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NON GLOBAL SOLUTIONS FOR NON-RADIAL INHOMOGENEOUS
NONLINEAR SCHRODINGER EQUATIONS

RUOBING BAI, TAREK SAANOUNI

ABSTRACT. This work concerns the inhomogeneous Schrédinger equation

i0pu — K pu+ F(z,u) =0, u(t,z):Rx RY = C.
Here, s € {1,2}, N > 2s and A > —(N — 2)2/4. The linear Schrédinger operator is Ksx =
(A +(2— s)ﬁ, and the focusing source term can be local or non-local

F(z,u) € {|z]7*Tul? "V, 2|7 [ulP 7 (Jo * | - [T ul?)u}.

The Riesz potential is Jo(z) = CN7a|a:\_(N_O‘), for certain 0 < o < N. The singular decaying
term |x| =27, for some 7 > 0 gives an inhomogeneous non-linearity. One considers the inter-
critical regime, namely 1 + w <g<1l+ % and 1+ w <p<l1l+4 %
The purpose is to prove the finite time blow-up of solutions with datum in the energy space, not
necessarily radial or with finite variance. The assumption on the data is expressed in two different
ways. The first one is in the spirit of the potential well method due to Payne-Sattinger. The
second one is the ground state threshold standard condition. The proof is based on Morawetz
estimates and a non-global ordinary differential inequality. This work complements the recent
paper by Bai and Li [4] in many directions.

1. INTRODUCTION

This article concerns the Cauchy problem for an inhomogeneous generalized Hartree equation

07— Koy + fal a2 (T | 7l = 05 (1)
U(O, ) = an ’
and the Cauchy problem for an inhomogeneous Schrodinger equation
10u — K au+ |z| 727 |u|? @Dy = 0;
t AU [z 12

(0, +) = up.

Hereafter, & > s € {1,2} and u = u(t,z) : R x R¥ — C. The linear Schrédinger operator is
denoted by s\ == (—A)* + (2 — s)ﬁ We considered 2 cases: The first one is Ky 1= K1\ =
—A+ ﬁ, which corresponds to Schrédinger equation with inverse square potential. The second

one is Ko ) := A?, which corresponds to fourth-order Schrédinger equation. The inhomogeneous

singular decaying term is |- |77 for some 7 > 0. The Riesz-potential is defined on RY by
F( N;a ) a—N
Ja~—m"| , 0<a<N.
In all this expression, one assumes that
min{r,a, N —a, N — 7,2 — 21 + a} > 0. (1.3)
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Motivated by the sharp Hardy inequality [5],

N —2 2 2
(v —2) / @ 5, < / IV f(2)]? da, (1.4)
4 R RN
one assumes that A > —(N — 2)2/4, which guarantees that extension of —A + ﬁ, denoted by
K is a positive operator. In the range —% <A<l - %, the extension is not unique

[21L [42]. In such a case, one picks the Friedrichs extension [211 [33].
Note that by the definition of the operator ) and Hardy estimate (1.4]), one has

. 1/2
IVE = (19 124 M 02) 7 = 0 (1.5)

||

The nonlinear equations of Schrédinger type and model many physical phenomena.
For s = 1, they are used in nonlinear optical systems with spatially dependent interactions [6].
In particular, when A\ = 0, they can be thought of as modeling inhomogeneities in the medium in
which the wave propagates [24]. When 7 = 0, they model a quantum field equations or black hole
solutions of the Einstein’s equations [2I]. For s = 2, the above equations are called fourth-order
Schrodinger equations. The bi-harmonic Schrodinger problem was considered first in [22] 23] to
take into account the role of small fourth-order dispersion terms in the propagation of intense
laser beams in a bulk medium with a Kerr non-linearity. The source term can be understood as
a nonlinear potential affected by electron density [7].

The literature dealing with and is copious, and naturally some references are missing
here. Let us start with the Schrodinger equation with inverse square potential, which corresponds
to s = 1. Using the energy method, [40, 41] investigated the local well-posedness in the energy
space. Moreover, the local solution extends globally in time if either defocusing case or focusing,
mass-subcritical case. Later on, [9] revisits the same problem, where the authors studied the
local well-posedness and small data global well-posedness in the energy-sub-critical case by using
the standard Strichartz estimates combined with the fixed point argument. See also [2] for the
ground state threshold of global existence versus blow-up dichotomy in the inter-critical regime.
Furthermore, [9] showed a scattering criterion and constructed a wave operator for the inter-
critical case. The well-posedness and blow-up in the energy critical regime were investigated in
[20]. The inhomogeneous generalized Hartree equation was treated first by the author [1], where
the ground state threshold dichotomy was investigated using a sharp adapted Gagliargo-Nirenberg
type estimate. After that, the second author treated the intermediate case in the sense that
is locally well-posed in H'NH%,0< s, < 1, but this does not imply the inter-critical case H®c.
The scattering under the ground state threshold with spherically symmetric data, was proved by
the second author [39]. The scattering was extended to the non-radial regime in [43]. The well-
posedness in the energy-critical regime was investigated recently [26], 25]. To this end, the authors
approach to the matter based on the Sobolev-Lorentz space which can lead to perform a finer
analysis. This is because it makes it possible to control the non-linearity involving the singularity
|z|~™ as well as the Riesz potential more effectively. Now, one deals with the bi-harmonic case,
namely s = 2. For a local source term, in [I7], the local well-posedness was obtained in the energy
sub-critical regime. This result was improved in [3]. The scattering was investigated in [18 10} [14].
For a non-local source term, the local existence of energy solutions and the scattering were proved
by the second author in [34] [36]. See also [37, [38] for the energy-critical regime.

The finite time concentration of energy solutions to non-linear Schrédinger equations has a
long history. Indeed, in the mass-super-critical focusing regime, it is known that an energy data
with finite variance or which is radial gives a blowing up solution for negative energy [16, [30]. A
similar result for non-radial data and with infinite variance is open except for N = 1, see [31].
The results of blow-up in some other situations can be referred to [15, 19, 28] 29] and references
therein. Recently, some works try to remove the radial or finite variance data assumption in the
inhomogeneous case. Indeed, the second author proved in [4] the finite time blow-up of energy
solutions under the ground state threshold in a restricted range of the source term exponent.
In the mass-critical regime, the blow-up of energy solutions with negative energy was obtained
recently [IT].
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The blow-up of energy solutions to bi-harmonic Schrodinger equations was open for a long
time because of the lack of a variance identity. Many authors investigated the blow-up of radial
solutions, since the pioneering work [8] using a localized virial identity for radial datum. See, for
instance [12, 36]. Recently the blow-up for arbitrary datum with negative energy, in the energy
space, was obtained in [13] for a perturbed bi-harmonic NLS. This result don’t extend to for
s=2.

