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OPTIMAL CONTROL AND APPROXIMATE CONTROLLABILITY FOR

SECOND-ORDER INTEGRO-DIFFERENTIAL EQUATIONS WITH

STATE-DEPENDENT DELAY AND NON-INSTANTANEOUS IMPULSES

ABDELHAMID BENSALEM, ABDELKRIM SALIM,

MOUFFAK BENCHOHRA, GASTON M. N’GUÉRÉKATA

Abstract. This article concerns the optimal control and the approximate controllability for

second order integro-differential equation with state-dependent delay and non-instantaneous
impulses. We first establish the existence of mild solution for the control system. Then, based

on these results, we investigate the approximate controllability and show the existence of optimal
controls for Bolza problems by using the resolvent family of linear operators, Mönch’s fixed point

theorem, and the resolvent condition. Finally, we give an example to illustrate the effectiveness

of the results.

1. Introduction

Numerous physical phenomena, such as shocks and natural disasters, exhibit dynamics that are
susceptible to sudden alterations. These phenomena involve brief disturbances that are negligible
in magnitude when contrasted with the overall course of the evolution. Occasionally, these impul-
sive effects persist for extended periods, and they are referred to as non-instantaneous impulses.
The publications [1, 6, 7, 8, 13, 22, 36, 39] and their associated references contain the latest findings
on evolution equations with impulses.

A multitude of natural phenomena spanning diverse fields, such as electronics, fluid dynamics,
biological models, and chemical kinetics, can be mathematically modeled using integro-differential
equations. Conventional differential equations are typically inadequate for explaining the behavior
of the majority of these phenomena, thereby piquing the interest of a large number of mathemati-
cians, physicists, and engineers, as evidenced in [11, 12, 17, 18, 22, 32]. Numerous publications
have investigated integro-differential systems with Υ(θ, ε) = 0 using semigroup methods. Fur-
ther details can be found in the aforementioned references. Benchohra et al. [9] have shown
existence of solution for second order semilinear volterra-type integro-differential equations with
non-instantaneous impulses:

ϑ′′(θ) = A(θ)ϑ(θ) +K(θ, ϑ, (Ψϑ)(θ)), if θ ∈ Ik, k ∈ Nm
0 ,

ϑ(θ) = Υk(θ, ϑ(θ
−
k )), if θ ∈ Jk, k ∈ Nm

1 ,

ϑ′(θ) = Θk(θ, ϑ(θ
−
k )), if θ ∈ Jk, k ∈ Nm

1 ,

ϑ′(0) = ζ0 ∈ H, ϑ′(0) = ζ1 ∈ H.
The concept of controllability has long been recognized as having a significant role in engi-
neering and mathematical control theory. In recent years, numerous authors have investigated
the controllability of various nonlinear systems. Interested readers may refer to the papers
[5, 10, 12, 31, 33, 37] for further study on this topic. When a system is deemed controllable,
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the question of how to obtain a control function that produces more, faster, better, and more
cost-effective outcomes naturally arises. To address this, an optimal control problem is proposed.
Optimal control problems play a crucial role in the design and analysis of control systems, and they
have numerous applications in diverse fields, including robotics, chemical process control, power
plants, and space technology. For additional information on optimal control problems, please refer
to [20, 29, 30] and their cited references.

This manuscript is devoted to the study of the existence and the approximate controllability
of mild solutions, as well as the existence of optimal controls for second-order integro-differential
equations with state-dependent delay and non-instantaneous impulses of the form

ϑ′′(θ) = Z(θ)ϑ(θ) +

∫ θ

0

Υ(θ, ε)ϑ(ε)dε+K(θ, ϑℑ(θ,ϑθ), (Ψϑ)(θ)) + Pu(θ), if θ ∈ Ik, k ∈ Nm
0 ,

ϑ(θ) = Υk(θ, ϑ(θ
−
k )), if θ ∈ Jk, k ∈ Nm

1 ,

ϑ′(θ) = Θk(θ, ϑ(θ
−
k )), if θ ∈ Jk, k ∈ Nm

1 ,

ϑ′(0) = ζ0 ∈ H, ϑ(θ) = ℘(θ), if θ ∈ R−,

(1.1)
where I0 = [0, θ1], Ik = (εk, θk+1] and Jk = (θk, εk], N

m
1 = {1, . . . ,m}, and Nm

0 = Nm
1 ∪ {0}

with 0 = ε0 < θ1 ≤ ε1 ≤ θ2 < . . . < εm−1 ≤ θm ≤ εm ≤ θm+1 = T , ∇ = [0, T ], ∇̃ = (−∞, T ],
Z(θ) : D(Z(θ)) ⊂ H → H, Υ(θ, ε) are closed linear operators on H, with dense domain D(Z(θ)),
which is independent of θ, and D(Z(ε)) ⊂ D(Υ(θ, ε)), the operator Ψ is defined by

(Ψϑ)(θ) =

∫ T

0

g(θ, ε, ϑ(ε))dε.

The nonlinear termK : ∇×G×H → H, ℘ : R− → H, ℑ : ∇×G → (−∞,∞), Υk,Θk : Jk×H → H,
k ∈ Nm

1 , are a given functions, the control function u is give function in L2(∇,Y) Banach space
of admissible control with Y as a Banach space. P is a bounded linear operator from Y into H,
and (H, ∥ · ∥) is a Banach space.

This article is organized as follows: in Section 2, we recall the notation, some concepts, hy-
potheses, and basic results about resolvent operator theory, phase space, and measure of noncom-
pactness. In Section 3, we prove the existence of a mild solution for problem (1.1). In section 4,
we investigate the approximate controllability result. We show the existence of optimal controls
in section 5. Finally, an example is provided to show the applications of the obtained results.

2. Preliminaries

Let C(∇,H) be the Banach space of continuous functions ϑ mapping ∇ := [0, T ] into H, with

∥ϑ∥∞ = sup
θ∈∇

∥ϑ(θ)∥.

A measurable function ϑ : ∇ → H is Bochner integrable if and only if ∥ϑ∥ is Lebesgue integrable
[40]. Let L1(∇,H) be the Banach space of measurable functions ϑ : ∇ → H which are Bochner
integrable, with the norm

∥ϑ∥L1 =

∫ T

0

∥ϑ(θ)∥dθ.

Now, we consider the second-order integro-differential system [23]:

κ′′(θ) = Z(θ)κ(θ) +
∫ θ

ε

Υ(θ, ν)κ(ν)dν, ε ≤ θ ≤ T,

κ(ε) = 0, κ′(ε) = x ∈ H,
(2.1)

for 0 ≤ ε ≤ T . We denote ∆ = {(θ, ε) : 0 ≤ ε ≤ θ ≤ T}. We now present some properties of Υ:

(1) For 0 ≤ ε ≤ θ ≤ T , Υ(θ, ε) : D(Z) → H is a bounded linear operator, for every κ ∈
D(Z),Υ(·, ·)κ is continuous and

∥Υ(θ, ε)κ∥ ≤ β∥κ∥[D(Z)],
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for β > 0 independent of (ε, θ) ∈ ∆.
(2) There exists LΥ > 0 such that

∥Υ(θ2, ε)κ −Υ(θ1, ε)κ∥ ≤ LΥ |θ2 − θ1| ∥κ∥[D(Z)],

for all κ ∈ D(Z) and 0 ≤ ε ≤ θ1 ≤ θ2 ≤ T .
(3) For 0 ≤ σ ≤ ε ≤ θ ≤ T , there exists b1 > 0 such that

∥
∫ θ

σ

S(θ, ε)Υ(ε, σ)κdε∥ ≤ b1∥κ∥, for all κ ∈ D(Z).

Under these conditions, it has been established that there exists a resolvent operator (Q(θ, ε))θ≥ε

associated with (2.1).

Definition 2.1 ([23]). A family of bounded linear operators (Q(θ, ε))θ≥ε on H is a resolvent
operator for (2.1) if it satisfies:

(a) Q : ∆ → L(H) is strongly continuous, Q(θ, ·)κ is continuously differentiable for all κ ∈ H,

Q(ε, ε) = 0,
∂

∂θ
Q(θ, ε)

∣∣
θ=ε

= I and
∂

∂ε
Q(θ, ε)

∣∣
ε=θ

= −I;

(b) For each x ∈ D(Z), the function Q(·, ε)x is a solution for system (2.1). This means

∂2

∂θ2
Q(θ, ε)x = Z(θ)Q(θ, ε)x+

∫ θ

ε

Υ(θ, ν)Q(ν, ε)xdν,

for all 0 ≤ ε ≤ θ ≤ T .

