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NONLOCAL CRITICAL KIRCHHOFF PROBLEMS IN HIGH DIMENSION

GIOVANNI ANELLO

ABSTRACT. We study the nonlocal critical Kirchhoff problem
- (a + b/ \Vu|2da:>Au =|ul® "2u+ Af(z,u), inQ,
Q
u =0, on 99,

where Q is a bounded smooth domain in RN, N >4, a,b > 0, A € R, 2* := ]31_\]2 is the critical
exponent for the Sobolev embedding, and f : £ x R — R is a Carathéodory function with
subcritical growth. We establish the existence of global minimizers for the energy functional
associated to this problem. In particular, we improve a recent result proved by Faraci and Silva

[3] under more strict conditions on the nonlinearity f and under additional conditions on a and
b.

1. INTRODUCTION
Very recently, Faraci and Silva [3] considered the problem
—(a + b/ |Vu|2dx) Au = |u* “2u+ Af(z,u), inQ,
Q
u=0, on 9Jf,

) (L1)

where Q is a bounded smooth domain in RV, N > 4, a,b >0, A\ € R,and f: QxR - Ris a
Carathéodory function, with f(z,0) = 0, for a.a. x € , satisfying the subcritical growth condition

|f (. 1))

€ss sup sup

SUPSUD T < 400, for some p € (2,2%), (1.2)

where 2* := ]3—]_\{2 is the critical exponent for the embedding Wol’z(Q) — L™(Q), m > 1.

They investigated the existence of local and global minimizers as well as the existence of saddle
points of the energy functional ®) : VVO1 2(Q) — R associated to ([L.1)), which is defined by

a b 1
Oy (u) = Sllull® + S llull* - o+ llul

for each u € W, "*(Q), where

|w:(Aww@%@W

is the standard norm of Wy(€2),
full += (] ute)
Q
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is the standard norm of L? (), and

J(u) :/Q</Ou(m) f(x,t)dt)d:c. (1.3)

In particular, in [3], the existence of a nonzero global minimizer uy of ®y, with ®(uy) < 0, is
proved for A > 0 large and under the additional conditions

lull® .

wewd2@\{o} lull3-’

P ,  Where Sy =

N~z SA%,
(I1) limy—o f(x,t)/t = O uniformly for a.a. z € Q,
(III) for a.a. z € Q, f(z,t)t >0, for all t € R\ {0};
(IV) essinf,cqinfica f(x,t) > 0, for an open interval A C (0, c0).

Saddle points of ®, with positive energy are also proved to exist provided that a, b satisfy the

more restrictive condition
_ N-2

T) a7 0> 1(55) 7 Ci(N).
In [3] the method of proof is essentially based on [4, Lemma 2.1], which ensures the sequential
weak lower semicontinuity of the functional ®, under condition (I), and on [4, Lemma 2.2] which
ensures that @, satisfies the Palais-Smale condition under condition (I’).

In this article, we show that a nonzero global minimizer for ®) exists for A > 0 large without
any assumption on a,b except their positivity and under much less restrictive conditions on the

nonlinearity f. More precisely, we will prove the following result

Theorem 1.1. Assume that f satisfies ([1.2) and that the functional J : W3 *(Q) — R, defined
m , has no global mazimizer in W01’2(Q). Then, there exists A\* €]0, +00[, such that for each
A > X%, @y admits a global minimizers uy such that ®y(uy) < 0. In particular, uy is a non-zero

weak solution of Problem .

The proof follows by approximating ®, with appropriate sequentially weakly lower semicon-
tinuous functionals. It is an easy matter to see that if f satisfies condition (III) then J cannot
have global maximizers. Thus, our existence result improves in several directions [3, Theorem 1.1].
Another simple condition on f which guarantees that the functional J has no global maximizer in
VVOL2 (Q) will be stated later. The reader is referred to [T}, 2] [6], [5] [7], 9] [T0] for other papers dealing
with the Kirchhoff equation in high dimension (N > 4). See also [8] and references therein for an
overview of papers devoted to the Kirchhoff problem.