The purpose of this article is to investigate the finite time blow-up of energy solutions to the
Schrédinger problems and . The novelty is to prove the non-global existence of solutions
with arbitrary negative energy datum. Precisely, one don’t require any radial or finite variance
assumption for the datum. In the case s = 1, this work complements the paper of the second
author [] for A # 0 and for a non-local source term. Moreover, one considers a weaker assumption
on the datum. In the case s = 2, this work complements the paper [I3] to the inter-critical regime,
and for a non-local source term. Furthermore, this work gives a natural complement of the paper
[34], where the first author deals with the scattering of the bi-harmonic Schrédinger equation in
the inter-critical focusing regime under the ground state threshold.

The rest of this article is organized as follows. The next section contains the main results and
some useful estimates. Sections 3 and 4 contain the proofs of the main results.

2. BACKGROUND AND MAIN RESULTS
This section contains the main results and some useful estimates.

2.1. Preliminaries. Here and hereafter, one denotes for simplicity some standard Lebesgue and
Sobolev spaces and norms as follows
LT=L"RY), W =W R"Y), H =W>2 |-[.:=lers [|-[l:=1"I-
Let us also define the real numbers
Np—N—a+27

Nq— N +2
B := , A=2p—-B, B := u,
s s

If w € H®, one defines the quantities related to energy solutions of (|1.1)) and ,
Plali= [ ol (e |7l uP do, - Qlul = [ o] fupr da,
RN RN
2 B , B
Ilu] := v/ Ksaull” = %P[U], Tu] := |V Kspull” - TQQM;
1
M= [ @) d, Q)i [zl = TPl
1
E'fu) = ||V/Ksnul® ~ gQ[u}

We denote also the so-called actions

A :=2¢—B.

Slu] := Efu] + Mlul,
S'[u] == E'[u] + M{u]. (2.2)
Take also the real numbers
m = O;éiunest {S[u] : Z[u] = 0}; (2.3)
m' = 07éiunest {S'[u] : Tu] = 0}. (2.4)

Finally, we define the sets, which are non-empty with a scaling argument

A" :={ue H®: S[u] <m:ZIu] <0}, (2.5)

A7 ={ueH*:S8u <m/, Ju] <0}. (2.6)
Then equation (1.1)) has the scaling invariance
2s—274+a

Uy = K 21 u(l-{QS

YK, Kk>0. (2.7
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The critical exponent s. keeps invariant the homogeneous Sobolev norm

)l = #5755 (w2 )| g = 1 (52D g
Two cases are of particular interest in the physical context. The first one s, = 0 corresponds to
the mass-critical case which is equivalent to p = p. := 1 + MTTM This case is related to the
conservation of the mass ./\/l given above. The second one is the energy-critical case s, = s, which
corresponds to p = p° := 1+ 28}\,277;:1 This case is related to the conservation of the energy £

defined above. A partlcular periodic global solution of ((1.1]) takes the form el*p, where ¢ satisfies
Koo+ =[x TIolP 2 (Jax |- [TTleP)p, 0# e H® (2.8)
The equation (1.2) has the scaling invariance

k), k>0, (2.9)

The critical exponent s, keeps invariant the following homogeneous Sobolev norm
(N _s=T —s
et ()| e = 677 (w28 | e = 670 (570 -
Two cases are of particular interest in the physical context. The first one s, = 0 corresponds

to the mass-critical case which is equivalent to ¢ = ¢q. := 1 + % This case is related to the
conservation of the mass. The second one is the energy-critical case s/, = s, which corresponds to

S—T
Uy 1= KT u(k

qg=q°:=1+ 3\‘7 gg This case is related to the conservation of the energy £’ defined above. A
particular periodic global solution of (1.2)) takes the form e'’1), where 1) satisfies
Ko+ = 2| 2T |wP@ Dy, 04 ¢ € H. (2.10)

The existence of such a ground state is related to the next Gagliardo-Nirenberg type inequalities
[36, 35].

Proposition 2.1. Let s € {1,2}, N > 25, 0 < a < N and 1 + & <p < p°. Ifs =1, one

assumes that \ > —(Nfz)z and (1.3) holds. Moreover, if s = 2, one assumes that 0 < 27 <
min{N + o, 4(1 + )} Thus

(1) There exists a sharp constant Cn pr.a.x > 0 such that for all u € H®,
/RN o =Tl (o 5 | [T ul?) de < O [l 2l /K | (2.11)

(2) there exists ¢ a solution to (2.8) satisfying
2p A)B/Q 1

CN,;D,TO( = A <B W, (212)

(3) one has the following Pohozaev identities

Plel = 2 Mlgl = 2l Kanell. (2.13)

The next Gagliardo-Nirenberg type inequality [36, 9] is essential to estimate an eventual solution

to the problem (1.2)).

Proposition 2.2. Let s € {1,2}, N > 2s, A\ > f(NZZ)Z, O0<7T<sandl<q<q®. Thus,
(1) there exists a sharp constant Cn g, x > 0, such that for allv € H®,

/ 2172710l da < O g [l |3/ xell™
RN
(2) there exists ¢ a solution to (2.10) satisfying

2q A" 5 o
LS A (2.14)

C(N,q,7) =
where ¥ is a solution to (2.10));

(3) one has the following Pohozaev identities

Q1] = 2L M) = 2| /Eorvl (215)
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In the inter-critical regime 0 < s. < s, one denotes the positive real number - —1 := a. € (0,1),
© be a ground state of (2.8) and the scale invariant quantities

Up |\ e uQ up [\ @ /|| ]Cs,AUOH
MEluo] = (/\/\//l‘[[wb (gs[m])’ ML) ::(|:I<p|||) (\/\/%soll)

Similarly, in the inter-critical regime 0 < s, < s, one denotes the positive real number 5 —1 :=
al, € (0,1), ¥ be a ground state of (2.10) and the scale invariant quantities

, M) (€'[uo) , ol ¢ 1y Kt
Ml = (Fay) (apr) M9 = () (||%w||>'

In the next sub-section, one lists the contributions of this note.

