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BLOW-UP SOLUTIONS FOR DAMPED RAO-NAKRA BEAMS WITH
SOURCE TERMS

MIRELSON M. FREITAS, MAURO L. SANTOS, CARLOS A. RAPOSO,
ANDERSON A. RAMOS, JORGE FERREIRA

ABSTRACT. This article concerns the blow-up of solutions for a damped Rao-Nakra beam equa-
tion with nonlinear source terms at arbitrary initial energy levels. We estimate the lower and
upper bounds of the lifespan of the blow-up solution and the blow-up rate by considering both
linear and nonlinear weak damping terms.

1. INTRODUCTION

In this article, we study the Rao-Nakra beam model with nonlinear source terms and nonlinear
damping

prhitgy — Brhitug, — k(—u + v + awy) + g1 (ug) = fi(u,v,w), in (0,1) x RT,
p3h3vy — E3h3vee + k(—u+ v + aw,) + ga(vy) = fo(u,v,w), in (0,1) x R, (1.1)
phwis + Elwygrpe — ka(—u + v + aw, ), + gs(wi) = f3(u,v,w), in (0,1) x RT,

with initial conditions
u(z,0) = up(x), wut(x,0)

0
v(z,0) = vo(z), vi(x,0)=wv1(x), in (0,1), (1.2)
w(z,0) = wo(z), wi(z,0)=wi(z), in (0,1),

and Dirichlet boundary conditions
u(0,t) = u(1,t) =0, in RT,
v(0,t) =v(1,t) =0, inRT, (1.3)
w(0,t) = w(1,t) =0, inRT.

Rao-Nakra sandwich beam was derived from the following general three-layer laminated beam
model developed in 1999 by Liu-Trogdon-Yong [16],

prhaug — Erhiug, —7 =0, (1.4)

pshsvi — Ezhgvg, +7 =0, (1.5)

phwtt + ijmxzz - Glhl (wz + ¢1)r - G3h3(wx + ¢3)m - hZT:c = 07 (16)
h

p111014t — E111 @1 g0 — 717' + Gihi(wz + ¢1) =0, (1.7)
h

313031t — E3l3¢3 40 — 227 4 Gahs(w, + ¢3) = 0. (1.8)

2
The parameters h;, p;, E;, G;, I; > 0 are the thickness, density, Young’s modulus, shear modulus,
and moments of inertia of the i-th layer for ¢ = 1,2, 3, from the bottom to the top, respectively.
In addition, ph = p1h1 + p2he + pshs and EI = E 111 + Esls.
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The Rao-Nakra system [22]
prhitg — Bihitug, — k(—u + v+ aw,) =0, in (0,L) x R,
p3hsvy — E3hsvge + k(—u+v+aw,) =0, in (0,L) x RT,
phwit + Elw,ppy — ak(—u+v+aw,), =0, in (0,L) x RT,

is obtained from (1.4)-(1.8) when we consider the core material to be linearly elastic, i.e., 7 = 2Ga7y
with the shear strain

1 1
vy=—(-u+v+aw,;) and a=hs+ =(h1+ hs),
2ho 2
where k := %, Gs = % is the shear modulus, and —1 < v < % is the Poisson ratio.
In [13], it was studied the Rao-Nakra system with internal damping,

prhiugs — Bihiug, — k(—u +v + awg) + aguy =0, in (0,1) x RT, (1.9)
p3h3vi — E3h3ve, + k(—u + v + aw,) +ajvy =0, in (0,1) x RT, (1.10)
phwiy + EIWgppe — ak(—u+v + awy)y +azwy =0, in (0,1) x R, (1.11)

and was proved that the polynomial stability occurs when there is only one viscous damping acting
either on the beam equation or one of the wave equations.