Thus, there are constatns MQ > 0 and M̃Q > 0 such that

∥Q(θ, ε)∥ ≤MQ, ∥ ∂
∂ε

Q(θ, ε)∥ ≤ M̃Q, (θ, ε) ∈ ∆.

Furthermore,

P(θ, ν)x =

∫ θ

ν

Υ(θ, ε)Q(ε, ν)xdε, x ∈ D(Z), 0 ≤ ν ≤ θ ≤ T,

can be extended to H. This expansion, denoted by similar notation P(θ, ν),P : ∆ → L(H), is
strongly continuous, which is satisfied by

Q(θ, ν)x = S(θ, ν)x+

∫ θ

ν

S(θ, ε)P(ε, ν)xdε, for all x ∈ H.

It follows from this property that Q(·) is uniformly Lipschitz continuous, that is, there exists a
constant LQ > 0 such that

∥Q(θ + h, ν)−Q(θ, ν)∥ ≤ LQ|h|, for all θ, θ + h, ν ∈ [0, T ].

Lemma 2.2. Let N1 : Lq(∇,H) → C(∇,H), (q > 1) be defined by

(N1f)(θ) =

∫ θ

0

Q(θ, ε)f(ε)dε.

If the resolvent operator (Q(θ, ε))θ≥ε is compact then fn
w→ f0 in Lq(∇,H) implies N1fn

ε→ N1f0
in C(∇,H), and N1 is a strongly continuous operator.

The proof of this lemma is similar to that of Lemma 14 in [15]. We omit it.
Assume that the phase space (G, ∥ · ∥G) is a seminormed linear space of functions mapping

(−∞, 0] into R, and satisfying the following [21]:

(A1) If ϑ ∈ PC and ϑ0 ∈ G, then for every θ ∈ ∇:
(i) ϑθ ∈ G,
(ii) There exists β1 > 0 where |ϑ(θ)| ≤ β1∥ϑθ∥G,
(iii) There exist two functions β2(·) and β3(·) : R+ → R+ independent of ϑ with β2

continuous and bounded and β3 locally bounded such that

∥ϑθ∥G ≤ β2(θ) sup{|ϑ(ε)| : 0 ≤ ε ≤ θ}+ β3(θ)∥ϑ0∥G.
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(A2) For the function ϑ in (A1), ϑθ is a G - valued continuous function on R+ \ Jk.
(A3) The space G is complete.

We denote β2
∗ = sup{β2(θ) : θ ∈ ∇}, β3∗ = sup{β3(θ) : θ ∈ ∇}, ℧ = max{β2∗, β3∗}. Now, let

p ∈ Nm
0 and (νk)k∈Nm

1
be a sequence defined by

νk =

{
νp+1 − θ, if k = 2p+ 1, θ ∈ R−,

εp − θ, if k = 2p, θ ∈ R−.

Then, for Iν = R− \ {νk : k ∈ Nm
1 }, we define the space

PCν(R−,H) =
{
ϑ : R− → H : ϑ|Iν is continuous and ϑ(ν−k ), ϑ(ν+k ) exist with ϑ(ν−k ) = ϑ(νk)

}
,

and the space

Cν :=
{
ג ∈ PCν(R−,H) : lim

ν→−∞
(ν)ג exist in H

}
,

with

ν∥ג∥ = sup{|ג(ν)| : ν ≤ 0}.
Then, (A1)–(A3) are satisfied in Cν . So in all what follows, we consider the phase space G = Cν .

Consider the set

PC(∇̃,H) =
{
ϑ : ∇̃ → H : ϑ|R− ∈ G, ϑ|Jk

= Υk; k ∈ Nm
1 , ϑ|Ik ∈ C(Ik,H); k ∈ Nm

0 ,

ϑ(θ−k ), ϑ(ε
−
k ), ϑ(ε

+
k ) and ϑ(θ

+
k ) exist with ϑ(θ

−
k ) = ϑ(θk)and ϑ(ε

−
k ) = ϑ(εk)

}
,

with

∥ϑ∥PC = sup
θ∈∇̃

{∥ϑ(θ)∥}.

Definition 2.3 ([2]). LetX be a Banach space and ℶX the bounded subsets ofX. The Kuratowski
measure of noncompactness is the map χ : ℶX → [0,∞) defined by

χ(B) = inf{ϵ > 0 : B ⊆ ∪n
i=1Bi and diam(Bi) ≤ ϵ}; where B ∈ ℶX ,

where

diam(Bi) = sup{∥ϑ− v∥X : ϑ, v ∈ Bi}.

Lemma 2.4 ([16]). If Y is a bounded subset of a Banach space X, then for each ϵ > 0, there is
a sequence {ϑk}∞k=1 ⊂ Y such that

χ(Y ) ≤ 2χ({ϑk}∞k=1) + ϵ.

Lemma 2.5. ([34]) If {ϑk}∞k=0 ⊂ L1 is uniformly integrable, then the function θ → χ({ϑk(θ)}∞k=0)
is measurable and

χ
({∫ θ

0

ϑk(ε)dε
}∞

k=0

)
≤ 2

∫ θ

0

χ({ϑk(ε)}∞k=0)dε.

Lemma 2.6 ([2]). If U ⊂ PC(∇;H) is bounded, then χ(U(θ)) ≤ αPC(U), for all θ ∈ ∇; here
U(θ) = {ϑ(θ);ϑ ∈ U ⊂ H}. Furthermore if U is equicontinuous on ∇, then χ(U(θ)) is continuous
on ∇ and

αPC(U) = sup
θ∈∇

χ(U(θ)).

Theorem 2.7 (Mönch’s fixed point theorem [34]). Let D be a bounded, closed and convex subset
of a Banach space X, such that 0 ∈ D, and let U be a continuous mapping of D into itself. If the
implication

M = convU(M) or M = U(M) ∪ {0} ⇒ χ(M) = 0,

holds for every subset M of D, then U has a fixed point.
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Lemma 2.8 ([4]). Let ϑ(θ) and β(θ) be nonnegative continuous function for θ ≥ α, and let

ϑ(θ) ≤ a+

∫ θ

α

β(ε)ϑ(ε)dε θ ≥ α,

where a ≥ 0 is a constant. Then

ϑ(θ) ≤ a exp
(∫ θ

α

β(ε)dε
)
, θ ≥ α.

3. Existence of mild solution

Let us recall the following special measure of noncompactness on the space X = PC(∇̃,H)
which originates from [2], and will be used in our main results. For a nonempty bounded subset

S of the space X , and v ∈ S, ϵ > 0, κ1, κ2 ∈ ∇̃, such that |κ1 − κ2| ≤ ϵ. We denote ωT (v, ϵ) the

modulus of continuity of the function v on the interval ∇̃, namely,

ωT (v, ϵ) = sup{∥e−κ1v(κ1)− e−κ2v(κ2)∥ : κ1, κ2 ∈ ∇̃},
ω0(S) = lim

ϵ→0
sup{ωT (v, ϵ) : v ∈ S}.

Finally, consider the function χPC defined on the family of subset of X by the formula

χPC(S) = ω0(S) + χ(S(θ)),

where S(θ) = {ϑ(θ) ∈ H : ϑ ∈ S}. Note that the function χPC is a sublinear measure of
noncompactness on the space X .

In contrast to the advancements presented in [19, 23, 24], we introduce a new notion of a mild
solution for system (1.1).

