The distance between Q and Q̂ is given by the chordal distance (green

dashed line) between Z and Ẑ in SB2
γ .

P = (0,0,γ )

(0,0,-1)

(0,0,1)

(1,0,0)
(0,1,0)

 ) ) ) ) ) )P =P = (0,0,γ )γ ) ) ) ) ) ) ) ) )γγ )γ (0,0, (0,0,  ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

(                  u   ,                 u   ,  γ )
1 2

^ ^ ^

^

Z = ODDD1 - γ2    

U = (u  , u   , 0)1 2
^

ODDD1 - γ2

NU

^

^

(q  , q  , 0)Q =
1 2 

= (Q, 0)

Z = 2
(x    , x    , x   )

1 3

P = (0,0,γ )

Figure 5. The distance between Q and Q̂ = ∞Û is given by the chordal distance
(green dashed line) between Z and Ẑ in SB2

γ .

Proof. Since χ is derived from the Euclidean norm of Rn+1, it is easy to see that χ is indeed a
distance function on UERn. We now derive Equation (3.27). Recall that Q = (q1, q2, . . . , qn)

T

and Q̂ = (q̂1, q̂2, . . . , q̂n)
T . Then Proposition 3.6 implies that

Ĝ(Q) = Z = (x1, x2, . . . , xn+1) = (θq1, θq2, . . . , θqn, (1− θ)γ)T , θ =
γ2 +

√
ω

γ2 + r2

Ĝ(Q̂) = Ẑ = (x̂1, x̂2, . . . , x̂n+1) = (θ̂q̂1, θ̂q̂2, . . . , θ̂q̂n, (1− θ̂)γ)T , θ̂ =
γ2 +

√
ω̂

γ2 + r̂2
.

The chordal distance between Ĝ(Q) and Ĝ(Q̂) becomes

∥Z − Ẑ∥2 = (x1 − x̂1)
2 + (x2 − x̂2)

2 + (x3 − x̂3)
2 + · · ·+ (xn+1 − x̂n+1)

2

= 2− 2[x1x̂1 + x2x̂2 + x3x̂3 + · · ·+ xn+1x̂n+1], since ∥Z∥ = ∥Ẑ∥ = 1

= 2− 2[θθ̂q1q̂1 + θθ̂q2q̂2 + · · ·+ θθ̂qnq̂n + γ2(1− θ)(1− θ̂)]
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P = (0,0,γ )

(0,0,-1)

(0,0,1)

(1,0,0)
(0,1,0)

 ) ) ) ) ) ) ) ) ) ) ) ) ) (0,0, (0,0,  ) ) ) )P =P = (0,0,γ )γ ) ) ) ) ) ) ) ) ) ) ) ) ) )γγ )γ (0,0, (0,0,  ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

(                  u   ,                 u   ,  γ )
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^ ^ ^

^

Z = ODDD1 - γ2
   

U = (u  , u   , 0)1 2
^
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Figure 6. The distance between Q = ∞U and Q̂ = ∞Û is given by the chordal
distance (green line) between Z and Ẑ in SB2

γ .

= 2− 2
(γ2 +

√
ω

γ2 + r2

)(γ2 +
√
ω̂

γ2 + r̂2

)
[q1q̂1 + qq̂2 + · · ·+ qnq̂n]

− 2
(
1− γ2 +

√
ω

γ2 + r2

)(
1− γ2 +

√
ω̂

γ2 + r̂2

)
γ2,

which upon expansion of the third term is seen to be identical to Equation (3.27).

To obtain (3.28) with Q = (q1, q2, . . . , qn)
T and Q̂ = ∞Û with Û = (û1, û2, . . . , ûn)

T , Proposi-
tion 3.6 implies that

Ĝ(Q) = Z = (θq1, θq2, . . . , θqn, (1− θ)γ)T , θ =
γ2 +

√
ω

γ2 + r2

Ĝ(Q̂) = Ẑ = (
√
1− γ2û1,

√
1− γ2û2, . . . ,

√
1− γ2ûn, γ)

T ,

and we find that (recall that ∥Û∥ = 1)

∥Z − Ẑ∥2 =

n∑
i=1

(
√
1− γ2ûi − θqi)

2 + (γ − (1− θ)γ)2

= (1− γ2) + θ2(q21 + q22 + · · ·+ q2n + γ2)− 2θ
√
1− γ2[q1û1 + q2û2 + · · ·+ qnûn],

which, since r2 =
∑n

i=1 q
2
i and θ = γ2+

√
ω

γ2+r2 , is identical to (3.28).