Now, we present a brief review of the literature. the Rao-Nakra with both internal damping and
Kelvin-Voigt damping was considered in [I4], and the polynomial stability when two of the three
equations are directly damped was obtained. Méndez et al. [I7] proved the lack of exponential
stability when the Kelvin-Voigt damping terms act on the first and third equations in the Rao-
Nakra sandwich beam model. Then, the system was proved to have polynomial decay. Exact
controllability results for the multilayer Rao-Nakra plate system with locally distributed control
in a neighborhood of a portion of the boundary were obtained in [7,[§]. Boundary controllability for
the Rao-Nakra beam equation has been studied in [9} 10} 9] 20, 21]. Rao-Nakra sandwich beam
equation with internal damping and time delay was analyzed in [23]. Exponential stabilization and
observability inequality for Rao-Nakra sandwich beam with time-varying weight and time-varying
delay was proved in [3]. By using semigroup theory, they obtained well-posedness, and exponential
stability. In [24], well-posedness and exponential stability were proved for the Rao-Nakra sandwich
beam with Cattaneo’s law for heat conduction. Exponential and general energy decay rates for
a Rao-Nakra sandwich beam equation with time-varying weights and frictional damping terms
acting complementarily in the domain were obtained in [I],.

Blow-up solutions have been investigated in several works. For wave equations with nonlinear
damping and source terms see [I8]. For systems of nonlinear wave equations with damping and
source terms, see [2]. For a viscoelastic Kirchhoff-type equation with logarithmic nonlinearity
and strong damping, see [4]. For Kirchhoff type equation with variable-exponent nonlinearity, see
[15, 25]. For the Timoshenko beam with nonlinear damping and source terms, see [26] and its
references. By the way, blow-up results for the Rao-Nakra beam were not analyzed previously. In
this manuscript, we consider — in a general context, and we investigate the competition
between a nonlinear stabilization mechanism and a nonlinear source term. We estimate the lower
and upper bound of the lifespan of the blow-up solution and the blow-up rate by considering both
linear and nonlinear weak damping terms.

This manuscript is organized as follows. Section [2] introduces notation and preliminary results.
Section |3| presents the main results: the blow-up of solutions at high initial energy for both linear
and nonlinear weak damping. We establish some technical lemmas in Section [f] to prove the main
results. Finally, in Section [ we prove the finite time blow-up of solutions by using the so-called
concavity method.

2. PRELIMINARIES

The following notation will be used for the rest of this article:

[ully = llullzeo,Ly, (w0} = (u,v)L2(0,1)-
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Similarly, for z = (u,v,w) and Z = (@, 0, W) we will use

lelly = (ol + i) " (2.2) = () + (0,5) + (w, )
Let us consider the Hilbert spaces
H = L?(0,1) x L*(0,1) x H*(0,1), V = H}(0,1) x H}(0,1) x H*(0,1) N H(0,1).
with inner products
(z,Z2)v = E1hi(ug, i) + Eshs(vg, Uy) + EI{(Wag, Wes) + £{(—u + v+ qwy, —0 + 0 + atdy), (2.1)
and
(U, 0)n = (2,2)v + (21, 51), (2.2)
for z = (u,v,w), 2 = (4, 0,%), 21 = (u1,v1,w1), 51 = (G1,01,W1), and U = (2, 21), U = (%, 7).
The corresponding norms are
12113 = Eihalluz 3 + Eshsllvz]3 + BIllwes |13 + sl — u +v + aw,|l3, (2.3)
and
U113, = 11217 + [lz013. (2.4)
Assumption 2.1.

(i) Damping: g1, 92,93 : R — R are continuous, monotone increasing functions with g, (0) =
92(0) = ¢g3(0) = 0. In addition, the following growth conditions: there exist positive
constants o and B such that for all s € R,

a|8|m+1 X 91( ) X /8|3|m+1 m =1,

als|™t < ga(s)s < Bl r>1, (2.5)
als|t < ga(s)s < Bls™, 1>
(i) Sources: f; € C*(R) and there is a positive constant C' such that

VEEI<C(Jul ™+ ol T 4 w41, =12, 3and p> 1. (2.6)

There exists a positive function F' € C%(R?) such that
VF =7 = (f1, f2, [3). (2.7)

There exists ag > 0 such that

F(2) > ao(Jul"* + [0 + w]” ). (2:8)

Furthermore, F' is homogeneous of order p + 1, that is
F(A2) = XPTIF(2), VA>0,z€R3. (2.9)

(iii) Coefficients: p1h; = paho = ph = 1.