Definition 3.1. A function ϑ ∈ X is called a mild solution of problem (1.1), if the following hold:

(i) ϑ′(0) = ζ0 ∈ H and ϑ(θ) = ℘(θ); if θ ∈ R−.
(ii) The non-instantaneous conditions ϑ(θ) = Υk(θ, ϑ(θ

−
k )), if θ ∈ Jk, k ∈ Nm

1 and ϑ′(θ) =

Θk(θ, ϑ(θ
−
k )), if θ ∈ Jk, k ∈ Nm

1 are satsified
(iii) ϑ is the solution of the integral equations

ϑ(θ) =


−∂Q(θ,ε)

∂ε

∣∣
ε=0

℘(0) +Q(θ, 0)ζ0

+
∫ θ

0
Q(θ, ε)(K(ε, ϑℑ(ε,ϑε), (Ψϑ)(ε)) + Pu(ε))dε, if θ ∈ I0,

−∂Q(θ,ε)
∂ε

∣∣
ε=εk

Υk(εk, ϑ(θ
−
k )) +Q(θ, εk)Θk(εk, ϑ(θ

−
k ))

+
∫ θ

εk
Q(θ, ε)(K(ε, ϑℑ(ε,ϑε), (Ψϑ)(ε)) + Pu(ε))dε, if θ ∈ Ik, k ∈ Nm

1 .

To guarantee the existence of mild solutions, we need the following assumptions:

(A4) K : ∇×G×H → H is a Carathéodory function and there exist positive constants ξ1, ξ2
and continuous nondecreasing functions ψ1

K, ψ
2
K : ∇ → (0,+∞) such that

∥K(θ, ϑ1, ϑ2)∥ ≤ ξ1ψ
1
K(∥ϑ1∥G) + ξ2ψ

2
K(∥ϑ2∥), for ϑ1 ∈ G, ϑ2 ∈ H.

There exists a positive constant lK, such that for any bounded set B ⊂ H, and Bθ ∈ G
and each θ ∈ ∇, we have

χ(K(θ,Bθ,Ψ(B(θ)))) ≤ lK

(
χ(B(θ)) + sup

ν∈(−∞,0]

χ(B(ν + θ))
)
.

(A5) The function g : Dg ×H → H is continuous and there exists αg > 0, such that

∥g(θ, ε, ϑ1)− g(θ, ε, ϑ2)∥ ≤ αg∥ϑ1 − ϑ2∥, for each (θ, ε) ∈ Dg and ϑ1, ϑ2 ∈ H,

with

sup
Dg

∥g(θ, ε, 0)∥ = g∗0 <∞.
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(A6) The functions Zi
k : Jk × H → H are continuous and there exist LZi

k
> 0, k ∈ Nm

1 , such

that

∥Zi
k(θ, ϑ1)− Zi

k(θ, ϑ2)∥ ≤ LZi
k
∥ϑ1 − ϑ2∥, for all ϑ1, ϑ2 ∈ H, k ∈ Nm

1 ,

Zi,0
k = ∥Zi

k(θ, 0)∥, max
k∈Nm

1

{LZi
k
, k ∈ Nm

1 } = L∗
Zi

k
< +∞,

where

Zi
k =

{
Θk, i = 1,

Υk, i = 2.

(A7) Assume that properties (1)-(2) of Υ hold, and that there exist MQ, M̃Q ≥ 1, µ ≥ 0 and
MP > 0, such that

∥Q(θ, ε)∥Υ(H) ≤MQ, ∥∂Q(θ, ε)

∂ε
∥Υ(H) ≤ M̃Q, ∥P∥ =MP ,

with M̃QLΥk
+MQLΘk

< 1.
(A8) Set R(ℑ−) = {ℑ(ε, φ) : (ε, φ) ∈ ∇ ×G,ℑ(ε, φ) ≤ 0}. We assume that ℑ : ∇×G → R is

continuous.
(A9) The function θ → ℘θ is continuous from R(ℑ−) into G and there exists a continuous and

bounded function L℘ : R(ℑ−) → (0,∞) such that

∥℘θ∥G ≤ L℘(θ)∥℘∥G, for every θ ∈ R(ℑ−).

The condition (A9) is frequently satisfied by functions continuous and bounded. For more
details, see for instance [26].

Lemma 3.2 ([25]). If ϑ : (−∞,+∞) → H is a function such that ϑ0 = ℘, then

∥ϑε∥G ≤ (β3
∗ + L℘)∥℘∥G + β2

∗ sup{|ϑ(θ)| : θ ∈ [0,max{0, ε}]}, ε ∈ R(ℑ−) ∪∇,

where L℘ = supς∈R(ℑ−) L℘(ς).

Theorem 3.3. Assume that the conditions (A4)–(A9) are satisfied, then the system (1.1) has at
least one mild solution.

Proof. We transform problem (1.1) into a fixed point problem, by considering the operator Ξ :
X → X define by:

Ξϑ(θ) =



−∂Q(θ,ε)
∂ε

∣∣
ε=0

℘(0) +Q(θ, 0)ζ0

+
∫ θ

0
Q(θ, ε)

(
K(ε, ϑℑ(ε,ϑε), (Ψϑ)(ε)) + Pu(ε)

)
dε, if θ ∈ I0,

−∂Q(θ,ε)
∂ε

∣∣
ε=εk

Υk(εk, ϑ(θ
−
k )) +Q(θ, εk)Θk(εk, ϑ(θ

−
k ))

+
∫ θ

εk
Q(θ, ε)

(
K(ε, ϑℑ(ε,ϑε), (Ψϑ)(ε)) + Pu(ε)

)
dε if θ ∈ Ik, k ∈ Nm

1 ,

Υk(θ, ϑ(θ
−
k )), if θ ∈ Jk, k ∈ Nm

1 ,

℘(θ), if θ ∈ R−.

(3.1)

Let x(·) : (−∞, T ] → H be defined by

x(θ) =


−∂Q(θ,ε)

∂ε

∣∣
ε=0

℘(0) +Q(θ, 0)ζ0, if θ ∈ I0,

0, if θ ∈ (θ1, T ],

℘(θ), if θ ∈ R−.

Then x0 = ℘, and for each ϖ ∈ X , with ϖ(0) = 0, we denote by ϖ the function

ϖ(θ) =

{
ϖ(θ), if θ ∈ ∇,
0, if θ ∈ R−.
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If ϑ satisfies Definition 3.1, then we can decompose it as ϑ(θ) = ϖ(θ) + x(θ), which implies
ϑθ = ϖθ + xθ, and the function ϖ(·) satisfies

ϖ(θ) =



∫ θ

0
Q(θ, ε)

(
K(ε,ϖℑ(ε,ϖε+xε) + xℑ(ε,ϖε+xε),Ψ(ϖ + x)(ε)) + Pu(ε)

)
dε, if θ ∈ I0,

−∂Q(θ,ε)
∂ε

∣∣
ε=εk

Υk(εk, ϑ(θ
−
k )) +Q(θ, εk)Θk(εk, ϑ(θ

−
k ))

+
∫ θ

εk
Q(θ, ε)

(
K(ε, ϑℑ(ε,ϑε), (Ψϑ)(ε)) + Pu(ε)

)
dε, if θ ∈ Ik, k ∈ Nm

1 ,

Υk(θ, ϑ(θ
−
k )), if θ ∈ Jk, k ∈ Nm

1 .

(3.2)
Set

ℶ = {ϖ ∈ X : ϖ(0) = 0}.
Let the operator Ξ̂ : ℶ → ℶ defined by

Ξ̂ϖ(θ) =



∫ θ

0
Q(θ, ε)

(
K(ε,ϖℑ(ε,ϖε+xε) + xℑ(ε,ϖε+xε),Ψ(ϖ + x)(ε)) + Pu(ε)

)
dε, if θ ∈ I0,

−∂Q(θ,ε)
∂ε

∣∣
ε=εk

Υk(εk, ϑ(θ
−
k )) +Q(θ, εk)Θk(εk, ϑ(θ

−
k ))

+
∫ θ

εk
Q(θ, ε)

(
K(ε, ϑℑ(ε,ϑε), (Ψϑ)(ε)) + Pu(ε)

)
dε, if θ ∈ Ik, k ∈ Nm

1 ,

Υk(θ, ϑ(θ
−
k )), if θ ∈ Jk, k ∈ Nm

1 .