To verify (3.29), let Q = ∞U with U = (u1, u2, . . . , un)
T , and let Q̂ = ∞Û with U =

(û1, û2, . . . , ûn)
T . Proposition 3.6 implies that

Ĝ(Q) = Z = (
√
1− γ2u1,

√
1− γ2u2, . . . ,

√
1− γ2un, γ)

T ,

Ĝ(Q̂) = Ẑ = (
√
1− γ2û1,

√
1− γ2û2, . . . ,

√
1− γ2ûn, γ)

T .

Then

∥Z − Ẑ2∥ =

n∑
i=1

(
√
1− γ2ui −

√
1− γ2ûi)

2 = (1− γ2)

n∑
i=1

(u2
i − 2uiûi + û2

i ),

which is equivalent to (3.29) since ∥U∥ = ∥Û∥ = 1.
With the χ metric placed on UERn, and with SBn

γ given the induced Euclidean metric from

Rn+1, Proposition 3.6 defines a homeomorphism between SBn
γ and UERn. Since SBn

γ is a compact

subspace of Rn+1, it is a complete metric space with respect to the subspace topology, which
through the homeomorphism of Proposition 3.6, implies that UERn is also a complete metric
space. □

Remark 3.9. Theorem 3.8 turns UERn into a complete metric space, but not a normed vector
space. This is not surprising since Sn is not a vector space, but an n-manifold in Rn+1. The fact
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that UERn is not a vector space is also reflected by the fact that ∞U +∞Û is a set of elements
in IDn rather than one element. This brings to the fore the distinction between the rules for
calculating the scalar quantity ∞+∞ = ∞ and the rules for calculating ∞U +∞Û .

For applications to differential equations, it is useful to work with an alternative version of
the inverse provided by Proposition 3.6 in which we ignore the last coordinate xn+1 and per-

pendicularly project SBn,+
γ onto the interior of the annulus An√

1−γ2
⊂ Rn, embeded into R̃n,

where

An√
1−γ2

:= {X ∈ Rn :
√
1− γ2 ≤ ∥X∥ ≤ 1}; (3.30)

see Figure 7. Recall that

Bn := {X ∈ Rn : 0 ≤ ∥X∥ ≤ 1},
◦
Bn := {X ∈ Rn : 0 ≤ ∥X∥ < 1}.

radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - radius = (1 - γ  )γ2
  )  )

1/2

(0,0,1)

(1,0,0)

(0,1,0)
(0,0,0)

P = (0,0,γ )

Figure 7. “top half” of SB2
γ perpendicularly projected onto the “base” annulus

in the xy-plane.

Thus instead of using Z = (Z̃, xn+1) ∈ SBn,+
γ as part of the domain of Ĝ−1 (respectively G−1),

we instead use Z̃ ∈ An√
1−γ2

and define the following alternative inverse mapping.

Proposition 3.10. Define K : An√
1−γ2

→ UERn/
◦
Bn as

K(Z̃) =


γ

γ−
√

1−
∑n

i=1 x2
i

Z̃, Z̃ = (x1, x2, . . . , xn)
T ,

√
1− γ2 < ∥Z̃∥ ≤ 1

∞ Z̃√
1−γ2

, ∥Z̃∥ =
√

1− γ2.
(3.31)

Then K is a bijection between An√
1−γ2

and UERn/
◦
Bn, which is also referred to as the spherical

compactification associated with the parameter γ.

Observe that IDn is the image of {X ∈ An√
1−γ2

: ∥X∥ =
√
1− γ2}, i.e. the inner boundary of

the “annulus”; see Figure 8. Moreover, since there is a continuous bijection between An√
1−γ2

and

{(x1, x2, · · · , xn+1)
T ∈ SBn

γ : xn+1 ≥ 0}, namely

(x1, x2, . . . , xn)
T →

(
x1, x2, . . . , xn,

√√√√1−
n∑

i=1

x2
i

)T

,

we may transfer the chordal distance of SBn
γ onto An√

1−γ2
and use this transferred chordal distance

as the metric of UERn/
◦
Bn; see [30, Chapter 6].
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K

radius = (1 - γ  )
2

1/2

(1,0)

(1,0)

(0,1)

(0,1)

Figure 8. Annulus A2√
1−γ2 is mapped to UER2/

◦
B2 via an “inversion” over the

black S1.

In a similar manner, by ignoring the last coordinate xn+1, we perpendicularly project SBn,−
γ

onto
◦
Bn; see Figure 9.

Proposition 3.11. Define K̂ : Bn → Bn as

K̂(Z̃) =
γ

γ +
√
1−

∑n
i=1 x

2
i

Z̃, Z̃ = (x1, x2, . . . , xn)
T , 0 ≤ ∥Z̃∥ ≤ 1. (3.32)

Then K̂ is a bijection of Bn onto itself. By composing with the map

(x1, x2, . . . , xn)
T →

(
x1, x2, . . . , xn,−

√√√√1−
n∑

i=1

x2
i

)T

,

K̂ can also be considered as a bijection between SBn,−
γ and

◦
Bn.