2.2. Main results. First, one deals with the non-global existence of energy solutions to the
generalized Hartree problem (|1.1J).

Theorem 2.3. Let s € {1,2}, N > 25,0 <a < N, A >0 and 0 < 7 < s such that (L.3)

holds. Suppose that max{2,p.} <p <p® andp <1+ 25*% Take ¢ be a ground state solution

to (2.8) and u € Cp«(H?®) be a maximal solution of the focusing problem (L.1)). Thus, u blows-up
in finite time if one of the following assumptions holds

up € A7, (2.16)

Mg[UQ] >1> Mg[U,o] (217)

In view of the results stated in the above theorem, some comments are in order.

o In [34], the local existence of energy solutions for with s = 2 was proved under the
supplementary assumption 0 < 27 < min{4(1 + %), =N + 8 + a}. Moreover, in [35], the
local existence of energy solutions for with s = 1 was proved under the supplementary
assumption 1 +a — 27 > 0.

e The space A~ is proved to be stable under the flow of .

The first part of the Theorem follows the potential well theory due to Payne-Sattinger

[32].

The assumption on the source term exponent, can be written as 2 < B <2+ .

The slab (pc, 1+ 2:£2=7] has a length of %, which is independent of s.

The restriction A > 0 is needed in the proof.

The above result doesn’t extend to the limiting case 7 = 0, which is still an open problem.

This gives an essential difference between the NLS and the INLS.

e In a paper in progress, the authors treat the finite time blow-up of energy solutions in the
mass-critical bi-harmonic regime.

Second, one deals with the non-global existence of energy solutions to the Schrédinger problem
)

Theorem 2.4. Let s € {1,2}, N > 25, A > 0 and 0 < 7 < 2. Assume that g. < q < ¢° and

g <1+ MN(S_I) Take ¢ be a ground state solution to (2.10) and u € Cp«(H?®) be a mazimal

solution of the focusing problem (1.2). Thus, u blows-up in finite time if one of the following
assumptions holds

up € A, (2.18)

Mg/[UO] >1> ME/[U()] (219)

In view of the results stated in the above theorem, some comments are in order.

e In [9, [40], the local existence of energy solutions to for s = 1 was proved under the
supplementary assumption 7 < 1. In [9, 40, [I7], the local existence of energy solutions to
for s = 2 was proved under the supplementary assumption ¢ > 1 + 12T.

e Assumption is used to prove that is stable under the flow of

e In [4], the first author proved the finite time blow-up of energy solutions for (1.2 for s = 1
and A\ = 0 under the assumption .
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2.3. Useful estimates. In this sub-section, one gives some standard tools needed in the sequel.
Let us start with Hardy-Littlewood-Sobolev inequality [27].

Lemma 2.5. Let N > 1 and 0 < o« < N.
(1) Letr > 1 such that £ =1 4+ & Then,

[Ja * glls < Cns,allgllr, Vg€ L
(2) Let1 < s,7 < oo be such that + +1 =1+ &. Then
1f(Jax9)lle < Cnsallfllrllglls,  V(fig) € L7 x L.

Let ¢ : RN — R be a convex smooth function. We define the variance potential
Veim [ @lut.o) da. (220)
RN
and the Morawetz action
My = 2%/ a(VE - Vu)dx = 2%/ a(&uy) de, (2.21)
RN RN

where here and sequel, repeated indices are summed. Let us give a Morawetz type estimate for
the Schrodinger equation with inverse square potential [2].

Proposition 2.6. Take u,v € Cp-(H?') be the local solutions to and . for s =1,
respectively. Let € : RV — R be a smooth function. Then, the followmg equalzty holds on [0, T*)

V' [u] = M¢[u]

2
=4 010kER (O udjwr) dac—/ A2f|u|2dx—|—4)\/ Ve xﬂdm

]RN |z[*

+ 2(5 -1 /N ATl (Jax |- [T uf?) do + 2 /]RN VE V(|| )l (Jo x| - |77 |ulP) da

4 -
2@ N) [ el Ve ) da
Moreover,

i

V{'[v] = M¢[v] = 4 0,0k ER(OKvOyv) dr — / A¢|w)? da + 4)\/ V¢ - xW dzx
RN RN RN

1 2
+2<f—1>/ Aem\—?ﬂv\%dwf/ VE- V(|27 |of* da.
q RN q Jr¥

Finally, one gives a Morawetz estimate for the bi-harmonic Schrédinger equation [34].

Proposition 2.7. Take u,v € Cp«(H?) be the local solutions to and . 11.2) for s = 2,
respectively. Let € : RN — R be a smooth function. Then, the followmg equalztzes hold on [0,T%),

1
Mé[u] = -2 /RN (28jkA£8ju8kﬂ — §(A3§)|U|2 — 48jk§8iku8ijﬂ + A2§|Vu|2> dr
2 —T —T
2= 2) [ AU ol Tl o (2.22)
D JrN
2 —T —T
=2 [ ugou(al Vx| [Tl ).
P JrN
1
Mé[v] = 72/ (28jkA§6jv8kz7 — *(A3£)|’U|2 — 48jk§6ikvaij17
(2.23)
+ A%|Vol? + . 1= (A8 a2 o] - *Vif : V(IJSI*QT)\UIQ']) dx
The next radial identities will be useful in the sequel.