Remark 2.2. It is easy to see that f1, fo and f3 are also homogeneous functions of degree p and
there exists a positive constant C' such that

[i(z) < C(u)” + v’ + Jw|?), j=1,2,3. (2.10)
We also recall the definition of weak solution of problem (|1.1] . Let
W = (L™1((0,1) x (0,7)) x L™((0,1) x (0,7)) x Ll“((m 1) x (0,7))).

Definition 2.3. A vector-valued function z = (u,v,w) is called a weak solution of 1} on
[0,T7] if:

() = € C(O.TEV), (2(0).2(0) = (z0,1) € Hj

(i) 2 € O([0,T7]; (L?(0,1))") NW;
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(iii) z = (u,v,w) satisfies

(2 (1).6(1)) — (1.6(0)) + / (—( (7). 8u(r)) + {=(r), 6(r))dr + / @ (7)), 6(r))dr
- / (F((7)), 0(r))dr,

for all ¢ € [0,7] and test functions 6 in
O = {0 = (01,04,05) € C((0,T}; V), 0, € L'(0,T; (L*(0,1))°)},
where
Y (2) = (91(u), 92(v), g3(w)),  F(2) = (fi(u,v,w), f2(u, v, w), f3(u,v,w)).

Moreover, we know that if z is a weak solution of problem (1.1)-(1.3)) on [0,7T%) where T is
maximal existence time, then we have the energy identity

E(t):5(0)—/0 @ ( (7)), ()dr, Vi€ [0,To0), (2.11)
where )
£) = 5 (IO +1=0)1%) - / F(a(z,))d. (212)

By using a standard continuation procedure for ODE’s to conclude that, if T, < oo, then
li "3 Y = oo.
Jim (218 + 12(0)]7) = o0

Combining this with (2.11]) and (2.12)), we obtain

1

tgr%loo ; F(z(z,t))dz = co.

3. MAIN RESULTS
3.1. Blow-up at high initial energy with linear weak damping. In this subsection, we
consider problem (L.I)-(L.3) with g1(s) = g2(s) = g3(s) = As where A > 0.
Theorem 3.1. Suppose that Assumption holds and that the initial data (zo,21) € H satisfies
21113 — 2(20, 21) + . E(0) < 0, (3.1)
where

_ 2+ 1) R E

* — 7 N a0 = 1 .
(p—1)83" 7P zev\(oy Iz,
Suppose further that £(0) > 0 and 29 € N_. Then the weak solution of (1.1))-(1.3) blows up in

finite time. Furthermore, we have the following upper bound of the lifespan:

4 (4 + Bellzoll2

Teo < 3.2

p—= 1 ﬂ* ( )
where ( 153 ( )
. 2\ 2 _p—152 2_2p+1

Next, we give a lower bound for the lifespan and a blow-up rate.

Theorem 3.2. Under the assumptions in Theorem[3.1. We have the following lower bound

> d
T > / S : (3.3)
K 0) E(0) + z 4+ 2pH1C25, P (£(0) + 2)P

where K(t) = fol F(z(z,t))dz.

Next, we introduce another way for obtaining a lower bound of the lifespan.
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Theorem 3.3. Under the assumptions in Theorem[3.1l We have the lower bound

To > — In(1+277"'C*SPE'"7(0)). (3.4)
For the blow-up rate, we have
lzOIF Z =@I55 2 K(t) > 271 (T — 1), Vi€ [0,Tw), (3.5)

where X~ is an inverse function of the function

X(s) :/ dz — , Vs el0,00).
s E(0)+2z+2pH1C25,7P(£(0) + 2)"

3.2. Blow-up at high initial energy with nonlinear weak damping.

Theorem 3.4. Suppose that max{m,r,l} < p and (z0,21) € H satisfies
(z0,21) > ME(0) > 0,

then the weak solution blows up in finite time, where

[l (E)E/Q[EO(P + 1)2040} ~1/q

M == )
gri8 -0
where €y is a oot of the equation
@)= et D) aoay1s _ (o D(1 —a)
7+1'5 B1-0) ale)
such that
a2 ceo(p+ 1) ag, 1
€ = (=)ett | —— 2 —“lla+tl <]
where

(p+1)(A—¢
Kle) = [—7F— - 1)53,
q = max{m,r,l}, ¢ = min{m, r, [},
- P-4 . -7
0 = max{6s,0s,05} = ﬁ, 0 = min{6,,02,03} = H

4. TECHNICAL LEMMAS

to prove the theorems above, we need the following lemmas.