P = (0,0, γ)

(0,0,1)

(1,0,0)

(0,1,0)

Figure 9. “lower half” of SB2
γ perpendicularly projected onto the unit disk in

the xy-plane.
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4. Spherical Compactification of Differential Equations

We now discuss how to apply the spherical compactification bijections to first order vector
valued differential equations. Proposition 3.5, when combined with Propositions 3.10 and 3.11,
implies that

Z̃ = θQ ⇐⇒ Q = θ−1Z̃, θ =
γ2 +

√
γ2 + (1− γ2)QTQ

γ2 +QTQ
= 1∓

√
1− Z̃T Z̃

γ
, (4.1)

where Z̃ ∈ Rn such that Z = (Z̃, xn+1)
T ∈ OSBn

γ , and Q ∈ Rn. Recall that θ > 0, so we refer to
θ as a dilation factor.

For the context of differential equations, we assign

Q =⇒ w(t), and Z̃ =⇒ z(t). (4.2)

With the conventions of (4.2), the formulas of (4.1) are succinctly written as

z(t) = θ(t)w(t) ⇐⇒ w(t) = θ−1(t)z(t), θ(t) =
γ2 +

√
β

γ2 + r2
= 1∓

√
1−R2

γ
, (4.3)

where

r(t) = ∥w(t)∥ =
√
wT (t)w(t), β(t) = γ2 + (1− γ2)r2, R(t) = ∥z(t)∥ =

√
zT (t)z(t). (4.4)

Previously β was denoted as ω, but because w(t) so closely resembles ω, we decided to change the
notation. Furthermore, to alleviate notation, we often write w(t) = w, z(t) = z, and θ(t) = θ, etc.

Remark 4.1. Since θ∥w(t)∥ = ∥z(t)∥, when θ ̸= 0, we deduce that

z(t)

∥z(t)∥
=

θw(t)

θ∥w(t)∥
=

w(t)

∥w(t)∥
. (4.5)

Equation (4.5) shows that (4.3) maps a unit vector of UERn (which is associated with w(t)) to a
unit vector in the projection of SBn

γ onto Rn (which is associated with z(t)). This is crucial when
discussing the notion of critical points (constant solutions) to w(t) = F (w(t)) of the form ∞U ,
since (4.5) implies that

lim
t→∞

w(t)

∥w(t)∥
= lim

t→∞

z(t)

∥z(t)∥
= U, (4.6)

given that the limit exists.

Suppose we have a first order vector valued differential equation of the form w′(t) = F (w(t)),
where w(t) ∈ UERn. Assume that θ ̸= 0. We use w(t) = θ−1z(t) and convert w′(t) = F (w(t))
into z′(t) = H(z(t)). We want to investigate the correspondence, if any, between finite critical
points wcp of w′ = F (w) and finite critical points zcp of z′ = H(z). Since

dθ

dt
= ± zT z′

γ
√
1− zT z

, (4.7)

and since w(t) = θ−1(t)z(t), we discover that

w′(t) = −θ−2 dθ

dt
z + θ−1z′

= −θ−2
[
± zT z′

γ
√
1− zT z

]
z + θ−1z′

= −θ−2
[
± zzT

γ
√
1− zT z

]
z′ + θ−1z′

= θ−1
[
In ∓ θ−1zzT

γ
√
1− zT z

]
z′.

(4.8)

As long as ∥z∥ ≠ 1, Equation (4.8) implies that

z′ = θ
[
In ∓ θ−1zzT

γ
√
1− zT z

]−1

w′. (4.9)
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It is now a matter of calculating [In +∆]−1 where

∆ := ∓ θ−1zzT

γ
√
1− zT z

. (4.10)

We will assume that (In +∆)−1 = In + µ∆, which in turn implies that

In = (In +∆)(In +∆)−1 = (In +∆)(In + µ∆) = In +∆+ µ∆+ µ∆2. (4.11)

Since R2 := zT z, we find that

∆2 =
θ−2

γ2(1−R2)
z(zT z)zT =

θ−2R2

γ2(1−R2)
zzT .

Then (4.11) becomes

0 = ∆+ µ∆+
θ−2R2

γ2(1−R2)
µzzT =

[∓γθ−1
√
1−R2 ∓ γθ−1

√
1−R2µ+ µθ−2R2

γ2(1−R2)

]
zzT .