2. PROOF OF THE MAIN RESULT

In what follows, for each m > 1, we denote by || - || the standard norm of the space L™(Q),
and if 1 < m < 2*, we denote by ¢, the best constant for the embedding W, *(Q) < L™(Q), that
is

L su HU”m
= p

Cm .
wewd2 @)\ oy 14l

Finally, for each > 0, we denote by B, the closed ball in WO1 2(Q) centered at 0 with radius r.

Proof of Theorem[I.1 Under the subcritical condition , it is well known that J is (well de-
fined) C* and sequentially weakly continuous in WO1 2(Q) This implies that, for each r > 0, there
exists u, € B, such that
sup J(u) = J(ur).
u€eB,
Moreover, since, by assumption, J has no global maximizer on VVO1 ’Q(Q), the following strict
inequality holds
sup J(u) < sup J(u). (2.1)
u€B, ueWOl=2(Q)
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In addiction, since N > 4, one has 2* < 4, and so we can fix [y € R such that

N N-—2
N1 1 — g
ly > SN b -1

a5 by 1 - o
- -t — = f ht > .
2t +4t 2*SN t* >0, foreacht>I
Next, in view of (2.1)), we can also fix ug € Wy'*(2), with |Juo|| > ly, such that
J(ug) > sup J(u) > J(0)=0. (2.2)

uGBlO

Now, consider the number \* defined by

. e .
Slluoll® + Flluoll* = gelluolld- — infijou) (58° + §t* — 58y 7 )
J(uo) = supjy <, J(w)

We will show that for each A €]JA*, +o0[, @) admits a global minimizer uy such that ®,(uy) < 0.
Let A > A*. First of all, observe that, being J(up) > 0, one has

b 1
®x(u0) < 5 lluoll + 5 uoll* = 5 luo

A= il

2 — N J(ug), (2.3)

and, since [Jug|| > lo, by the choice of Iy one also has
a b 1 . _a b 1 2
ol + Lol — ol = ol + ol — 55 g > 0,

from which one infers

a b 1 *
e s aluol + Glluoll® = o fuols.
J(uo)
Therefore, by (2.2) and (2.3)), one has
D) (ug) < 0. (2.4)

Now, fix a sequence of positive numbers {e, },en such that €, < 2* — 2, for each n € N, and

lim ¢, =0.
n—-+4oo

For each n € N, consider the functional ®y ,, : W, *(Q) — R, defined by

1 X
|| 2 e A (u),

2% — ¢ 2 —en
n

a b
() = 5 ul® + Flull*

for each u € Wol’2(Q). Since 2* — ¢, < 2%, the functional

we W) — |3 250 — AT (u)

2% — e,
is C'! and sequentially weakly continuous. Consequently, the functional @, ,, is C! and sequentially
lower weakly semicontinuous. Moreover, recalling that 2* < 4, it turns out

lim @) ,(u) = +oo.
llull—-+o0

Therefore, @, ,, admits a global minimizer uy , € Wol’z(Q). Note also that, thanks to (1.2), we
can find a constant C' > 0 such that

0="=23,(0) > Dy n(urn)

a b %
> Sl + Gllunal® = 5 luanl375 = ACQ + lunl})
b (1 + Q)@ —2/2 _2* *
> Zllunall’ - - (1+ Sy 7 [lurnl*) = ACQ + chlun[?)-

Hence, since p < 2* < 4, we infer that

sup |Jux,n || < +o0.
neN

Consequently, there exist [ € [0, +00) and uy € V[/Ol’2 () such that, up to a subsequence,
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(i) [luxnll = 1€ [0, +oof;
(i) w, — uy € Wy'? (), weakly in Wy?(Q);
(iii) wu, — uy, strongly in L9(Q2) and there exists g € L'(2) such that |u,|? < g a.e. in €, for
each ¢ € [1,2%);
(iv) up — uy, a.e. in Q.
Moreover, by the Concentration Compactness Principle, we know that

|Vu,|? — du,
o (2.5)
|un|® — dv,
weakly-* in the sense of measures, with
du = [Vur® + 3 b,
keN
dv = |uy]*” + Z ViOg,s (2.6)
keN