Lemma 4.1 ([6]). Let 6 > 0, T > 0 and let h be a Lipschitzian function over [0,T). Assume that
h(0) = 0 and h'(t) + 6h(t) > 0 for a.e. t € (0,T). Then h(t) > 0 for all t € (0,T).

Lemma 4.2. Suppose that A > 0. Let
1
20 = (ug,vo,wo) EN_ ={2€V:1(2)=|z|l} — (p+ 1)/ F(z(z))dz < 0}, (4.1)
0

and z1 = (ug,v1,wy) € (L?(0,1))3 such that
<Z07 Zl> 2 0. (42)

Then the map t v+ ||2(t)||3 is strictly increasing as long as z(t) € N_.
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Proof. Let U(t) = ||2(¢)]|3 and G(t) = ¥'(t) = 2(z/(t), 2(¢)). By multiplying the first equation and
the second equation in (1.1) by u, v and w, respectively, and adding the two equations together,
we have

1
(2"(t), 2(t)) + A2 (1), 2(1) = (p + 1)/0 F(z(x,t))dz — 2O = ~1(=(t). (4.3)

By using (4.3) and direct calculations, we obtain
G'(t) = 2|2 (1)]13 +2(=" (2), (1))

= 2001 + 2= + -+ 1) [ Pletant)de - 360

which yields (with z(t) € N_) that
G'(t) + AG(t) = 2]|'®)]13 +2[(p + 1)/0 F(z(z,t))dz — [(®)]}] > 0.

Therefore, by Lemma we have W'(¢) = G(t) > 0. Thus, ¥(¢) is strictly increasing. The proof
is complete. O

We now prove the invariance set of N_ for £(0) > 0.

Lemma 4.3. Suppose that (3.1) holds. Then the solution z of problem (1.1))-(1.3]) with £(0) > 0
belong to N_, provided zg € N_.

Proof. We proceed by contradiction, by the continuity of I(z(+)) in ¢, we suppose that there exists
a first time ¢y € (0,Ts) such that I(z(tp)) = 0 and I(2(¢t)) < 0 for ¢ € [0,tp). By the Cauchy-
Schwarz inequality and Lemma we have

U(t) = [lz()3 > 2003 = 2(z0, 21) = 213 > e £(0), ¥t € (0, o).
From the continuity of z(¢) with respect to ¢, we have
U(to) = [|2(to) 3 > a.&(0).

By the definition of total energy functional £ and Lemma [4.2] we obtain

| 1 I(:(t)) _ (p—1)S3
> 2 2, (1 1 2 S 2 2
£0) > 512 I + (5 = )l + ~ e > G et
which yields that
2(p+1)
to)]|3 < ———2£(0).
12(to)I2 -1 (0)
This implies that
2(p+1)
* U(to) = [lz(t) 3 € ——25 = ;
a,€(0) < W(to) = [2(to)ll2 - 1)555(0) a.£(0)
which contradicts with £(0) > 0. The proof is complete. O
5. PROOFs

In this section, we prove the finite time blow-up of solutions by using the so-called concavity
method, which was first introduced by Levine [1T} [12].

Proof of Theorem[3.1 Arguing by contradiction, we suppose that the solution z is a global so-
lution. By Lemmas and we know that z(t) € N_ and ¥(t) = ||z(t)||3 > |20l3 >
2(20,21) — ||21l13 > @.&(0) for all t € [0,00). Next, for To > 0, By > 0, 79 > 0 specified later, we
may consider the function 7 : [0, T5] — [0, 00) defined by

n(t) = =)z + /\/O 12(s)13ds + A(To — t)l|z0l13 + Bo(t +70)*, Vit € [0, To). (5.1)
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By direct calculation, we obtain

0 (t) = 2(2' (1), 2(t)) + All2() 13 — Allzol[§ + 250 (t + 70)

t 5.2
=2(2'(t),2(t)) + 2)\/0 (2'(s), z(s))ds + 2Bo(t + 70). (5:2)

Moreover, by using , we can easily obtain
() = 2|2 ()13 + 2(2" (1), 2(£)) + 2M(='(2), 2(t)) + 280 (53)

=2|12'(t)|13 + 280 — 21 (z(t)).