82 L - 6lk LT iL’l.’Ek 2
Srn = 0k = (7 - T—S)ar Tk g2, (2.24)
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A=00*+ ?ar, (2.25)

V= %ar. (2.26)
In the rest of this note, one takes a smooth radial function &(x) := £(]x|) such that
r2 f0<r<I,;
Eir— .
0, ifr>10.
So, on the unit ball of RY, one has
gij = 25ij7 Af = 2N, 8”5 =0 for |’7| > 3.
Now, for R > 0, via (2.21]), one takes
€p = 325(%) and Mp = Mg,.
By [13| Lemma 2.1], one can impose that
§r o en Sk
max{ " —2,&p — " } <. (2.27)

From now one hides the time variable ¢ for simplicity, displaying it out only when necessary. More-
over, one denotes the centered ball of RY with radius R > 0 and its complementary, respectively
by B(R) and B°(R). In what follows, one proves the main results of this note.
3. SCHRODINGER EQUATION WITH NON-LOCAL SOURCE TERM
In this section, we establish Theorem [2:3]

3.1. Schrodinger equation with inverse square potential. In this sub-section, one takes
s=1.

First case. Assume that (2.16)) holds. We start with the next auxiliary result.
Lemma 3.1. (1) The set A~ is stable under the flow of (1.1)).
(2) There exists € > 0, such that for any t € [0,T%),
B
Tlu@®)] + ellVExu@®)* < = (m = Slu®)])- (3.1)

Proof. (1) Assume that ug € A~ and that there is 0 < tg < T™ such that u(tg) ¢ A~. This
implies that Z[u(tg)] > 0 and by a continuity argument, there is 0 < ¢; such that Z[u(¢;)] = 0 and
S[u(t1)] < m. This contradicts the definition of m and proves the first point of Lemma[3.1]

(2) Now, taking the scaling u, := pZu(p-) for p> 0, we compute

ol = llull; (3.2)
VK|l = pllv/Knull; (3-3)
Plu,) = pPPlul. (3.4)

Moreover, take the real function F : p — S[u,], we obtain F (p) = p?||vVKaul|? + ||ul|® — %P[u]

and the first derivative reads
B-1

F'(p) = 20 Vsul? — BE—Plu] = 297 Zlu, . (3.5)
Hence, this implies
B
oF () = 20|/ Rul* = BE-Plu] = 2Z[u, . (3.6)

Moreover, since B > 2, we obtain

B—1
(0" (9) = dplly/ Kl = B2——Plu] = BF () ~ 2(B — 2ollv/Kul> < BE (). (37)
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Now, we claim that there exists pg € (0,1) such that
T[up,] = 0. (3.8)
Indeed, by (3.3]) and (3.4)), we have

B—2
Zluy) = o* (IVKul* - %PM) = p*R(p). (3.9)

Note that R(0) > 0 and R(1) = Z[u] < 0, thus there exists py € (0,
the claim is proved. Thus, by (3.5), we have F'(pg) = 0 and F (po) =

integration of on [po, 1] gives
F'(1) = pof'(po) < BF (1) — BF (po).

Note that F'(1) = 2Z[ul, poF'(po) = 2Z[u,,] = 0, and F (1) = S[u], the above inequality further
implies

1) such that N(pg) = 0,
Slup,] > m. Hence, an

B
Tlu] < —E(m — S[u]). (3.10)
On the other hand, we write
B 2
IV Kaul?> = m(s[u] - EI[U] — [lul?). (3.11)
Hence, by ([3.10)), there exists 0 < e < 1, such that
2e
2 _ _ 2
Tlu) + e/l = (1= 5 Thu) + 2 (STe] — )
B 2e
<_B(_ _ . 3.12
< -5 (1= 5=5) (m = Slul) + e~ Slu] (3.12)
B
< = (m—S))
The last statement of Lemma [3.1]is proved by (3.12)). O

Now we turn to the proof of the main results. Taking into account Proposition [2.6] one has
Mp, = (L) + (N), where

2
(L) = —/ A2¢g|u)? dx + 4/ 0,0kERN(Opud,u) da + 4N Vég - xM dx,
RN RN

RN ||

and

(V) =2C =) [ Aalal 7l o+ |- | hup) do

4t —7— -7

- — x - VEg|| 2|u\p(Ja*| . |u|p) dx
P N

4@ N) [ ol V(e < | ) do
P RN |- ?

= (N)1+ (N)2 + (N)s.
For the term (L), with the properties of {g, namely (2.27)) and the radial identities, it follows that

/ " !
(L) = —/ A2§R|u|2dx+4/ |Vu|2§—R dx+4/ |z - Vul|* (£ — E—R)dgc
RN RN T RN 7"2 7”3
ul?,,
+4X . —atrdr (3.13)

2
< —/ A2§R|u|2dx+8/ |Vu|2dm+8>\/ ‘“—Ldm.
RN N T

R RN
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For the terms (N); and (N)z in (N), taking account of the truncation function properties and the

conservation laws, one has
AN — 47 r .
(V)1 4 (V)2 = 2L 2Nl + O( [ fal T lul? (o] 7Jul?) d).
p Be¢(R)

For the third term (N)3 in (N), with the calculations done in [34], one has

4(a— N . _r
(W), = =) / Ja( — )y ()2 fu(z) P dx dy

p B(R)xB(R)

$O( [ (arn |7l s )

B¢(R)
4(ax — N
_ =N [ el ol ) s (3.14)

p B(R)

$O( [ (a1l el )
°(R)
4(a— N . .,
_4a=-N) )P[u] +0(/ (Jo x| - 177 [ul?) 2] IUI”dx)
p “(R)
Collecting the above estimates, one obtains
4B
(N) = = =Pl +0(/
Hence, by (3.13)) and (3.15]), one has
/ 2 2 2 \U|2 4B
Mp < — A“ERlu|®dx + 8 [Vul® + 8\ dx — —P[u]
RN RN RN p
+ 0(/ \x|77|u|p(Ja |- |7 ul?) da) (3.16)
C(R
<8(IVEal? = 3 Plul) + O( [ ol Tlul? (o x| Tul?) di) + O(R )
Be(R)

Now, with Lemma[2.5] the Holder and Gagliardo-Nirenberg inequalities via the mass conservation,
one writes

(Jo 5| - rf|u|p)|x|*f|u\pdx). (3.15)
“(R)

=T\, |P =T P < =T, |P =T, |P
/C(R) ol 7T ul? (o |- 77 ul?) do S (1277 (Pl an (2]l ‘L(¥2+NN(BC(R))
< R7||u z| 77 |ulP N
[l 251’3 [1EI I | (3.17)
< —r p* (p— 1) e —a —r p
S R [Juoll V)™ ]~ ]|l 2
N(p— 1) o