Now we set the numerator to zero and solve for µ as

µ =
±γ

√
1−R2

θ−1R2 ∓ γ
√
1−R2

̸= 0. (4.12)

By using (4.12), we can rewrite (4.9) as

z′ = θ
[
In − θ−1zzT

θ−1zT z ∓ γ
√
1− zT z

]
w′. (4.13)

As long as ∥z∥ ≠ 1 and θ > 0, (θ is always finite by Part (iii) of Proposition 4.6), the matrix

In − θ−1zzT /(θ−1zT z ∓ γ
√
1− zT z) is invertible. Because θ = 1 ∓ γ−1

√
1− zT z, the fact that

∥z∥ ̸= 1 is equivalent to the fact that θ ̸= 1. Since ∥z∥ = 1 if and only if θ = 1 if and only
if z = θw = w, we deduce the one-to-one correspondence between finite critical points wcp of
w′ = F (w) and finite critical points zcp of z′ = H(z) such that ∥wcp∥, ∥zcp∥ ≠ 1.

The question remains what happens to (4.13) if ∥z∥ = 1. This requires letting zT z → 1 in
(4.13) to obtain

z′ = [In − zzT ]w′. (4.14)

From (4.14) we deduce that a critical point wcp of w′ = F (w) is mapped to a critical point zcp
of z′ = H(w). However, there could be critical points of z′ = F (z) which are eigenvectors of the
noninvertible matrix In − zzT .

In summary we have proven the following theorem. To rewrite (4.13) we make the following
definition.

Definition 4.2. Let w(t), w′(t), z(t), z′(t) ∈ C[t0,∞), with w(t), w′(t) ∈ Rn, with z(t), z′(t) ∈ Bn,
and where w(t) and z(t) are related via (4.3). Assume that w′(t) = F (w) and z′(t) = Hi(z),
i ∈ {1, 2}, where

F : Rn → Rn, H1 : An√
1−γ2

→ Rn, H2 : Bn → Rn, (4.15)

are three functions which satisfy the following conditions.

(i) F (w) is continuous in some compact connected set DF ⊆ Rn.
(ii) H1(z) is continuous in some compact connected set DH1

⊆ An√
1−γ2

.

(iii) H2(z) is continuous in some compact connected set DH2
⊆ Bn.

(iv) If ∥w∥ = 1 = ∥z∥, or equivalently if θ = 1, H1 ≡ H2, w
′(t) = F (w), and z′(t) = H1(z) =

H2(z).

(v) For ∥w∥ > 1, or equivalently for 0 < θ < 1,
(
z,
√
1− ∥z∥2

)T

∈ SBn,+
γ , z′(t) = H1(z), and

w′(t) = F (w).

(vi) For ∥w∥ < 1, or equivalently for θ > 1,
(
z,−

√
1− ∥z∥2

)T

∈ SBn,−
γ , z′(t) = H2(z), and

w′(t) = F (w).
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Theorem 4.3. Let F , H1, and H2 be given by Definition 4.2. If 0 < θ < 1, or equivalently if
∥w∥ > 1, Equation (4.8) becomes

w′(t) = F (w) = θ−1
[
In − θ−1zzT

γ
√
1− zT z

]
H1(z). (4.16)

Given a critical point zcp of H1(z), i.e. H1(zcp) = 0⃗, since θ−1
cp = [1 −

√
1− ∥zcp∥2/γ]−1 and

w = θ−1z, Equation (4.16) implies that

w′(t) = F (θ−1
cp zcp) = θ−1

cp

[
In −

θ−1
cp zcpz

T
cp

γ
√

1− zTcpzcp

]
H1(zcp) = 0⃗,

i.e. θ−1
cp zcp is a constant solution of w′(t) = F (w).

Since z = θw, Equation (4.13) becomes

z′ = H1(z) = θ
[
In − θwwT

θwTw − γ
√
1− θ2wTw

]
F (w). (4.17)

Given a critical point wcp of F (w), i.e. F (wcp) = 0⃗, since

θcp = [γ2 +
√
γ2 + (1− γ2)∥wcp∥2]/[γ2 + ∥wcp∥2],

Equation (4.17) implies that

z′(t) = H1(θcpwcp) = θcp

[
In −

θcpwcpw
T
cp

θwT
cpwcp − γ

√
1− θ2cpw

T
cpwcp

]
F (wcp) = 0⃗,

i.e. θcpwcp is a constant solution of z′(t) = H1(z).
Because the n×n matrices in (4.16) and (4.17) are invertible, there is a one-to-one correspon-

dence between the finite critical points wcp of w′ = F (w) such that ∥wcp∥ > 1 and the finite critical
points zcp of z′ = H1(z), where ∥zcp∥ < 1.