N

(,ukSg,l) -2 >y >0, foreachke ﬁl’

where N C N is at most countable, and zj, € Q.
We claim that N = (). Indeed, assume, on the contrary, that there is some k € N, and, for each
r > 0, choose a C1-function ¢, : RN — [0, 1] such that

or(x) =0 if |x — x| > 2r,
or(z) =1 if o — k] <,

2
Veor(z)| < = ifz e RN,
T
Since uy p, is a critical point of @ ,, one has

0= ), (urn) () = (a@-+ bllusn]?) / Viir o () Vipl2)dx

- / i (@2 p(@)dz — A [ f(zurn(z))pl(z)dr.
Q Q

for each ¢ € Wol’z(Q).
In particular, choosing ¢ = uy ,¢,, by the Holder inequality and 0 < ¢,(z) < 1, we obtain

0= (@t bl [ 190000 Pr@)+ [ unn@) Va0 (o) Vi ()]
= [lina@P = pr@dds =2 [ Founn(0)unn @)ior (@)
Q Q
> (ot ) | [ 19000 @) P (o) + un o onn Vo)

,|Q

. X (2" —en)/2"

T(/Q|un>\(x)\2 cm(x)dx) f/\/Qf(:c,u,\yn(z))u,\yn(z)gar(x)dx.
In addiction, by (2.5)) and (2.6]), one has

in_ [ [Vusn@)er@ids = [ o@an> [ V@l @+ e,

n—-+4oo -
jeN

lim /Q s ()2 o0 () = /Q @) pr (@) + 3 vyon(s),

n—-+oo =
jeN
and, by (i)—(iv), one has

li 2% 242)"* =1 2V 247)""?
Jim ol [l @B e @ Pds) =1 [ jin@Pe @)
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tim_ [ s n(@)Ve, @) de = [ (@) (Vi @) e

n—-+oo

lin [ feun @)@ = [ @)@, @

n—-+oo

Taking the above into account and passing to the limit as n — 400 in (2.7]), one obtains

0> (a+0)[ [ [Vus@)Per w)dn+ 3 mien(ey) + [ un@)lF Ve, @) da]
jeN

(2.8)
—/QIUA(w)IZ*%(w)dx—Zvjsor(xj)—Lf(m7UA(w))uA(w)wr($)dw~

jeJ

Now, it is straightforward to check that
/ Vun(@) Por(@)dz — 0, / i (@) or(2)dz — 0,
Q Q

/Q £ un (2))ur (@) () dz — 0

as r — 0. Furthermore, recalling that [V, ()| < 2 for each z € RY, one also has

/ hux (2) 2|V g ()| 2 = / s (2) 2 Vg () [2dx
(9] QﬂBr,.(ZDk)

. 2/2" 2.2% (2r-2)/2"
(/ lux (2)|? dx) (/ Vo, () 2*—2dx)
QNB,(zk) QNB,.(xk)
4 2/2* (27 —2)/2*
—2(/ |u>\(x)|2dx) (/ dx)
r QNB.(z1) B(zk)

. . 2/2*
= aufF D/ ( / jus(a)Pdz)
QQBT»(ZE)C)

where wy is the volume of the unit sphere in RY. Then, since

IN

IN

/ lux(x)|?dr — 0 asr — 0,
QQBT(I;C)

one has
/ lux(2) 2|V, (z)|?dz — 0 asr — 0.
Q

Consequently, passing to the limit as 7 — 0 in ([2.8)), it follows that
0> (a+bl*)uy — vy
By the above inequality and (2.6)), we obtain

2

N
(a+01%)Sy 2 < pi .
Then, since by (2.5) and (2.6) one has

1? =

hual = sl + 3 a5 > p,
jeN

lim
n——+o0o

we finally infer that

4

N _N
bSN PP < (a+blP)SY P <INz

from which N
fusll <1< S>N Db 21 < [ (2.9)

Now, observe that, since u) ,, is a global minimum point for ® ,,, one has

(I))\,n(u)\,n) S (I))\,n(UO)a
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where ug is as in (2.2). By the previous inequality it follows that