SRV

i
™" P 2y, -

Now, using Proposition with 2% instead of 27 and jiv}\), instead of 2¢, via the fact that

0 <7 <14 % and p < p° one has
[ 2] ™7 |ufP[] 25 = (/ |~ AFF || wE R di’?)
a+N RN

S ||uo||p*<”“’3”*"‘“>||wciun ”“’é”*‘*ﬂ
Thus, recall that B = Np— N —a + 27, by (3.16) via ) and (L.5]), one obtains for large R>>1,

a+N
2N

(3.18)

M}y < CT[u +—||\/ u|BT+— (3.19)

Since Z[u] < 0, by Gagliardo-Nirenberg estimate in Proposition via the mass conservation

law, one has
IVEull® < Plu] S IV Eul P ul =7 S 1V EulP. (3.20)
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Thus, by B > 2, there exists Cp > 0 such that for any ¢ € [0,7%),

[V Exu(®)]| = Co. (3.21)
Hence, (3.1) and (3.19)-(3.12)) give for 2 < B <247 and R>> 1,
Mpu] SIul+ R 2+ R7|VKul|P~7

< —IVEull® + B2+ R7T |V Kyul| P77

S VBl (=14 B2 + B[ V/Kul 7277 2
< —IIVEsul.
Time integration, , and imply that
Mpu(t)] S —t, t>T>0. (3.23)

By time integration again, from (3.22), it follows that

Mp|u( / vV Kau(s)|? ds. (3.24)
Now, the definition ([2.21)) via (1.5) gives

| Mg| = 2I%/ w(VEr - Vu) de| S R[|Vull[lull T Bl vExull. (3.25)
RN

Thus, by (3.23)), (3.24) and (3.25)), it follows that

/||\/ zu(s)||?ds < |Mg[u@®)]] < RIVKxu(t)||, Vt>T. (3.26)

Take the real function f(t) fT VK u(s)|?. By (3.26] -, one obtains f2 < f’. This ODI has no
global solution. Indeed, for T "> T > t, an integration gives

t /!
fi(s) go 1 1

7 f2(s) fay  f@) Iy
This implies 7" + ﬁ This completes the proof.

t-T' %

Second case. Assume that (2.17)) holds. Taking account of the previous sub-section, it is sufficient
to prove the next result.

Lemma 3.2. There exist C > 0 and € > 0, such that for any t € [0,T*), the following statements
hold:

Tu(t)] < =C <0,

and

)] + el VEau®)]? < (3.27)

Proof. (1) Define the quantity C := MHUHA Then, by Proposition one writes

F(IVEu®)?) = [VExu@)I* = ClVEvu(®)]|” < Elug), on [0,T7). (3.28)

Now, since B > 2, the above real function has a maximum

2 \ 53 2\ 53 2
Fla.):= FKCB) }_(073) (1_5)'
Moreover, thanks to Pohozaev identities (2.13]) and the condition (2.17)), it follows that

B-2

Eluo] < =~ (Mug]) "™ (M) . (3.29)
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In addition, by (2.12)), one obtains

Fen= ()" (1-5)

= (= M) Ml ) 7 (1 2)

. B ) . (3.30)
— _A _ B—2
= == ((Muo)~# (M) ™)
B -2 —a. L
= A (M [UOD (M [@])

Relations ([3.29)) and (3.30)) imply that Eug] < F(x1). By the previous inequality and (3.28)), one
has

(H\/ R ) < Elug] < Fla1). (3.31)
Direct calculations show that

B 7a(,
T = Z(M[SD]) e (M[UO]) )

Now, via (2.13)), the inequality (2.17) reads
B M(ep] e
VE\uol? > =M ( ) = .
” )\u0|| A [4,0] M[Uo] T1
Thus, the continuity in time with (3.31] - gives

IV u(t)|? > 21, Ytel[0,TF).
Then, by (2.13)), it follows that

MG[u(®)] > 1, on [0,T7). (3.32)
Thus, by the Pohozaev identity BE[p] = (B — 2)|[v/Kxep||?, it follows that

Tl M = (Il - ;%P[u])w[unac

= DM ~ (5~ DlIVErul M
< 2 (- ERIMIAI™ ~ (3 ~ DIVEIP M

< (5 - DIVEePIM

The proof of the first point is complete.
(2) Assume that (3.27)) fails, then there exists a time sequence {¢,} C [0,7*) such that

sn(— = D[VEau(tn)|* < I[u(t,)] <0, (3.33)

where €,, — 0 and n — co. Moreover, note that
2Z[u(t,)] = BE[u(t,)] — (B — 2) |V Kxults)|*.

Hence, (3.33) implies that

(1—en)(1- ) IV IEKau(tn)||? < Efuo). (3.34)
Hence, by (2.13)), (2.17)), (3.32) and (3.34)), we obtain

Eug) Mug)*e > en)(1— )||\/ Au(tn)|| 2P M [ug)®
&) (1= ) IVErel Mig (3.35)

> (1 — en)ElpIMp] .
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Taking n — oo in (3.35)), yields

Eluo] Muo]™ = E[p] M ] ™. (3.36)
The proof of the second statement (3.27)) is achieved by the contradiction of (3.36)) with ME[ug] <
1in (2.17). Hence, this lemma is established. O
3.2. Bi-harmonic case. In this sub-section, one assumes that s = 2.
First case. Assume that (2.16)) holds. We start with the next auxiliary result.
Lemma 3.3. (1) The set A~ is stable under the flow of (1.1)).
(2) There exists € > 0, such that for any t € [0,T%)
B
Tlu(®)] + el Au@)|* < == (m = S[u(®)]). (3.37)
Proof. (1) The proof follows a similar approach to the first point in Lemma
(2) Now, taking the scaling u, := p%u(p-) for p > 0, we compute
ol = [lull; (3.38)
1wl = p?|| Aull; (3.39)
Plu,) = p*PP[u]. 3.40)