If θ > 1, or equivalently if ∥w∥ < 1, Equation (4.8) becomes

w′(t) = F (w) = θ−1
[
In +

θ−1zzT

γ
√
1− zT z

]
H2(z). (4.18)

Given a critical point zcp of H2(z), i.e. H2(zcp) = 0⃗, since θ−1
cp = [1 +

√
1− ∥zcp∥2/γ]−1 and

w = θ−1z, Equation (4.18) implies that

w′(t) = F (θ−1
cp zcp) = θ−1

cp

[
In +

θ−1
cp zcpz

T
cp

γ
√

1− zTcpzcp

]
H2(zcp) = 0⃗,

i.e. θ−1
cp zcp is a constant solution of w′(t) = F (w). Since z = θw, Equation (4.13) becomes

z′ = H2(z) = θ
[
In − θwwT

θwTw + γ
√
1− θ2wTw

]
F (w). (4.19)

Given a critical point wcp of F (w), i.e. F (wcp) = 0⃗, since

θcp = [γ2 +
√
γ2 + (1− γ2)∥wcp∥2]/[γ2 + ∥wcp∥2],

Equation (4.19) implies that

z′(t) = H2(θcpwcp) = θcp

[
In −

θcpwcpw
T
cp

θwT
cpwcp + γ

√
1− θ2cpw

T
cpwcp

]
F (wcp) = 0⃗,

i.e. θcpwcp is a constant solution of z′(t) = H2(z).
Because the n×n matrices in (4.18) and (4.19) are invertible, there is a one-to-one correspon-

dence between the finite critical points wcp of w′ = F (w) such that ∥wcp∥ < 1 and the finite critical
points zcp of z′ = H2(z), where ∥zcp∥ < 1.
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If θ = 1, or equivalently if z = w with ∥z∥ = 1, Equation (4.14) becomes

z′(t) = H1(z) ≡ H2(z) = [In − zzT ]F (w) = [In − wwT ]F (w), (4.20)

and a finite critical point wcp of w′ = F (w) with ∥wcp∥ = 1 is mapped to a finite critical point zcp
of z′ = H1(z) ≡ H2(z), where ∥zcp∥ = 1. There could be additional finite critical points of zcp of
z′ = H1(z) ≡ H2(z) if F (w) is eigenvector of [In − zzT ] for eigenvalue 0.

We obtain a refinement of Theorem 4.3 if we assume the critical points in question are attainable.
The definition of attainability will be motivated by the following lemma.

Lemma 4.4. Let h : R → R, let h′ : R → R, and assume that h(t), h′(t) ∈ C[t0,∞). Suppose that

lim
t→∞

h(t) = L1, and that lim
t→∞

h′(t) = L2, (4.21)

where |L1| < ∞ and |L2| < ∞. Then L2 = 0.

Proof. This is a proof by contradiction. First assume that L2 > 0. The second limit of (4.21)
implies there exists t1 ∈ [t0,∞) such that h′(t) ≥ L2/2 for all t ∈ [t1,∞). Then for t2 ∈ [t1,∞)

h(t2) = h(t1) +

∫ t2

t1

h′(s) ds ≥ h(t1) +

∫ t2

t1

L2

2
ds = h(t1) + (t2 − t1)

L2

2
.

If we take the limit of the above inequalities, we find that limt2→∞ h(t2) = L1 ≥ ∞, which is a
contradiction to the fact that |L1| < ∞. The case of L2 < 0 is left to the reader. □

Suppose we have a vector valued differential equation x′(t) = P (x) such that x(t) ∈ C[t0,∞).
Furthermore assume that P (x) is continuous on some connected compact DP ⊆ Rn and there is
some xcp ∈ DP such that limt→∞ x(t) = xcp. The continuity of P and x(t) implies that

lim
t→∞

x′(t) = lim
t→∞

P (x(t)) = P
(
lim
t→∞

x(t)
)
= P (xcp) < ∞. (4.22)

Since limt→∞ x′(t) = P (xcp), a component by component application of Lemma 4.4 shows that

limt→∞ x′(t) = 0⃗, which in turn implies that P (xcp) = 0⃗ for all t ∈ R. This phenomena is recorded
in the following definition.

Definition 4.5. Let x′(t) = P (x) be a first ordered vector valued differential equation taking
values in Rn. Assume that x(t) ∈ C[t0,∞) and P (x) is continuous over DP ⊆ Rn, where DP is a
compact connected set such that xcp ∈ DP . If limt→∞ x(t) = xcp, then xcp is a finite attainable
critical point of x′(t) = P (x).

Before we state our first refinement of Theorem 4.3, we need some properties of θ.

Proposition 4.6. Let θ, β, and r be as defined in (4.3) and (4.4). Then

dθ

dr2
=

(γ2 + r2)(1− γ2)− 2(γ2 +
√
β)

√
β

2
√
β(γ2 + r2)2

. (4.23)

and θ satisfies the following properties:

(i) θ = O(r−1) as r → ∞.
(ii) The dilation factor θ is a monotone decreasing function of r2 > 0.
(iii) 0 ≤ θ ≤ 1 + γ−1.