Obviously, the operator Ξ has a fixed point is equivalent to Ξ̂ having a fixed point, and so we turn

to proving that Ξ̂ has a fixed point. We shall use Theorem 2.7 to prove that Ξ̂ has a fixed point.
Let ℶℑ = {ϖ ∈ ℶ : ∥ϖ∥ℶ ≤ ℑ}, with 0 < max

{
ℑ∗

1,ℑ∗
2,ℑ∗

3

}
≤ ℑ, such that

ℑ∗
1 =MQ

(
ξ1Tψ

1
K(δ

∗
1) + ξ2Tψ

2
K(δ

∗
2) +MPT

1/2∥u∥L2

)
,

ℑ∗
2 =

M̃QΥ
0
k +MQ(Θ

0
k + ξ1Tψ

1
K(δ̃

∗
1) + ξ2Tψ

2
K(δ̃

∗
2) +MPT

1/2∥u∥L2)

1− M̃QL∗
Υk

−MQL∗
Θk

,

ℑ∗
3 = L∗

Υk
ℑ+Υ0

k,

δ∗1 = β2
∗ℑ+

[
β3

∗ + L℘ + β2
∗(M̃R∥℘0∥+MR∥ζ0∥

)
β1

]
∥℘∥B,

δ∗2 = T (αg(ℑ++M̃R∥℘0∥+MR∥ζ0∥) + g∗0),

δ̃∗2 = (αgℑ+ g∗0)T,

δ̃∗1 = ℧(ℑ+ ∥℘∥G).

The set ℶℑ is bounded, closed, and convex.

Step 1. Ξ̂(ℶℑ) ⊂ ℶℑ. For θ ∈ I0, ϖ ∈ ℶℑ and from (A4)–(A7), it follows that

∥wℑ(ε,wε+xε) + xℑ(ε,wε+xε)∥B
≤ ∥wℑ(ε,wε+xε)∥B + ∥xℑ(ε,wε+xε)∥B
≤ β2(θ) sup

[0,ε]

|w(θ)|+
(
β3(θ) + L℘

)
∥℘∥B + β2(θ) sup

[0,ε]

∥x(θ)∥

≤ β2
∗ℑ+

(
β3

∗ + L℘
)
∥℘∥B + β2

∗(M̃R∥℘0∥+MR∥ζ0∥
)
β1∥℘∥B

≤ β2
∗ℑ+

[
β3

∗ + L℘ + β2
∗(M̃R∥℘0∥+MR∥ζ0∥

)
β1

]
∥℘∥B = δ∗1

and

∥Ψ(ϖ + x)(ε)∥ ≤ T (αg(ℑ++M̃R∥℘0∥+MR∥ζ0∥) + g∗0) = δ∗2 .

Then, we have

∥Ξ̂ϖ(θ)∥ ≤MQ

∫ θ

0

(ξ1ψ
1
K(δ

∗
1) + ξ2ψ

2
K(δ

∗
2) + ∥Pu(ε)∥)dε

≤MQ(ξ1Tψ
1
K(δ

∗
1) + ξ2Tψ

2
K(δ

∗
2) +MPT

1/2∥u∥L2) ≤ ℑ.
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Now if θ ∈ Ik and for each ϖ ∈ ℶℑ, by (A4)–(A6), we obtain

∥Υk(θ,ϖ(·))∥ ≤ LΥk
(θ)∥ϖ(θ)∥+Υ0

k

and
∥Θk(θ,ϖ(.))∥ ≤ LΘk

(θ)∥ϖ(θ)∥+Θ0
k.

Hence, for δ̃∗2 = (αgℑ+ g∗0)T and δ̃∗1 = ℧(ℑ+ ∥℘∥G), we obtain

∥Ξ̂ϖ(θ)∥ ≤ M̃Q(L
∗
Υk

ℑ+Υ0
k) +MQ

[
L∗
Θk

ℑ+Θ0
k + ξ1Tψ

1
K(δ̃

∗
1) + ξ2Tψ

2
K(δ̃

∗
2) +MPT

1/2∥u∥L2

]
≤ ℑ.

If θ ∈ Jk and for each ϖ ∈ ℶℑ, from (A6), we obtain

∥Ξ̂ϖ(θ)∥ ≤ L∗
Υk

ℑ+Υ0
k ≤ ℑ.

Thus, ∥Ξ̂ϖ∥ℶ ≤ ℑ. Consequently, Ξ̂(ℶℑ) ⊂ ℶℑ and Ξ̂(ℶℑ) is bounded.

Step 2. Ξ̂ is continuous. Let {ϖn}n∈N be a sequence, such that ϖn → ϖ∗. At the first, we study
the convergence of the sequences (ϖn

ℑ(ε,ϖn
ε ))n∈N, ε ∈ ∇. If ε ∈ ∇ is such that ℑ(ε,ϖε) > 0, then

we have

∥ϖn
ℑ(ε,ϖn

ε ) −ϖ∗
ℑ(ε,ϖ∗

ε )
∥B ≤ ∥wn

ℑ(ε,wn
ε ) −ϖ∗

ℑ(ε,ϖn
ε )∥B + ∥ϖ∗

ℑ(ε,ϖn
ε ) −ϖ∗

ℑ(ε,ϖ∗
ε )
∥B

≤ β2
∗∥ϖn −ϖ∗∥+ ∥ϖ∗

ℑ(ε,ϖn
ε ) −ϖ∗

ℑ(ε,ϖ∗
ε )
∥B,

which proves that ϖn
ℑ(ε,ϖn

ε ) → ϖ∗
ℑ(ε,ϖε)

in B, as n→ ∞, for every ε ∈ ∇ such that ℑ(ε,ϖε) > 0.

Similarly, if ℑ(ε,ϖε) < 0, we obtain

∥ϖn
ℑ(ε,ϖn

ε ) −ϖ∗
ℑ(ε,ϖε)

∥B = ∥℘n
ℑ(ε,ϖn

ε ) − ℘ℑ(ε,ϖ∗
ε )
∥B = 0,

which also shows that ϖn
ℑ(ε,ϖn

ε ) → ϖ∗
ℑ(ε,ϖ∗

ε )
in B, as n→ ∞, for every ε ∈ ∇ such that ℑ(ε,ϖε) <

0. Then for θ ∈ I0, we have

∥(Ξ̂ϖn)(θ)− (Ξ̂ϖ∗)(θ)∥ ≤MQ

∫ θ

0

∥K(ε,ϖn
ℑ(ε,ϖn

ε ) + xℑ(ε,ϖn
ε +xε),Ψ(ϖn + x)(ε))

−K(ε,ϖ∗
ℑ(ε,ϖ∗

ε )
+ xℑ(ε,ϖ∗

ε+xε),Ψ(ϖ∗ + x)(ε))∥dε.

By the continuity of g, we obtain

g(θ, ε, (ϖn
ε + x)(ε)) → g(θ, ε, (ϖ∗ + x)(ε)) as n→ +∞,

∥g(θ, ε, (ϖn + x)(ε))− g(θ, ε, (ϖ∗ + x)(ε))∥ ≤ αg∥ϖn −ϖ∗∥ℶ.
By the Lebesgue dominated convergence theorem,∫ T

0

g(θ, ε, (ϖn + x)(ε))dε→
∫ T

0

g(θ, ε, (ϖ∗ + x)(ε))dε, as n→ +∞.

Thus, by the continuity of K, and Lebesgue dominated convergence theorem,

∥(Ξ̂ϖn)(θ)− (Ξ̂ϖ∗)(θ)∥ → 0, as n→ +∞.

If θ ∈ Ik, we obtain

∥Ξ̂(ϖn)(θ)− Ξ̂(ϖ∗)(θ)∥

≤ M̃Q∥Υk(εk, (ϖ
n)(θ−k ))−Υk((εk, (ϖ

∗)(θ−k )))∥+MQ∥Θk(εk, (ϖ
n)(θ−k ))−Θk((εk, (ϖ

∗)(θ−k )))∥

+MQ

∫ θ

εk

∥K(ε,ϖn
ℑ(ε,ϖm

ε ),Ψ(ϖn)(ε))−K(ε,ϖ∗
ℑ(ε,ϖ∗

ε )
,Ψ(ϖ∗)(ε))∥dε.

Similarly, by the continuity of g, K, Υk and Θk, we obtain

∥(Ξ̂ϖn)(θ)− (Ξ̂ϖ∗)(θ)∥ → 0, as n→ +∞.

Now for θ ∈ Jk, we have

∥(Ξ̂(ϖn))(θ)− Ξ̂(ϖ∗)(θ)∥ ≤ ∥Υk(θ, (ϖ
n)(θ−k ))−Υk(θ, (ϖ

∗)(θ−k ))∥.