2B

Moreover, taking the real function T : p — S[u,], we obtain T(p) = p*||Aul|* + ||ul|* — £—P[u]

p
and the first derivative reads
281

Y (p) = 4p°||Aul|® — 2B Plu] = 4p~ ' ZI[u,)]. (3.41)
This implies
4 2 p*?
pY(p) = 49| AulP 2B —Plu] = 4Tfu, | (3.42)
Moreover, since B > 2, we obtain
TRNY 3 2 Y
(5T (9) = 166" Al - 4522 —Plu
= 2BT(p) ~ 8(B — 2)p° | Au? (343)
< 2BY'(p).
Now, we claim that there exists pg € (0,1) such that
T[u,,] = 0. (3.44)
Indeed, by (3.39) and (3.40)), we have
2(B—2)
_ 4 2 P A
Tlug] = p* (180l ~ P —Plu]) 1= p*S(p). (3.45)

Note that Z(0) > 0 and Z(1) = Z[u] < 0. Then there exists py € (0,1) such that Z(pg) = 0,
the claim is proved. Hence, by (3.41), we have Y'(pg) = 0 and Y(py) = S[u,,] > m. Hence, an
integration of (3.43]) on [pg, 1] gives
T'(1) — poX'(po) < 2BY(1) — 2BY(po).
Note that Y'(1) = 4Z[u], po Y’ (po) = 4Z[u(po)] = 0, and Y (1) = S[u], the above inequality further
implies
B

Tlu] < fg(m — S[u]). (3.46)

On the other hand, we write

1Aulf* = 5= (S[u] = ZZlu] = [ull?)- (3.47)
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Hence, by (3.46]), we have that there exists 0 < £ < 1, such that

B 2
— (STl — [lull?)

Tl + <l Au? = (1~ 2 )Zh] +

B -2 B
B 2e B
<-2(1- )(m - 3.48
<5 (1= 5=5) (m = Slu) + =Sl (3.48)
B
< *Z(m - S[u])
The last statement of Lemma [3.3[is proved by (3.48). O
Now we turn to the proof of the main results. Using the estimate |V¢g| s < R2~171, one has
|/ A2 |Vuf? da] + |/ 04 A pd;udy di| < R™%|Vul; (3.49)
RN RN
| / (D3¢ [uf? de| < R, (3.50)
RN

Using estimates (3.49)) and (3.50]) via Morawetz identity (2.22)), one obtains
4
My =" [ Ouwdn (o[ Tal?) el P do + O 4 [FulPO(R2)
R
2 —T —T
AN =2y [ (Tl el T de (3.51)
P JB(R)

2
- 2((1 - f)/ AR (o | |77 |ul?) 2|~ ul? da — 4/ ajkgRaikuaijadz).
P JBe(R) RN

Denoting the partial derivative %u := u;, one obtains via (2.24]),
5. .
/ 0;k€rOiku0;jude = / [(]—k xjxk)ﬁ Er+ %x: 3353} Oikul;ju dz
RN RN

el af? ]

§ oV - (3.52)
2UrGQR xZ - ul _Yr R
_Z/ V| dx +Z/ S 02¢p |z|)d:v.
From (3.51) and (3.52), via the equality Zi:l [Vui||? = [|Aul|?, it follows that
4 _ _ _ B
My =2 [ 0uadk[(Jo x| | ap)lal P da + O(R™) + [ VulPO(R™)
RN
2
+16\|Au||274N(177)/ (o |- |77 ulP) 2]~ P de
P JB(R)
2
2= 2) [ A Tl ol Tl
p °(R)
N
af |£U vuz a’ré-R
+8 / Vu,|? 2) dx + / (92¢ dx).
(5[ R
Then, gives
4
My < [ Oundn (177 al?) ol da R R 4 |Vl
RN
2 —T —T
#1608l = AN =) [ (]l ]l da (3.53)
P JB(R)
2
202y [ (e | )l
P JBe(R)

Take the quantity
Ayi= [ oundn (]|l 7 ul? o
RN
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—(a— N Tk TP )2 P d
(=) [ V(g |- |7l lal 7 fup o

ng * T —T -7
-7 HE (Jo s |- 77 [ufP) 2] 7T ul dz

= (a—N)-(I) — 7 (II).

In the same way as (3.14)), one has
(1) = / Jo@ = ylyl ™ fu() | |27 [u(2)|” dz dy
B(R)xB(R)
SO( [ e )l )
Be(R)
= [ G e @ e+ O( [ (a7l ul? ).
B(R) Be(R)

From the properties of {i, one writes

(11) :2/ (Ja|- |—T|u|p)|x|—f|u|de+o(/ (o 177 ) ]l ).
B(R)

Be(

Thus,

N —«
2

SO( [ (el )l ).
Be(R)

) /B oy Vet L) ol o) o

Further, (3.53) implies that

M}, < 2(8/ |Auf?dz — 2N (1 — g)/ (Jo 5| - |*T\u|1’)\x|*f|u|?dw)
RN P Jrwy

4
+-(A) +eR (R + ||Vu||2)+0(/ (o |+ |77 ul?) ] ] d
p Be(R)

:2(8/ |Au|2da:f2N(1—g)/ (Ja*|.|*T\u|p)\x|*f|u|fjda;)
RN P Jrwy

8 N —« ., _r
t o= —5) / (Ja* |- |77 |ufP) 2] T u(2) P dx
p RN

(3.54)

+0(R*2)+0(/ (Ja x| |*T\u|p)\x|*f|u|wx)

B*(R)

= 16Z[u] + cR™*(R™? + || Vul]?) + O(/ (Jo* | |77 ufP) 2]~ ul? dx).
Be(R)

Since 0 < 7 < 5(1 + %), using the Gagliardo-Nirenberg estimate in Proposition via the mass
conservation, one writes

r _ 2Ny 2Np Sha
Nl |z = ([ |75l FF do)
[ a+N RN
5 Hu||p_(Np7N4;a+2T)||AuH NP7N470+2T (355)

Np—N—a+2T

S [Aul s
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Now, by the same way as in (3.17)), one obtains

/ (Jo o [ 177 ul?) 2] ful? dz S |27l || 2o (el ™7uP|l 2
B°(R) ot LetN (B¢(R))

< -7 p —T,P
S P E g P (3.56)

p—N—a+27

< R Au| T A TS

p—N—oa+7

< RT||Au) T

where w = B —Z € (0,2]. Thus, by the interpolation ||Vu||? < ||Aul|||u|| and Young’s

estimate via (3.54]) and (3.56]) one obtains
Mp ST+ R Au||P~2 + R72||Au|® + R2. (3.57)