Proof. Property (i) is a restatement of (3.22) with θm playing the role of θ. To obtain (4.23) we
differentiate the first expression of θ provided by (4.3). Since 0 < γ < 1, we deduce that β > 0,
and that the denominator of (4.23) is never 0. Thus dθ/dr2 is a continuous rational function in
the variables r2,

√
β, and γ whose sign is determined by (γ2 + r2)(1− γ2)− 2(γ2 +

√
β)

√
β, which

upon expansion becomes

(γ2 + r2)(1− γ2)− 2(γ2 +
√
β)

√
β = −γ2 − γ4 − (1− γ2)r2 − 2γ2

√
β < 0.

Thus dθ/dr2 < 0, which in turn implies (ii). Since θ is monotone decreasing with respect to r2,
the maximum value of θ(r2) is θ(0) = (γ2 + γ)/(γ2) = 1 + γ−1, while the minimum value of θ is
limr2→∞ θ(r2) = 0. □
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Proposition 4.6 will be used in the proof of the following proposition which shows that a finite
attainable critical point wcp of w′(t) = F (w(t)) transforms into a finite attainable critical point
zcp of z′(t) = H(z(t)).

Proposition 4.7. Let F , H1, and H2 be given by Definition 4.2. Assume that limt→∞ w(t) = L ∈
DF , where ∥L∥ ≠ 1, i.e. L is a finite attainable critical point of w′ = F (w). If ∥L∥ > 1, assume
that θ(L)L ∈ DH1

, while if ∥L∥ < 1, assume that θ(L)L ∈ DH2
. Then following conditions hold:

(a) limt→∞ r(t) = ∥L∥,

lim
t→∞

θ(t) =
γ2 +

√
γ2 + (1− γ2)∥L∥2
γ2 + ∥L∥2

≡ θ(L).

(b) limt→∞
dθ
dt = 0, limt→∞

dz
dt = 0⃗.

(c) If ∥L∥ > 1, then θ(L)L is a finite attainable critical point of z′(t) = H1(z).
(d) If ∥L∥ < 1, then θ(L)L is a finite attainable critical point of z′(t) = H2(z).

Proof. Part (a) follows from the continuity of r(t) and θ(t). The differentiability θ(t) follows from

dθ

dt
=

dθ

dr2
dr2

dt
.

Since z(t), w(t), and θ(t) are differentiable over [t0,∞), we obtain

dz

dt
=

dθ

dt
w(t) + θ(t)

dw

dt
. (4.24)

If we take the limit of (4.24), since the paragraph before Definition 4.5 implies that limt→∞ w′(t) =

0⃗, we obtain

lim
t→∞

z′(t) = lim
t→∞

(
θ(t)

dw

dt

)
+ lim

t→∞

(dθ
dt

w(t)
)
= L lim

t→∞

dθ

dt
. (4.25)

So it is now a matter of computing

lim
t→∞

dθ

dt
= lim

t→∞

dθ

dr2
lim
t→∞

dr2

dt
. (4.26)

Equation (4.23), along with the continuity of r(t) and w(t), implies that

lim
t→∞

dθ

dr2
= L1 < ∞, (4.27)

where

L1 :=
(γ2 + ∥L∥2)(1− γ2)− 2(γ2 +

√
γ2 + (1− γ2)∥L∥2)

√
γ2 + (1− γ2)∥L∥2

2
√
γ2 + (1− γ2)∥L∥2(γ2 + ∥L∥2)2

.

Since dr2

dt = 2wTw′, we deduce that limt→∞
dr2

dt = 0. Substituting the above calculations into the
right side of (4.26) gives us

lim
t→∞

dθ

dt
= L1 lim

t→∞

dr2

dt
= 0. (4.28)

We substitute (4.28) into (4.25) and conclude that limt→∞ z′(t) = 0⃗.
To prove (c) and (d) we use the continuity of z(t) and Hi(z), where i ∈ {1, 2}, along with (a)

and (b). In particular, if ∥L∥ > 1, there exits t1 > 0 such that ∥w(t)∥ > 1 for all t ∈ [t1,∞). Then

0⃗ = lim
t→∞

z′(t) = lim
t→∞

H1(z(t)) = H1( lim
t→∞

z(t))

= H1( lim
t→∞

θ(t)w(t)) = H1

(γ2 +
√

γ2 + (1− γ2)∥L∥2
γ2 + ∥L∥2

L
)
.