By the continuity of Υk, we obtain that ∥(Ξ̂ϖn)(θ) − (Ξ̂ϖ∗)(θ)∥ → 0 as n → +∞. Thus, Ξ̂ is
continuous.
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Step 3. For Π ⊂ ℶℑ, ϖ ∈ Π, and κ1, κ2 ∈ I0, with κ2 > κ1, we have

∥Ξ̂ϖ(κ1)− Ξ̂ϖ(κ2)∥ ≤
∫ κ1

0

∥Q(κ1, ε)−Q(κ2, ε)∥(ξ1ψ1
K(δ

∗
1) + ξ2ψ

2
K(δ

∗
2) + ∥Pu(ε)∥)dε

+

∫ κ2

κ1

∥Q(κ2, ε)∥(ξ1ψ1
K(δ

∗
1) + ξ2ψ

2
K(δ

∗
2) + ∥Pu(ε)∥)dε

≤
∫ κ1

0

∥Q(κ1, ε)−Q(κ2, ε)∥(ψ1
K(δ

∗
1)ξ1 + ψ2

K(δ
∗
2)ξ2)dε

+MP(

∫ θ

0

∥Q(κ1, ε)−Q(κ2, ε)∥2)1/2dε∥u∥L2

+MQ(ψ
1
K(δ

∗
1)ξ1 + ψ2

K(δ
∗
2)ξ2)(κ2 − κ1) +MQMP(κ2 − κ1)

1/2∥u∥L2 .

By the strong continuity of Q(·) and assumption (A4), we obtain

∥Ξ̂ϖ(κ1)− Ξ̂ϖ(κ2)∥ → 0, as κ1 → κ2.

Now for κ1, κ2 ∈ Ik, we obtain

∥Ξ̂ϖ(κ1)− Ξ̂ϖ(κ2)∥
≤ ∥Q(κ1, εk)−Q(κ2, εk)∥∥Θk(εk, (ϖ)(θ−k ))∥

+ ∥∂Q(κ1, εk)

∂ε
− ∂Q(κ2, εk)

∂ε
∥ ∥Υk(εk, (ϖ)(θ−k ))∥

+

∫ κ1

εk

∥Q(κ1, ε)−Q(κ2, ε)∥
(
ξ1ψ

1
K(δ̃

∗
1) + ξ2ψ

2
K(δ̃

∗
2) + ∥Pu(ε)∥

)
dε

+

∫ κ2

κ1

∥Q(κ2, ε)∥
(
ξ1ψ

1
K(δ̃

∗
1) + ξ2ψ

2
K(δ̃

∗
2) + ∥Pu(ε)∥

)
dε

≤ ∥Q(κ1, εk)−Q(κ2, εk)∥(L∗
Θk

ℑ+Θ0
k) + ∥∂Q(κ1, εk)

∂ε
− ∂Q(κ2, εk)

∂ε
∥(L∗

Υk
ℑ+Υ0

k)

+
(
ψ1
K(δ̃

∗
1)ξ1 + ψ2

K(δ̃
∗
2)ξ2

) ∫ κ1

εk

∥Q(κ1, ε)−Q(κ2, ε)∥dε

+MP

(∫ θ

0

∥Q(κ1, ε)−Q(κ2, ε)∥2
)1/2

dε∥u∥L2

+MQ(κ2 − κ1)
(
ψ1
K(δ̃

∗
1)ξ1 + ψ2

K(δ̃
∗
2)ξ2

)
+MQMP(κ2 − κ1)

1/2∥u∥L2 .

By the strong continuity of Q(·) and assumption (A4), we obtain

∥Ξ̂ϖ(κ1)− Ξ̂ϖ(κ2)∥ → 0, as κ1 → κ2.

For κ1, κ2 ∈ Jk, we obtain

∥Ξ̂ϖ(κ1)− Ξ̂ϖ(κ2)∥ = ∥Υk(κ1, ϖ(θ−k )−Υk(κ2, ϖ(θ−k )∥.

From (A6), we obtain ∥Ξ̂ϖ(κ1)−Ξ̂ϖ(κ2)∥ → 0, as κ1 → κ2. Hence, the set Ξ̂(Π) is equicontinuous,

then ω0(Ξ̂(Π)) = 0.

Now, let S be a subset of ℶℑ, such that S ⊂ Ξ̂(S) ∪ {0}. S is bounded and equicontinuous;
therefore, the function θ → φ(θ) = χ(S(θ)) is continuous. From the properties of the measure χ,
we obtain

φ(θ) ≤ χ((Ξ̂(S))(θ) ∪ {0}),≤ χ((Ξ̂(S))(θ)).

Now for any ϱ > 0, there exists a sequence {ϖk}∞k=0 ⊂ S such that for θ ∈ I0 we have

φ(θ) ≤ χ
({∫ θ

0

Q(θ, ε)
(
K(ε,ϖℑ(ε,ϖε+xε) + xℑ(ε,ϖε+xε),Ψ(ϖ + x)(ε)) + Pu(ε)

)
dε : ϖ ∈ S

})
≤ 2χ

({∫ θ

0

Q(θ, ε)K(ε,ϖk
ℑ(ε,ϖk

ε+xε)
+ xℑ(ε,ϖk

ε+xε),Ψ(ϖk + x)(ε))dε : ϖ ∈ S
})

+ ϱ
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≤ 4

∫ θ

0

MQlK

(
χ({Π(ε)}) + sup

ν∈(−∞,0]

χ({Π(ν + ε)})
)
dε+ ϱ

≤ 8

∫ θ

0

MQlKφ(ε)dε+ ϱ.

Since ϱ is arbitrary, we obtain

φ(θ) ≤ 8

∫ θ

0

MQlKφ(ε)dε.

From Lemma 2.8, we obtain φ(θ) = χ(S(θ)) = 0. Now if θ ∈ Ik, we have

φ(θ) ≤ M̃Qχ(
{
Υk(εk, ϖ(θ−k )) : ϖ ∈ S

}
) +MQχ

({
Θk(εk, ϖ(θ−k )) : ϖ ∈ S

})
+ χ(

{∫ θ

εk

Q(θ, ε)(K(ε,ϖℑ(ε,ϖε),Ψ(ϖ)(ε)) + Pu(ε))dε : w ∈ S
}
Big)

≤
(
M̃QLΥk

+MQLΘk

)
χ(S(θ))

+ 4

∫ θ

εk

MQlK
(
χ({Π(ε)}) + sup

ν∈(−∞,0]

χ({Π(ν + ε)})
)
dε+ ϱ.

Then

φ(θ) ≤ 8

1− M̃QLΥk
−MQLΘk

∫ θ

εk

MQlKφ(ε)dε+
ϱ

1− M̃QLΥk
−MQLΘk

.

Since ϱ is arbitrary, we obtain

φ(θ) ≤ 8

1− M̃QLΥk
−MQLΘk

∫ θ

0

MQlKφ(ε)dε,

From Lemma 2.8, we obtain φ(θ) = χ(S(θ)) = 0. If θ ∈ Jk, by (C3) we obtain

φ(θ) ≤ LΥk
χ(S(θ)),

then

∥φ∥ℶ ≤ LΥk
∥φ∥ℶ,

implies that ∥φ∥ℶ = 0, thus φ(θ) = χ(S(θ)) = 0. Consequently S(θ) is relatively compact in H.

Therefore, S is relatively compact in ℶℑ. Applying now Theorem 2.7, we conclude that Ξ̂ has at
least one fixed point w∗. Then ϑ∗ = w∗ + x is a fixed point of the operator Ξ, which is a mild
solution of problem (1.1). □

4. Approximate controllability

In this section we investigate the approximate controllability for System (1.1). First we provide
a definition of the approximation controllability idea.

Let ϑ(T, ζ0, ℘, u) be the state value of (1.1) at terminal time T corresponding to ζ0 ∈ H, ℘ ∈ B.
To define the notion of approximate controllability we introduce the set

R(T, ζ0, ℘) = {ϑ(T, ζ0, ℘, u), u(·) ∈ L2(∇ : Y)},

which is called the reachable set of system (1.1) at terminal time T . Its closure in H is denoted

by R(T, ζ0, ℘).

Definition 4.1. System (1.1) is said to be approximately controllable on the interval ∇ = [0, T ]

if R(T, ζ0, ℘) is dense in H, i.e. R(T, ζ0, ℘) = H.