Notice that n(t) = Bo7g > 0 for all t € [0, Tp] and 7/(0) = 2(z1, 20) + 28070 > 0.
By using Cauchy-Schwarz inequality, we can easily obtain

(' (1))

4 = ((/( +/\/ s))ds + Bo(t + 10))*

< =3 + A / () 3ds + Bolt + 70)2)(12/(£)]3 + A / 12(s)|2ds + B)  (5.4)

t
<)l ()3 + /\/0 2" (s)|I3ds + Bo)-
From (5.1)-(5.3) and (5.4]), we obtain the estimate

@t~ LI ey, vie o,m, 5.5
where .
€0 =~ DIZOB=A0+3) [ 170 —2(0) o+ DA (659
On the other hand, from and , we deduce that
£0 = 31O + 201 + L2 [ sas

or equivalently
t
o+ DIFOF - Ap+3) [ ()]s - 21((0)
0
t
=Dl +Ap - 1)/0 12" (5)[13ds — 2(p + 1)€(0).
Therefore, from , we have

() = (p = DIz —2(p + 1)E(0) + (p — 1)/\/0 12 (s)l13ds — (p + 1)Bo

(5.7)
> (p = DS3llz0ll — 2(p + 1DEO) — (p + 1) 0.
Choose By € (0, B,] where
_ (p—1)S3 _(e=DSF, o 20+1)
. = B gl - 26(0) = £ ol - 2P e )] >0,
then leads to &(t) > 0 for all ¢ € [0, Tp]. Therefore, yields that
—1)n'(0)t, -+
n(t) > n(O)[1 — BT =55 g o 7). (5.8)

4n(0)
We choose 7 € (74, 00) where

T*:{{O if ¢ = 2y 0l — (20,21)2 <0,

é if ¢ >0,
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and Tp € = 2 M 00), then we have

Boto—(¢
4n(0 2 2+ \T, 2 2
7 — 4 )/ _ 2(llzolz + ATollzoll5 + Fo7d) 10, Tb].
(p—=1n(0)  (p—1((20,21), + PoTo)
Therefore, (5.8) gives us lim;_,7, 7(t) = oo. This is a contradiction with the fact that the solution
is global and it shows that the solution blows up at finite time.

To derive the upper bound for T, we know that

2 Porg +lz0l3 _ 2
Too < = 1 ﬁOTO _C - p— 1f(5077—0)a v(ﬁOaTO) S (Oaﬁ*] X (T*,OO)‘

By direct calculation, we have
Bo(Bord — 2¢To *2||Zo||§) — 0t = (V¢ + 50||Zo||§.
(Bomo =€) Bo
Therefore, for any (8o, 70) € (0, Bs] X (7x, 20), we have

¢+ follzoll3 S 90tV + Bull20ll3
BO - B* ’

Jro(Bo,m0) =

f(Bo,0) = f(Bo, 73 ) = 2715 :2<+

This fact implies
4+ C+Bellzoll3
p—1 '
The proof is complete. O

Proof of Theorem[3.4 First, we know that Vt € [0,T,),
1 1
E(t) = %(IIZ'(UII% +lz@®NF) = () +/O F(z(z,t))dr < £(0) +/0 F(z(z,t))dz.
To obtain the lower bound of the blow-up time T, we define the auxiliary functional
K(t) = /1 F(z(z,t))dz, Vte[0,Tw).
It is clear that lim; 7 K(t) = oc. B; direct calculation and using Cauchy inequality, we find