If ∥L∥ < 1, there exists t2 > 0 such that ∥w(t)∥ < 1 for all t ∈ [t2,∞). Then

0⃗ = lim
t→∞

z′(t) = lim
t→∞

H2(z(t))

= H2( lim
t→∞

z(t))

= H2( lim
t→∞

θ(t)w(t))
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= H2

(γ2 +
√
γ2 + (1− γ2)∥L∥2
γ2 + ∥L∥2

L
)
.

□

Remark 4.8. If ∥L∥ = 1, since H1(z) ≡ H2(z) when ∥z(t)∥ = 1, the last two limit calculations
in the proof of Proposition (4.7) combine to show that

0⃗ = lim
t→∞

z′(t) = lim
t→∞

Hi(z(t)) = Hi( lim
t→∞

z(t))

= Hi( lim
t→∞

θ(t)w(t)) = H1(L) ≡ H2(L).

Next we prove the converse of Proposition 4.7 and show that under mild conditions a finite
attainable critical point of zcp of z′(t) = H(z(t)) transforms into a finite attainable critical point
wcp of w′(t) = F (w(t)).

Proposition 4.9. Let F , H1, and H2 be given by Definition 4.2. Assume that limt→∞ z(t) = C,

where C ∈ Ån√
1−γ2

, and that C ∈ DH1 ∪DH2 . This implies that

lim
t→∞

(
z(t),

√
1− ∥z(t)∥2

)T

=
(
C,

√
1− ∥C∥2

)T

∈ SBn,+
γ

lim
t→∞

(
z(t),−

√
1− ∥z(t)∥2

)T

=
(
C,−

√
1− ∥C∥2

)T

∈ SBn,−
γ .

(4.29)

Furthermore assume that [1∓ γ−1
√
1− ∥C∥2]−1C ∈ DF . Then the following conditions hold.

(a) limt→∞ R(t) = ∥C∥, limt→∞ θ(t) = 1∓
√

1−∥C∥2

γ .

(b) limt→∞
dθ
dt = 0, limt→∞

dz
dt = 0⃗.

(c) limt→∞
dw
dt = 0⃗.

(d) z′(t) = Hi(z) has a finite attainable critical point C, where i ∈ {1, 2}.
(e) w′(t) = F (w) has finite attainable critical points θ−1(C)C =

[
1∓

√
1−∥C∥2

γ

]−1
C.

Proof. Observe that limt→∞ R(t) = ∥C∥ follows from the continuity of R(t). Also the continuity
of z(t), z′(t), and Hi(z) for i ∈ {1, 2} implies that

lim
t→∞

z′(t) = lim
t→∞

Hi(z(t)) = Hi

(
lim
t→∞

z(t)
)
= Hi(C) < ∞. (4.30)

Then Lemma 4.4 implies that limt→∞ z′(t) = 0⃗, and that Hi(C) = 0, i.e. C is a constant solution
of Hi(z(t)) = z′(t). Observe that (4.30) is independent of whether ∥C∥ < 1 or ∥C∥ = 1.

To prove that limt→∞
dθ
dt = 0, that limt→∞ θ(t) = 1 ∓

√
1−∥C∥2

γ , and to verify (e), we have to

analyze the location of the preimage of C on SBn
γ .

Case 1: Take C ∈ DH1
, namely that (C,

√
1− ∥C∥2)T ∈ SBn,+

γ . Then θ(t) = 1 −
√
1−R2

γ . As

long as R2 ̸= 1 − γ2, θ ̸= 0, and θ−1 is well defined. This is not a problem since C ∈ Ån√
1−γ2

.

Hence the continuity of R(t) implies that

lim
t→∞

θ(t) = 1−
√
1− ∥C∥2

γ
̸= 0, (4.31)

lim
t→∞

θ(t)−1 =
[
1−

√
1− ∥C∥2

γ

]−1

:= L2, |L2| < ∞, (4.32)

lim
t→∞

θ(t)−2 =
[
1−

√
1− ∥C∥2

γ

]−2

:= L3, |L3| < ∞. (4.33)

Since (C,
√
1− ∥C∥2)T ∈ SBn,+

γ , R2 ̸= 1, and we may differentiate θ(t) as in (4.7) to find that

lim
t→∞

dθ

dt
= lim

t→∞

z(t)T z′(t)

γ
√

1− z(t)T z(t)
= 0. (4.34)
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Next observe that w(t) = θ−1(t)z(t) is differentiable with derivative

dw

dt
= −θ−2 dθ

dt
z(t) + θ−1 dz

dt
. (4.35)

If we take the limit of (4.35) and use (4.32), (4.33), and (4.34), along with the fact that limt→∞ z′(t) =

0⃗, we obtain Part (c). Since (C,
√
1− ∥C∥2)T ∈ SBn,+

γ , there is t1 > 0 such that 0 < θ(t) < 1 for
t ∈ [t1,∞). The continuity of F shows that

0⃗ = lim
t→∞

w′(t)

= lim
t→∞

F (w(t))

= F
(
lim
t→∞

w(t)
)

= F
(
lim
t→∞

θ−1(t)z(t)
)

= F
([

1−
√

1− ∥C∥2
γ

]−1
C
)
.