To study the approximate controllability of system (1.1) we introduce the following operators:

Γθk+1
εk

=

∫ θk+1

εk

Q(θk+1, ε)PP∗Q∗(θk+1 − ε)dε,

R(λ,Γθk+1
εk

) = (λI + Γθk+1
εk

)−1,
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where ε0 = 0, θk+1 = T k ∈ Nm
0 ; P∗ and Q∗ denote the adjoint of the operators P and Q

respectively. It is straightforward to see that the operator Γ
θk+1
εk is a linear bounded operator. So

we assume that for all k ∈ Nm
0 , the operator R(λ,Γ

θk+1
εk ) satisfies

(A10) λR(λ,Γ
θk+1
εk ) → 0 as λ→ 0+ in the strong operator topology.

From [14], hypothesis (A10) is equivalent to the fact that the linear control system corresponding
to system (1.1) is approximately controllable on [0, T ]. More precisely, we have the following
theorem.

Theorem 4.2. The following statements are equivalent:

(i) The linear control system corresponding to system (1.1) is approximately controllable on
[0, T ].

(ii) If P∗Q∗(θ)κ = 0 for all θ ∈ [0, T ], then κ = 0.
(iii) The condition (C0) holds.

The proof of this theorem is similar to that of [3, Theorem 2] and [14, Theorem 4.4.17], so we
omit it here. We are now in a position to prove the approximate controllability of system (1.1).

For any given ηθk+1 ∈ H and λ ∈ (0, 1], we take the control function uλ(θ) as follows:

uλ(θ) = P∗Q∗(θk+1, ε)R(λ,Γ
θk+1
εk

)∆(ηθk+1 , θ); k ∈ Nm
0 .

Where

∆(ηθk+1 , θ) = ηθk+1 −∆k(θ)−
∫ θ

εk

Q(θ − ε)K(ε, ϑℑ(ε,ϑε), (Ψϑ)(ε))dε,

and

∆k(θ) =

{
−∂Q(θ,ε)

∂ε

∣∣
ε=0

℘(0) +Q(θ, 0)ζ0, if k = 0,

−∂Q(θ,ε)
∂ε

∣∣
ε=εk

Υk(εk, ϑ(θ
−
k )) +Q(θ, εk)Θk(εk, ϑ(θ

−
k )), if k ∈ Nm

1 .
.

Theorem 4.3. Assume (A4)–(A10) hold, the function f is uniformly bounded, and the resolvent
operator {Q(θ, ε)}θ≥ε is compact. Then, (1.1) is approximately controllable on [0, T ].

Proof. According to Theorem 3.3, we know that system (1.1) has at least one mild solution
ξλ ∈ ℶℑ. Then we obtain

ξλ(θk+1) = ∆k(θk+1) +

∫ θk+1

εk

Q(θk+1, ε)
(
K(ε, ϑλℑ(ε,ϑλ

ε )
, (Ψϑλ)(ε)) + Pu(ε)

)
dε

= ∆k(θk+1) +

∫ θk+1

εk

Q(θk+1, ε)
(
K(ε, ϑλℑ(ε,ϑλ

ε )
, (Ψϑλ)(ε))

)
dε

+

∫ θk+1

εk

Q(θk+1, ε)P(P∗Q∗(θk+1, ε)R(λ,Γ
θk+1
εk

)∆(ηθk+1 , θk+1))dε

= ηθk+1 + (Γθk+1
εk

R(λ,Γθk+1
εk

)− I)∆(ηθk+1 , θk+1)

= ηθk+1 + λR(λ,Γθk+1
εk

)∆(ηθk+1 , θk+1).

So

∥ξλ(θk+1)− ηθk+1∥ ≤ ∥R(λ,Γθk+1
εk

)[ηθk+1 −∆k(θk+1]∥

+
∥∥R(λ,Γθk+1

εk
)
[ ∫ θk+1

εk

Q(θk+1, v)K(vλ, ϑℑ(v,ϑλ
v )
, (Ψϑλ)(v))dv

]∥∥.
We infer from the uniform boundedness of K(·, ·, ·) that there exists MK > 0, such that∫ T

0

∥K(ε, ϑλℑ(ε,ϑλ
ε )
, (Ψϑλ)(ε))∥2dε ≤ T (MK)

2.

Therefore, the sequence {K(ε, ϑλℑ(ε,ϑλ
ε )
, (Ψϑλ)(ε))}λ is bounded in L2(∇,H), then there exists

subsequence still denoted by {K(ε, ϑλℑ(ε,ϑλ
ε )
, (Ψϑλ)(ε))}λ that weakly converge to the limit K̃(ε) in
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L2(∇,H). The compactness of (Q(θ, ε))θ≥ε implies that

∥
∫ T

0

Q(θ, ε)
(
K(ε, ϑλℑ(ε,ϑλ

ε )
, (Ψϑλ)(ε))− K̃(ε)

)
dε∥ 0−−−→

λ→0
.

Then we obtain

∥ξλ(θk+1)− ηθk+1∥ ≤ ∥R(λ,Γθk+1
εk

)[ηθk+1 −∆k(θk+1)−Θ(θk+1, ϑθk+1
)]∥

+
∥∥R(λ,Γθk+1

εk
)
[ ∫ θk+1

εk

Q(θk+1, v)
(
K(ε, ϑλℑ(ε,ϑλ

ε )
, (Ψϑλ)(ε))− K̃(ε)

)
dv

]∥∥
+
∥∥R(λ,Γθk+1

εk
)
[ ∫ θk+1

εk

Q(θk+1, v)K̃(ε)dε
]∥∥ −−−→

λ→0
0.

Thus, ξλ(θk+1) → ηθk+1 holds. Therefore, we obtain the approximate controllability of system
(1.1), and the proof is complete. □

Remark 4.4. We can eliminate the uniform boundedness condition on K. From the growth
condition on K and the continuity conditions on ψ1

K and ψ2
K, we can deduce that K is uniformly

bounded on each bounded subset of the space ℶ. This is sufficient to construct a sequence that
converges weakly in L2(∇,H).

5. Existence of optimal controls

In this section, we prove the existence of optimal state-control pairs of the Bolza problem
corresponding to system (1.1). From now, we suppose that Y is a separable reflexive Banach
space from which the controls u take its values. The multifunction ω : ∇ ⇒ 2Y has closed, convex
and bounded values. ω(·) is graph measurable and ω(·) ⊂ B where B is a bounded set of U , the
admissible control set

Yad = {u ∈ L2(∇, B) : u(θ) ∈ ω(θ) a. e.}.

Clearly, Yad ̸= ∅ (see [27]) and Yad ⊆ L2(∇, B) is bounded, closed and convex. Consider the
following optimal controls Bolza problem (BP):

Find an optimal pair (ϑ0, u0) ∈ X ×Yad, such that

I(ϑ0, u0) ≤ I(ϑu, u), for all (ϑu, u) ∈ X ×Yad,
(5.1)

where the cost functional is

I(u) =
∫ T

0

J̃ (ε, ϑuε (ε), ϑ
u(ε), u(ε))dε+ Γ(ϑu(T )),

where ϑu is the mild solution of system (1.1) corresponding to the control u ∈ Yad, and P ∈
L∞(∇, L(Y,H)).

To establish the existence of optimal controls, we impose the following additional assumptions:

(A11) (i1) The functional J̃ : ∇×G×H×Y → R ∪ {∞} is Borel measurable.

(i2) J̃ (θ, ·, ·, ·) is sequentially lower semicontinuous on G×H×Y for almost all θ ∈ ∇.

(i3) J̃ (θ,κ, ϑ, ·) is convex on Y for each κ ∈ G, ϑ ∈ H and almost all θ ∈ ∇.
(i4) There exist constants r0 > 0, r1 ≥ 0, r2 > 0, and ג ∈ L1(∇,R), such that

J̃ (θ,κ, ϑ, u) ≥ (θ)ג + r0∥κ∥G + r1∥ϑ∥+ r2∥u∥2U .

(i5) The function Γ : H → R is continuous and non-negative.

Now, we provide the following result on existence of optimal controls for problem (5.1).