K'(t) = /0 Z(2(w, 1) (w, t)dz

| Z (2(x, )2 (x,t)|dz

1
<1708+ [ 17 G0

1
< §|\Z/(t)||2 +2C% )2 (1)II37
£(0) + K(t) +2C%S,*||2(t)}7
1 2
E(0) + K(t) +2PT1C?5,2P(£(0) + K (t))P.
This fact implies, for any t1,ts € [0, Tso) with ¢1 < t2, that
K(t2)
ty—t >/ dz — . (5.9)
K(t) €(0) + 2+ 20TLC25, 7P (£(0) + 2)”
In (5.9), let to — Tw and t; = 0, we obtain

<
<

e dz
> .
mém6®+z+%ﬂw$”@mwzf
On other hand, in (5.9)), let t = T and t; =t € [0, T ), we obtain

o dz
e mt> /K(t) £(0) + 2 + 2041025, P (£(0) + 2)° TED)- (5.10)
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We note that the function X is continuous and strictly decreasing on (0, 00). Therefore the inverse
function X~1 : X(0,00) — (0, 00) is also continuous and strictly decreasing. Then (5.10) leads to

@5 2 2055 2 K(t) > X (T — 1), VE€[0,Tw).

The proof is complete. O

Proof of Theorem[3.3. We put E(t) = 1(||z'(t)[13 + [|2(¢)[|3) for all ¢ € [0,T%). It is clear that
E(t) >0 for all t € [0, Tw) and lim;,7_ F(t) = co. By direct calculation, we obtain

E'(t) = =7 (O3 + (F (=(t)),2'(t))

1 1
<sIFOIE + 517 E0)IE
1
< SIF@IE + 2022015 (5.11)
1
< Sl O3 + 2028, | =(1)IF

< E(t) +2°T1C2S 2P EP(1).

We put X(t) = % By direct calculation, we have

Y(t) = E'()E~P(t) < (B(t) + 2271 C*S, P EP () E~7(t)
=271 C2 9% + E1P(t) (5.12)
= 2p+1C2$p — (p—1)X(1).
We deduce from that
2P+102S 2p

exp|(p — Dt]5(t) — 3(0) > p—

{expl(p — )t] - 1},
or equivalently
1 2p+1CQSp—2p 4 El—p(o)
n .
p—1 "opH1C28,% 4 El-p(t)
By letting t — T, in , we conclude that the estimate (3.4) holds. The proof is complete. [

(5.13)

Proof of Theorem[3.]} Assume that z is a global solution to (1.1)-(1.3). Without loss of generality,
we may assume that £(¢) > 0 for all ¢ € [0,00) (See [0, Theorem 2.8]). We put I'(¢) = (2'(t), z(¢))
for all ¢ € [0,00). By direct calculation, we have

I'(t) = /O3 + (=" (1), 2(t))
= 1Z®O13 = IO + (» + 1)/0 F(z(x,t))da — (9(2'(1)), 2(t))
1

e e R R [E
) (5.14)
delp ) [ PG - @E0).0) -+ D - 90
)

> (A2 + 1

+e(p+ Daollz ()51 = (4(Z' (1)), 2(8) — (p+ 1)(1 = )E(2).
For the fourth term on the right-hand side of ( -7 we have
(@ ('), 2(1)) = {g1(u/ (1)), u(t)) + (g2(v' (1)), v(#)) + (g3(w'(£)), w(t)).

From Assumption [2.1] for any ¢ € (0, 1), by using Holder’s and Young’s inequalities, we obtain

(g1 (u/ /\gl (z,t))u(z, t)|dz

> [
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1
<8 / ()™ i, £)

L _mt1
prtla=ment m+l mae; "l
R Y s R ]

From the convexity of the function y — ﬁ in y for x > 0 and y > 0, we obtain

m 1 1
(ol < 2 ey + @)l
where 0; = p 7 > 0. Then, we obtain
1 —
m1,—m m+1 2 +1 maey ™
(g1 (u' (), u(®))] < B (*ll ®llz + u(t)|lpiy) + Tl
Similarly,
i1
T 0, 1 roae; "
g2 (v (1)), v()) [t < B a " H (S o (b5 + o5 + —— v’
2 r+1
where 0y = p%; > 0, and
YESY