Hence w′(t) = F (w) has a constant solution
[
1−

√
1−∥C∥2

γ

]−1
C for all t ∈ R.

Case 2: Take C ∈ DH2
, namely that (C,−

√
1− ∥C∥2)T ∈ SBn,−

γ . Then θ(t) = 1 +
√
1−R2

γ ̸= 0.

Since θ−1(t) is well defined, and with minor changes of signs, the proof of Case 1 is applicable.

Since (C,−
√
1− ∥C∥2)T ∈ SBn,−

γ , there exists t2 > 0 such that θ(t) > 1 for t ∈ [t2,∞), which
when combined with the continuity of w and F implies that

0⃗ = lim
t→∞

w′(t)

= lim
t→∞

F (w(t))

= F
(
lim
t→∞

w(t)
)

= F
(
lim
t→∞

θ−1(t)z(t)
)

= F
([

1 +

√
1− ∥C∥2

γ

]−1

C
)
.

Hence w′(t) = F (w) has a constant solution [1 +

√
1−∥C∥2

γ ]−1C. □

The proof of Case 2 of Proposition 4.9 also proves the following proposition.

Proposition 4.10. Let F , H1, and H2 be given by Definition 4.2. Assume that limt→∞ z(t) = C,

where C ∈
◦
B

n√
1−γ2 = {z : |z| ≤

√
1− γ2}, and that C ∈ DH2

. This implies that

lim
t→∞

(
z(t),−

√
1− ∥z(t)∥2

)T

=
(
C,−

√
1− ∥C∥2

)T

∈ SBn,−
γ . (4.36)

Furthermore assume that [1 + γ−1
√
1− ∥C∥2]−1C ∈ DF . Then the following conditions hold.

(a) limt→∞ R(t) = ∥C∥, limt→∞ θ(t) = 1 +

√
1−∥C∥2

γ .

(b) limt→∞
dθ
dt = 0, limt→∞

dz
dt = 0⃗.

(c) limt→∞
dw
dt = 0⃗.

(d) z′(t) = H2(z) has a finite attainable critical point C

(e) w′(t) = F (w) has a finite attainable critical point θ−1(C)C =
[
1 +

√
1−∥C∥2

γ

]−1
C.

Proposition 4.7, when combined with Propositions 4.9 and 4.10, provides the proof of Theorem
4.11.
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Theorem 4.11. Let F , H1, and H2 be given by Definition 4.2. There exists a one-to-one corre-
spondence between finite attainable critical points wcp of w′ = F (w), where ∥wcp∥ > 1 and finite
attainable critical points of zcp of z′(t) = H1(z), where ∥zcp∥ < 1. There also exists a one-to-one
correspondence between finite attainable critical points wcp of w′ = F (w), where ∥wcp∥ < 1 and
finite attainable critical points of zcp of z′(t) = H2(z), where ∥zcp∥ < 1.

The analysis of “critical points at infinity” of F (w(t)) = w′(t), i.e. critical points of the form
∞U , needs a different narrative from above. There are critical points at infinity which vary with the
compactification that is employed. The critical points zcp at infinity of the compactified equation
H(z(t)) = z′(t) must satisfy zTcpzcp = 1−γ2. Thus for different γ’s we have different critical points
zcp. In addition to these critical points there is an invariant critical direction U as seen by (4.6).
The invariant direction U is the direction of escape, i.e. the “direction of infinity”, and naturally
leads to a discussion of the expanding universe. The application of spherical compactifications to
the Newtonian system associated with an expanding universe will be the subject of a future paper.
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Sci. École Norm. Sup. (3), 39 (1922), 29-130.

[12] J. Chazy; Comptes rendus, 157, 1913, Page 1398.

[13] C. Chicone, J. Sotomayor; On a Class of Complete Polynomial Vector Fields in the Plane, Journal of Differ-
ential Equations, 61 (1986), 398-418.

[14] A. Cima, J. Llibre; Bounded Polynomial Vector Fields Bounded Polynomial Vector Fields, Transactions of the

American Mathematical Society, 318, No. 2, 1990, 557-579.
[15] E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Book Company

Inc, New York, (1955).

[16] H. S. M. Coxeter; Introduction to Geometry, Reprint of the 1969 edition. Wiley Classics Library. John Wiley
& Sons, Inc., New York, 1989. xxii+469 pp. ISBN: 0-471-50458-0 51-01 (53-01).
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