Theorem 5.1. Assume (A11) and the conditions of Theorem 4.3 hold. Then problem (5.1) admits
at least one optimal pair on X ×Yad.
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Proof. If inf{I(u) : u ∈ Yad} = +∞, then there is nothing to verify. Now assume that inf{I(u) :
u ∈ Yad} = ȷ < +∞. Using (A11), we obtain

I(u) ≥
∫ T

0

(ε)ג) + r0∥ϑuε∥+ r1∥ϑu(ε)∥)dε+ r2

∫ T

0

∥u(ε)∥2Y dε+ Γ(ϑu(T )) ≥ −ς > −∞,

where ς > 0 is constant. Hence, ȷ ≥ −ς > −∞. By the definition of infimum there exists a
minimizing sequence of feasible pairs (ϑp, up)p∈N ⊂ Aad such that

I(up) → ȷ as p→ +∞,

where Aad = {(ϑ, u) : ϑ is a mild solution of system (1.1) corresponding to the control u ∈ Yad}.
Since (up)p∈N ⊆ Yad, {up}p∈N is bounded in L2(∇,Y) there exists a subsequence which is still
represented by {up}, and u0 ∈ L2(∇,Y) such that

up → u0 in L2(∇,Y).

Since Yad is closed and convex, by Mazur’s Lemma, we obtain u0 ∈ Yad.
Let ϑp denote the corresponding sequence of solutions of system (1.1) with respect to up and

satisfying the integral equation

ϑp(θ) =



−∂Q(θ,ε)
∂ε

∣∣
ε=0

℘(0) +Q(θ, 0)ζ0

+
∫ θ

0
Q(θ, ε)

(
K(ε, ϑpℑ(ε,ϑp

ε)
, (Ψϑp)(ε)) + Pup(ε)

)
dε, if θ ∈ I0,

−∂Q(θ,ε)
∂ε

∣∣
ε=εk

Υk

(
εk, ϑ

p(θ−k )
)
+Q(θ, εk)Θk(εk, ϑ

p(θ−k ))

+
∫ θ

εk
Q(θ, ε)(K(ε, ϑpℑ(ε,ϑp

ε)
, (Ψϑp)(ε)) + Pup(ε))dε, if θ ∈ Ik, k ∈ Nm

1 ,

Υk(θ, ϑ
p(θ−k )), if θ ∈ Jk, k ∈ Nm

1 ,

℘(θ); if θ ∈ R−.

Let Kp(θ) ≡ K(θ, ϑpℑ(θ,ϑp
θ)
, (Ψϑp)(θ)). Then by (A4), we deduce that Kp is a bounded continuous

operator from ∇ to H. Hence, Kp(·) ∈ L2(∇,H). Furthermore, {Kp(·)} is bounded in L2(∇,H),

and there exists a sub-sequence, relabeled as {Kp(·)}, and K̂(·) ∈ L2(∇,H) such that

Kp(·)
w→ K̂(·) in L2(∇,H).

By Lemma 2.2, we have

N1Kp(·)
ε→ N1K̂(·) in X .

Now, we consider the controlled system

ϑ′′(θ) = Z(θ)ϑ(θ) +

∫ θ

0

Υ(θ, ε)ϑ(ε)dε+ K̂(θ) + Pu0(θ), if θ ∈ Ik, k ∈ Nm
0 ,

ϑ(θ) = Υk(θ, ϑ(θ
−
k )), if θ ∈ Jk, k ∈ Nm

1 ,

ϑ′(θ) = Θk(θ, ϑ(θ
−
k )), if θ ∈ Jk, k ∈ Nm

1 ,

ϑ′(0) = ζ0 ∈ H, ϑ(θ) = ℘(θ), if θ ∈ R−.

(5.2)

By Theorem 3.3, it is clear that system (1.1) has a mild solution

ϑ̂(θ) =



−∂Q(θ,ε)
∂ε

∣∣
ε=0

℘(0) +Q(θ, 0)ζ0 +
∫ θ

0
Q(θ, ε)

(
K̂(ε) + Pu0(ε)

)
dε, if θ ∈ I0,

−∂Q(θ,ε)
∂ε

∣∣
ε=εk

Υk(εk, ϑ̂(θ
−
k )) +Q(θ, εk)Θk(εk, ϑ̂(θ

−
k ))

+
∫ θ

εk
Q(θ, ε)

(
K̂(ε) + Pu0(ε)

)
dε, if θ ∈ Ik, k ∈ Nm

1 ,

Υk(θ, ϑ̂(θ
−
k )), if θ ∈ Jk, k ∈ Nm

1 ,

4pt]℘(θ), if θ ∈ R−.

For each θ ∈ I0, ϑ
p, ϑ̂ ∈ X , we have

∥ϑp(θ)− ϑ̂(θ)∥ ≤
∫ θ

0

∥Q(θ, ε)(Kp(ε)− K̂(ε))∥dε+MQT
1− 1

q

(∫ θ

0

∥(Pup(ε)− Pu0(ε))∥qdε
)1/q

.
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If θ ∈ Ik, we obtain

∥ϑp(θ)− ϑ̂(θ)∥

≤ M̃Q∥Υk(εk, ϑ
p(θ−k ))−Υk(εk, ϑ̂(θ

−
k ))∥+MQ∥Θk(εk, ϑ

p(θ−k ))−Θk(εk, ϑ̂(θ
−
k ))∥

+

∫ θ

εk

∥Q(θ, ε)Kp(ε)−Q(θ, ε)K̂(ε)∥dε

+MQT
1− 1

q

(∫ θ

εk

∥(Pup(ε)− Pu0(ε))∥qdε
)1/q

.

Now for θ ∈ Jk, we have

∥ϑp(θ)− ϑ̂(θ)∥ ≤ L∗
Υk

∥ϑp(θ)− ϑ̂(θ)∥.

We keep in mind that g, K, Υk, and Θk are continuous, and L∗
Υk

∈ (0, 1). By strongly continuity
of P, we have

∥Pup − Pu0∥Lq → 0, as p→ +∞.

Thus

∥ϑp(θ)− ϑ̂(θ)∥ → 0, as p→ +∞.

Furthermore, using (A4) and (A5), we obtain

Kp(·)
ε→ K̂(·, ϑ̂ℑ(·,ϑ̂·)

, (Ψϑ̂)(·)), in X as p→ ∞.

Hence, K̂(θ) = K̂(θ, ϑ̂ℑ(θ,ϑ̂θ)
, (Ψϑ̂)(θ)). Thus, ϑ̂ can be given by

ϑ̂(θ) =



−∂Q(θ,ε)
∂ε

∣∣
ε=0

℘(0) +Q(θ, 0)ζ0 +
∫ θ

0
Q(θ, ε)

(
K̂(ε) + Pu0(ε)

)
dε, if θ ∈ I0,

−∂Q(θ,ε)
∂ε

∣∣
ε=εk

Υk

(
εk, ϑ̂(θ

−
k )

)
+Q(θ, εk)Θk(εk, ϑ̂(θ

−
k )

)
+
∫ θ

εk
Q(θ, ε)Big(K̂(ε) + Pu0(ε)

)
dε, if θ ∈ Ik, k ∈ Nm

1 ,

Υk(θ, ϑ̂(θ
−
k )), if θ ∈ Jk, k ∈ Nm

1 ,

℘(θ), if θ ∈ R−,

which is just a mild solution of system (1.1) corresponding to u0. Since X ↪→ L1(∇,H), using
(A11) and Balder’s Theorem, we conclude that

(ϑθ × ϑ, u) →
∫ T

0

J̃ (ε, ϑε(ε), ϑ(ε), u(ε))dε,

is sequentially lower semicontinuous in the weak topology of L2(∇,H) ⊂ L1(∇,H), therefore, I is
weakly lower semicontinuous on L1(∇,H). Thus

ȷ = lim
p→∞

∫ T

0

J̃ (ε, ϑpε(ε), ϑ
p(ε), u(ε))dε+ Γ(ϑp(T ))

≥
∫ T

0

J̃
(
ε, ϑ̂ε, ϑ̂(ε), u

0(ε)
)
dθ + Γ(ϑ̂(T )) = I(u0) ≥ ȷ.