4 \QI% —2 e 2 _¢
* - Sy uxnll™ =5 = Ad(urn)

b
Slheral® + Zlern

2% — e,
a 2, b 4 1 2*—e,
< §||u0|| + ZHUOH - 27”“0 5o — AJ(up)-

A straightforward application of the Lebesgue Dominated Convergence Theorem shows that

||u0H§:§” — |luo||3-. Hence, passing to the limit as n — +oo in the above inequality, we ob-

tain
a b 1 — 2 % a b 1 *
SV 1 = oSN T = A (W) < Slluoll® + Flluoll® = o fluoll3- — AT (uo)-
This inequality and (2.9)) imply that
a b 1 2 . a b 1 »
inf (7t2 Op 2 2t2)— <2 2,9 4_ L 2" _
B G L >\H§h1£lo J() = Slluoll” + 7 lluoll” = 5 lluollz — AT (uo)

from which, in view of ([2.2)),
. P
\ < 3luoll” + §lluoll* — gefluoll3 — infucioul (5¢° + 3¢ — 52 Sy * t*)
- J(uo) = supyy <, J(w)

against the choice of A. Therefore, it must be N = ). This fact and (2.5) and (2.6) imply

:A*

m  [Juxplloe = [luall2-

n—-+4oo

which, together with (i)—(iv) and the Brezis-Lieb Lemma, implies in turn that
Ur,n — Uy, strongly in L (Q).

In particular, one infers that

. Qw—
i a3 = (2.10)

Now, since uy ,, is a global minimizer of @, ,, one has
Dy n(urn) < Pxn(uy) foreach n €N,

Then, passing to the limit as n — +oo in the above inequality and recalling (2.9)) and (2.10)), it

follows that

b

a b
y E R AN
2 * 4

a 2, b 4 _ @9 4
— - < = -1
pluall” + Zlluall® < 505+ 205,
that is

1' = [ =
tim == ]
Since the norm of WO1 2 (€) is uniformly convex and uy,, — uy weakly in VVO1 2 (Q), the above limit
implies that
Ux,n — uy, strongly in Wol’Q(Q),

Consequently, @y ,,(uxn) — ®x(uy).
Finally, recalling again that uy , is a global minimizer of ® ,,, one has

Oy (uy) = ngrfoo Dy nlurn) < ngrfoo Oy n(u) = Pr(u)

for each u € WO1 2(Q) Therefore, uy is a global minimizer of ®) and, moreover, taking {i into
account, it also turns out

<I>>\(u>\) < q))\(’u,o) < 0.
This completes the proof. O

The key assumption in Theorem [1.1]is that J has no global maximizer. The following proposi-
tion shows a simple situation in which this assumption is satisfied.
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Proposition 2.1. Assume f satisfying (1.2) and suppose that for some § > 0 and ¢ € LP() it
holds

o(x)
/ flz,t)dt > sup/ f(z,t)dt, for a.a. x € Q. (2.11)
0 l€|<6

Then, J has no global mazimizer in Wy(2).

Proof. First of all, observe that thanks to (1.2]), the functional J is well defined in the entire space
LP(Q) and it is (strongly) continuous in this space. In particular, being Wy'*(€2) dense in LP(2),
one has

sup J = sup J. (2.12)
Wg 2 () Lr(Q)

Now, arguing by contradiction, assume that there exists a global maximizer v € WO1 2(Q) for J in
Wy2(2). Since v € W, 2(), the set

A:={zeQ:|v(x)] <4}

has positive measure. Hence, in view (2.11)),

/A(/Ov(r) f(a,tydt)do < /A (/Od)(m)f(x,t)dt)dx. (2.13)

At this point, define the function w : 2 — R as follows

(2) = o(z),if z € A
= w(@), itz €0\ A

Then, w € LP(§2) and, by (2.12)) and (2.13)), one has

J(w) = /Q (/OW(I)f(x,t)dt)dx >J(w)= sup J= sup J,

Wy 2(Q) Lr(Q)

which is absurd. O

To exhibit an example of function satisfying the assumptions of Proposition 2.1} it is sufficient
to consider any Carathéodory function f :  x R — R satisfying the growth condition (1.2)) and
such that

o
inf t)dt =: ¢ >0,
il | flz.t) ¢
for some & € R. Indeed, if f satisfies the above condition, since
§
lim sup / flz, t)dt =

6—0 l€|<5

we can choose § > 0 such that

and if we define ¢ : @ — R as ¢(z) = &, for all x € Q, we have ¢ € LP(Q) and

#(x) o 3
/ fz, t)dt = f(z,t)dt > ¢ > sup / f(z, t)dt
0

0 l€1<s Jo
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