0 03 l !
s ! (1), ()] < B o~ te P (2 (o) 3 + -2 () 5E) + S

p+1 [+1
where 03 = % > 0. We put

q = max{m,r,l}, ¢=min{m,r,1},

gzmax{ﬁl,ﬁg,ﬂg}—%, szin{ﬁl,ﬂg,ﬁg}zi:({,
then
q m q r q !
g+1~ " m+1 g+17 7 r+1"° g+17 1+1
—tt mi1 —tt ri1 gt 141
"tz ", gt 2 T, gt 2!
We denote
T a
At)=T(t) — ¢ * ——E(t
0 =Tw-¢ * e

By using Assumption we have

E'(t) = ~(@ ('), 2 (1) < —a(ll' O f5 + [V O + e’ Oli)-

By direct calculation and using above estimates, we obtain

q+1 —
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o (R u(r) I + ) 20
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equivalently
_ 2
_ (el 1) a0 o
o= g 1T

We observe that if ,
Te(p+1 1
€ — [(g)qm]gl

<1,
B’ B(1—-10)
then
+1
pgrtta=me (1 - 0y) B.zBe (1-10)
1)ag — > Doy — (=)t ——= =0,
e(p+1)ag b+ 1 e(p+ 1)ag (a) 1 0
+1
Britare (1 —6y) BzBe (1-10)
1)ag — = Doy — (=) ———= =0,
e(p+1)ag b1 e(p+ 1)ag (a) D1 0
+1
BHHla -l (1 — ;) B.zBer (1—90)
g — > Dag — (2)722 =2
e(p+1ag P e(p+1ag (a) P11 0
and

(p+ 1)*0age B aﬁegﬂg

2(1—6) =

‘m

g (g)—a/g[e(w 1)2@0]—1/3
7+1 g+1'B 31— 9)

Therefore, (5.15) gives us
_ i 2
A/(t>_1—1/(t)7 q 1(%)*q/g[€(p+1) O‘O}*l/ggl(t)

> (IR0l + (o) - Lo IS 01 - 0+ 01 - 9,
where
s = (X9 ez
We note that #(0) > 0. Then we can take € > 0 small enough such that
(p+ 1)*0age
K(G) - TQ)O > 0.
Using the Cauchy inequality, we have
— € 27@ €
LIRS 0l + o) - LS 01 > a(or )
where
() = 2\/ = o - T
Therefore, leads to
bt G o —gjgre(p+ 1D)*a0q-1/4 )
A'(t) =T'(t) qu1(5) [‘5(177@ ] R
Za(e)l(t) - (p+ 1)1 —€e)E() (5.17)
> alr) - P 5= e

It is easy to see that

lnlw(e) = S5 g
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Hence, there exists €, € (0,1) such that

(p+ 1)*6ape

k(e) — 30 —0) >0, a(e) >0, Vee (0,e), afe.) =0.
Furthermore,
g o -Te(p+1)a0q-1/q
i) g o
g a—1e(p+ 1) ag -1/
dm =15 azg ) >0
and
o EHDA=0 e
e—0 a(e) e a(e)

Then by continuity, there exists ey € (0,€,) C (0,1) such that

7 o\ -g/areop+ 1’0 -1/q _ (P+1)(1—€)
—L_(SyTwarflb T ) %0 AR ZAS L 1)
a+1(6) | B -10) ] a(€o) )
Choose € = ¢, (5.17) implies
I(t) > A(t) > exp(aleg)t), VYt € [0, 00).
So, we have the estimate
t
llz(t)]|3 = / I'(s)ds 2 exp(a(ep)t), Vt € [0,00). (5.18)
0

By using H'older’s inequality, we have

2]l < llu®)ll2 + lv(@)ll2 + [[w(#)ll2

t t t
< / e (5) lpds + / 10/(5)lds + / ! (s) s
t t t
< / ()], ads + / [0/ ()],., s + / ' (8)]] 15
t
<o ([ uotas) ™ o ([ ooia) T ek ([ weie)

< tAT 4 T +t$, vt € [0, 00),

which contradicts (5.18)). Therefore, the weak solution blows up in finite time. The proof is
compete. O
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