Which implies that I attains its minimum at (ϑ̂, u0) ∈ X ×Yad. □



EJDE-2025/54 SECOND-ORDER IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS 15

6. An example

In this section, we give an example to illustrate the above theoretical result. Consider the
partial integro-differential system

∂2ζ(θ, x)

∂2θ
=
∂2ζ(θ, x)

∂2x
+

∫ θ

0

Γ(θ − ε)
∂2ζ(ε, x)

∂2x
dε

+

∫ −θ

−∞

e−8ν∥ζ(θ + σ(θ, ζ(θ + ν, x)), x)∥2
155ϵ1

√
π((θ + ν)2 + 2θ + 1)

dν

+

∫ π

0

cosh(θ) sin(π + e−θ2

)(1 + ∥ζ(ε)∥2)
460ϵ2

√
π(1 + 2θ2 + ε2)e11θ

dε+ σ̃(θ)ζ(θ, x)

+ U(θ, x), if θ ∈ I1 ∪ I2 ∪ I3, x ∈ (0, π),

ζ(θ, x) =
1

63
cos(

√
πθ)ζ(θ−, x), if θ ∈ J1 ∪ J2, x ∈ (0, π),

∂ζ(θ, x)

∂θ
=

1

77
sin(

√
πθ)ζ(θ−, x), if θ ∈ J1 ∪ J2, x ∈ (0, π),

ζ(θ, 0) = ζ(θ, 1) = 0, for θ ∈ I,

∂ζ(θ, x)

∂θ

∣∣
θ=0

= ζ1(x), ζ(θ, x) = ℘(θ, x), if θ ∈ R− x ∈ (0, π),

(6.1)

where I = [0, π], k1 = 1
16 , k2 = 1

9 , k3 = 1
8 , k4 = 1

4 , I1 = (0, k1], I2 = (k2, k3], I3 = (k4, π],
J1 = (k1, k2], J2 = (k3, k4], σ : ∇×R → R, U : [0, π]× [0, π] → H, and ϵ1, ϵ2 are positive constants.

We consider the cost function

I(u) =
∫ π

0

∫ π

0

( 1

π

∫ 0

−∞
∥ζ(θ + ν)∥22dν + |ζ(θ, ε)|2 + |u(θ, ε)|2

)
dεdθ +

∫ π

0

|ζ(π, ε)|2dε.

and the Hilbert space

H = Y := L2(0, π) =
{
u : (0, π) → R :

∫ π

0

|u(x)|2dx <∞
}
,

with scalar product ⟨u, v⟩ =
∫ π

0
u(x)v(x)dx, and norm

∥u∥2 =
(∫ π

0

|u(x)|2dx
)1/2

.

We define the control set Yad = {u ∈ L2([0, π]) : ∥u(·, θ)∥2 ≤ ϖ(θ) a.e.}, where ϖ ∈ L2(∇,R+).
On the other hand, let the phase space G be BUC(R−,H), the space of bounded uniformly
continuous functions endowed with the norm

∥ψ∥G = sup
−∞<ν≤0

∥ψ(ν)∥L2 , ψ ∈ G.

It is well known that G satisfies the assumptions (A1) and (A2) withK = 1 and β2(θ) = β3(θ) = 1,

(see [26]). We define the operator Ẑ induced on H as follows:

Ẑκ = κ′′, and D(Z) = {κ ∈ H2(0, π) : κ(0) = κ(π) = 0},

Then Ẑ is the infinitesimal generator of a cosine function of operators (C0(θ))θ∈R on H associated

with sine function (S0(θ))θ∈R. Additionally, Ẑ has discrete spectrum which consists of eigenvalues
−n2 for n ∈ N, with corresponding eigenvectors wn(x) = 1√

2π
einx. The set {wn : n ∈ N} is an

orthonormal basis of H. Applying this idea, we can write

Ẑκ =

∞∑
n=1

−n2⟨κ, wn⟩wn, κ ∈ D(Z)

The cosine family associated with Ẑ is given by (C0(θ))θ∈R is given by

C0(θ)κ =

∞∑
n=1

cos(nθ)⟨κ, wn⟩wn, θ ∈ R,
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and the sine function is given by

S0(θ)κ =

∞∑
n=1

sin(nθ)

n
⟨κ, wn⟩wn, θ ∈ R.

It is immediate from these representations that ∥C0(θ)∥ ≤ 1 and that S0(θ) is compact for all

θ ∈ R. We define Z(θ)κ = Ẑκ + σ̃(θ)κ on D(Z). Clearly, Z(θ) is a closed linear operator.
Therefore, Z(θ) generates (S(θ, ε))(θ,ε)∈∆ such that S(θ, ε) is compact and self-adjoint for all
(θ, ε) ∈ ∆ = {(θ, ε) : 0 ≤ ε ≤ θ ≤ 1}, (see [23]).

We define the operators Λ(θ, ε) : D(Z) ⊂ H 7→ H as follows:

Λ(θ, ε)κ = Γ(θ − ε)Ẑκ, for 0 ≤ ε ≤ θ ≤ 1, κ ∈ D(Z).

Then assumption (A7) holds under more suitable conditions on the operator Γ. Moreover, it is
evident that conditions (1)–(3) of Υ are satisfied, indicating the existence of a resolvent operator
that is compact. More details can be found in [23, 35].

Now let P : Y → H be defined by Pu(θ)(x) = U(θ, x), x ∈ [0, π], u ∈ Y, where U : [0, π]×[0, π] →
H is linear continuous and for ℘ ∈ BUC(R−,H), we put ℑ(θ, ℘)(ζ) = σ(θ, ζ(θ + ν, x)), such that
(A9) holds, and let θ → ℘θ be continuous on R(ℑ−). We put ζ(θ)(x) = ζ(θ, x) and define

K(θ, ϑ1, ϑ2)(x) =

∫ −θ

−∞

e−8ν∥ϑ1(θ + σ(θ, ϑ1(θ + ν, x)), x)∥2
155ϵ1

√
π((θ + ν)2 + 2θ + 1)

dν +
cosh(θ)ϑ2(θ)(x)

4ϵ2e11θ
,

ϑ2(θ)(x) = Ψ(ϑ1)(x) =

∫ π

0

sin(π + e−θ2

)(1 + ∥ϑ1(ε)∥2)
115

√
π(1 + 2θ2 + ε2)

dε,

Υk(θ, ϑ(θ
−
k ))(x) =

1

63
cos(

√
πθ)ϑ(θ−, x),

Θk(θ, ϑ(θ
−
k ))(x) =

1

77
sin(

√
πθ)ϑ(θ−, x).

These definitions allow us to depict the system (6.1) in the abstract form (1.1).
Now, for θ ∈ [0, π], we have

∥K(θ, γ1(θ), γ2(θ))∥2 ≤ 1− e−16π

310ϵ1(θ + 1)2

(1
2
∥γ1∥G4

)
+

1

4ϵ2
cosh(θ)e−11θ(∥γ2(θ)∥2).

So, ψi+1
K (θ) = θ

2−i ; i = 0, 1 are continuous nondecreasing functions, and we have

ξ1 =
1− e−16π

310ϵ1
, ξ2 =

cosh(π)

4ϵ2
.

And for any bounded set Π ⊂ H, and Πθ ∈ G, we obtain

χ(K(θ,Πθ,Ψ(Π(θ)))) ≤ ξ1 sup
ν∈(−∞,0]

χ(Π(ν + θ)) + ξ2χ(Π(θ)).

Now, about g, Υk, and Θk, we obtain

∥g(θ, ε, γ1)− g(θ, ε, γ2)∥2 ≤ 1

115
∥γ1 − γ2∥2,

∥Υk(θ, γ1(θ
−
k ))−Υk(θ, γ2(θ

−
k ))∥2 ≤ 1

63
∥γ1 − γ2∥2,

∥Θk(θ, γ1(θ
−
k ))−Θk(θ, γ2(θ

−
k ))∥2 ≤ 1

77
∥γ1 − γ2∥2.

Furthermore, we have

M̃QLΥk
+MQLΘk

≤ 0, 0289.

And for ϵ1 > 1 + ∥γ1∥G4
, ϵ2 > 1 + ∥γ2∥2, for all γ1 ∈ G4,

gamma2 ∈ H, we obtain

∥K(·, γ1(·), γ2(·))∥2 ≤ 1− e−16π

620
+

cosh(π)

4ϵ2
.
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Thus under appropriate conditions on the operator U the corresponding linear system is approxi-
mately controllable, then all the assumptions of Theorems 4.3 and 5.1 are fulfilled. Consequently,
the problem (6.1) is approximately controllable and has at least one optimal pair.
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