Since Z[u] < 0, by Gagliardo-Nirenberg estimate in Proposition [2.1] via the mass conservation law,
one has

1Aul® S Plul S |Aul|P[lul?*~F < [|Aul.
Thus, B > 2 implies that there exists Cy > 0 such that for any ¢t € [0,T*),
[Au(t)]] > Ci. (3.58)
Further, (3.37), (3.57) and (3.58), for 2 < B <2+ 5 and R > 1, give

Mp S Iul+ R 4 R7?||Au|? + R77[|Aul|P~ 2
< —||Au|?> + R72 4+ R72||Aul]®> + R77||Au||P~2

- i 3.59
S IAul( =14+ B2+ R Au|B-27F) (359
< —ll Al
By time integration, (3.58) and (3.59) imply that
Mgu®)] S —t, t>T>0. (3.60)
By time integration again, from (3.59)), it follows that
¢
Mgu(®)] < f/ |Au(s)||*ds, Vt>T. (3.61)
T
Now, the definition ([2.21)) and an interpolation argument give
|Mglu]| = 2|3/ a(Vér - Vu) dz| S R||Vull|u] S R Au]'/2. (3.62)
RN
So, by (3.60), (3.61)) and (3.62)), it follows that
t
/ 1Au(s)[*ds S [Melu(D)]] S R|Au@)|V2, vt >T. (3.63)
T

Take the real function f(t) := f;, |Au(s)]|?. By (3.63), one obtains f* < f’. Like previously, this
ODI has no global solution. This completes the proof.

Second case. Assume that (2.17)) holds. It is sufficient to prove the next intermediate result.

Lemma 3.4. There exist C > 0 and € > 0, such that for any t € [0,T*), the following statements
hold:

Tlu(t)] < —=C <0,
T[u] + || Aul|* < 0. (3.64)
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Proof. (1) Define the quantity C := %Hu”“1 Then, by Proposition one writes

F([Au®)]?) = [Au®)]]* - CllAut)||” < Euo], on [0,T7). (3.65)
Now, since p > p. gives B > 2, the above real function F’ has a maximum

2 32—2 2 B2—2 2
= _— = J— 1 _ 7) .
Flay) FKCB) } (CB) ( B
Moreover, thanks to Pohozaev identities (2.13]) and condition (2.17)), it follows that

B—-2 —Qe 2/Sc
Eluo] < === (Mluo) (M) (3.66)
In addition, by (2.12)) and the equality s. = %, one obtains

ro= ()0 3) |

= (<§>1*?(M[w])ﬂ(M[uoD*A/?)m (1- %)
% (Mol 472 (Mg e
= P2 (Mug)) ™ (M1
Relations (3.66) and imply that E[ug] < F(z1). By the previous inequality and , one
has

(3.67)

F(|Au@®)]?) < lug] < F(n). (3.68)
Direct calculations show that
B 2/sc — Qe
21 = = (M) (Mluo) .

Now, the inequality (2.17) reads via (2.13)),
B M Qe
g2 > & Mg (AN =,

Thus, the continuity in time with (3.68]) give
|Au(t)|]? > x1, Vte€[0,TF).
Further, one has
MGlu(t)] > 1, forallte[0,T7). (3.69)

Now, by Pohozaev identity (2.13)), one has BE[p] = (B — 2)||Ap||%. So, it follows that for some
0<v<l,

Tlu) M = (llAu]? - %PM) Miu]]

2 el M ~ (5 — Dl AulP (M)

2
< 2 ERIMIAI™ - (5 — DIl Al Mg

B [e%
< -5 - D[ Ap|P[M[g]]*.
The proof of the first point is complete.
(2) Assume that (3.64]) fails, then there exists a time sequence {t,} C [0,7*), such that
B

—en(y ~ DlIAu(t) P < Tiulta)] <0, (3.70)

where ¢,, — 0 as n — 0o. Moreover, note that

2ZT[u(ty)] = BE[u(tn)] — (B — 2)l| Au(t, )|
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Hence, (3.70) implies that

17

(1—en)(1- %) [ Au(t,)||? < E[uo). (3.71)
Further, by [2.13), 2.17), (3.69) and (3.71]), we obtain
Eluo] M[uo]*® en)(1 - *)IIAu o) [P M{uo) ™
) (1= 2) I8¢ P Mgl (372

> (1 — en)E [P M) .
Taking n — oo in (3.72), we obtain

Eluo]Mluo]™ = E[p] M([ip]*. (3.73)
The proof of (3.37) is achieved by the contradiction of (3.73)) with (2.17). Hence, this lemma is

established.

4. SCHRODINGER EQUATION WITH LOCAL SOURCE TERM

In this section, we establish Theorem

O

4.1. Schrédinger equation with inverse square potential. In this subsection, we take s = 1.

First case. One keeps previous notation and assume that (2.18)) holds. We start with the next

auxiliary result which can be proved arguing as in Lemma [3.1}

Lemma 4.1. (1) The set A'™ is stable under the flow of (L.2).
(2) There exists € > 0, such that for any t € [0,T%),

!

+a||fu WP <=2 ('~ STu(t)]). (1.1)

Pr0p051t10nv1a and gives

Mifu] :4/RN {(‘i’“_%)a Ent W”’“aZgR] R(Opudy ) dx—/ A2 pluf? dz

T
|ul? 2 N-1 —27, 12
[ otns |3dx+2(5—1) (@6n + L0, Er)la| 7l da
RN
_Ar [ ke |27 |u)? da
q RN T
2 2
:4/ [(‘VM [ Vu| )85 —|—L vyl 62§ dx—/ A2¢gul? de
RN r ’l"
|u|2 / 2 21\ 0iéR —271,.12q
+ | atnrs |3d:c+2(f N (02¢n+ (W 1+q71)7)\m| |2 d.

Now, noting that A > 0, by (1.5)) and ( , one obtains
Vul? Vul|? Vu
A%M—MM=4/[01” ” Yo+ T o] o
RN

T T
_/ A2§R|u|2dx+4)\/ onenL 4 — 8| /rul?
RN RN |23
-1 2 15) B’
_ QL/ (672.534— (N -1+ T ) R _ 2 >|a:|727|u|2q dx
q RN q—1" r -1

) 2
< 4/ w(@%@ - @) dz —/ AZep|u)? do
T RN

RN T
—1 2 B’
_ L/ (63.€R+(N—1+ T Okr
q RN -

)

Tl 1)|x|*27|u|2q de.



18 R. BAI, T. SAANOUNI EJDE-2025/55

Using the estimate |[V7¢g| < R2~1! via the mass conservation law, one has
|/ A%¢glul® dz| S R2. (4.2)
RN
Moreover, one decomposes the above quantity as follows
- Vul? Or
Mp[u] — 87 [u] < 4/ u(aﬁgR - ﬁ) da — / A2¢g|uf? do
r RN

RN 7"2
217 Op€R

—1) r

q—1 2 B —27), 12
—9 N-1 2 Ty (4.3
[ (o v -1 el e (43)
-1
=—(A1) - QQT - (Az).

By the properties of &g,

27 O» B’
T )OEr =0, for B(R).
qg—1" r qg—1
Thus, by the Gagliardo-Nirenberg estimate via the mass conservation law, (2.27)) and (1.5]), one
obtains

ep+ (N —1+

27 \0&n _, B’

)

-1 r q—1

()= [ (OBen+ (N -1+ Il =27 uf o
B¢(R) q

< p—27 2q
SR [ Juprs (4.4
S R—27—|| /K:/\uHB’—2-r||u||2q—B’+2¢

g R—2-r|| /’C)\UHB/_%—.

Since J[u] < 0, by the Gagliardo-Nirenberg estimate in Proposition [2.2] via the mass conservation
law, one has

IVEwul? S /RN o~ u*? da S [/ Eoxal| a5 < [V Kxull
Thus, B’ > 2 implies that there is Cy > 0 such that for ¢ € [0, T%),
IVExu(t)]| > Cs. (4.5)
Thus, — and give for 2< B’ <2427 and R> 1,
Mplu] S Tlu] + R+ R ||/ K| =2
S —IVEwul® + R+ R |V K| 7=

, (4.6)
S IVl (= 1+ B2 4 R727)|y/Kyu|#~277)
< — VKl
By time integration, (4.5)), and (4.6 imply that
Mgu®)] < —t, t>T>0. (4.7)
By time integration again, from (4.6) and (4.7)), it follows that
t
Malu(t)] S - [ IVExu(s)|P ds. (45)
T
Now, the definition (2.21) via the mass conservation law gives
[Mg[ul| = 2|3/N u(VEr - Vu)dz| S R||Vullllu] < R[[Vull. (4.9)
R

By (4.7), (4.8) and (4.9), it follows that
t
[ IV u(@) ds £ [Mafu(o)]| £ BIVEul, v > 1. (4.10)
T
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Take the real function f(t) fT IvVExu(s)||?>. By (.10} -, one obtains f2 < f’. Like previously,
this ODI has no global solutlon This completes the proof.

Second case. The proof is similar to the previous section.
4.2. Bi-harmonic case. In this sub-section, one assumes that s = 2.

First case. Assume that (2.18]) holds. We start with the next auxiliary result which can be proved
arguing as in Lemma [3.3]

Lemma 4.2. (1) The set A’ is stable under the flow of (1.2).
(2) There exists € > 0, such that for any t € [0,T%),

B/
T[w®)] + el Aut)|* < == (m' = S'u(®))- (4.11)
Using the estimates (3.49)) and (3.50|) via Morawetz identity (2.23]), one obtains

1
—Mll% =2 /]RN (28jkA§R6ju6kﬂ — §(A353>|u‘2 - 48jk§R8iku8ija

_1 o 1 Y
+ A% |Vul® + qT(AgR)\x| T~ Ven V(] )Juf*") dz

8B’ (4.12)
-2 / =27 20 da:—S/ & rduudy i de + O(R™) + | Vul20(R™?)
B(R) RN
2
+ 2— / (AER) |22 |ul? do — / Vér - V(2|72 |ul* da.
qd JB<(R)
Thus, by (3.52] , one writes
8B’ 2
My =P [ et =2 [ en (el e
4 JB(R) q JB¢(R)
-1
+20— (A&r)|z| T uf*? dz + O(R™) + [|Vul[PO(R™?)
q B<¢(R)
7‘ l 67'
8B’ —2r |2 4 2 2
=—-16Ju] — || =T |u|*? dx + O(R™?) + ||Vu||*O(R™7)
4 JBe(R)
2 —27\ [, (2 q—1 —27, 12
- = Vér - V(|| ™) |ul*Tdx + 2—— (A&R)|x| =T |ul*? dx
4 JBe(R) q B<¢(R)
N
0,& \x Vuz| O-€R
—8( / |V, |2 %R — dac).
2 Jo VT \x|2 ER
Then, by an interpolation argument and Young estimate, gives
M, < Tlu) + 0(/ || =27 )2 dx) + R72+ R2|| Aull?. (4.13)
B(R)
Since 1 < g < %, by the Gagliardo-Nirenberg inequality, one writes
[ tal e < Rl < o A F
B(R)
So,
Mpu] £ Tl + R™27||Au||®~7 + R2. (4.14)

Since J[u] < 0, by the Gagliardo-Nirenberg estimate in Proposition [2.2] via the mass conservation
law, one has

1Aul* S Qfu] < [|1Aull™ [lul*~" < [|Aull™".
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Thus, B’ > 2 implies that there is C3 > 0 such that for any ¢ € [0,T*),

[Au(t)]| = Cs. (4.15)

Thus, (4.11))-(4.15) give for 2 < B’ <247 and R > 1,

Mplu] S J[u] + R™> + R™2|| Aull + BR[| Au P 7
S —lAul® + B2 + R Aul* + R™>7|| Auf| P

, (4.16)
S AP (= 1+ R72 4 R Au) B 27)
< Al
By time integration, (4.15)) and (4.16]) imply that
Mgut)] < —t, t>T>0 (4.17)
By time integration again, from (4.16]) and (4.17)), it follows that
t
Malu()] S - [ |Au(s) ds. (4.19
T

The rest of the proof follows as previously.
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