Electron. J. Differential Equations, Vol. 2025 (2025), No. 56, pp. 1-10.

Positive solutions for n-dimensional fourth-order systems under a parametric condition

Pablo Alvarez-Caudevilla, Cristina Brandle, Devashish Sonowal

Abstract:
We establish the existence of positive solutions for a system of coupled fourth-order partial differential equations on a bounded domain \(\Omega \subset \mathbb{R}^n\), $$\displaylines{ \Delta^2u_1 +\beta_1 \Delta u_1-\alpha_1 u_1=f_1({ x},u_1,u_2),\cr \Delta^2 u_2+\beta_2\Delta u_2-\alpha_2 u_2=f_2({ x},u_1,u_2), }$$ for \(x\in\Omega\), subject to homogeneous Navier boundary conditions, where the functions \(f_1,f_2 : \Omega\times [0,\infty)\times [0,\infty) \to [0,\infty)\) are continuous, and \(\alpha_1,\alpha_2,\beta_1\) and \(\beta_2\) are real parameters satisfying certain constraints related to the eigenvalues of the associated Laplace operator.

Submitted August 14, 2024. Published May 29, 2025.
Math Subject Classifications: 35J70, 35J47, 35K57.
Key Words: Coupled system; higher order operator.
DOI: 10.58997/ejde.2025.56

Show me the PDF file (351 KB), TEX file for this article.

Pablo Álvarez-Caudevilla
Universidad Carlos III de Madrid
Avenida de la Universidad, 30, 28911 Leganés
Madrid, Spain
email: pacaudev@math.uc3m.es
Cristina Brändle
Universidad Carlos III de Madrid
Avenida de la Universidad, 30, 28911 Leganés
Madrid, Spain
email: cbrandle@math.uc3m.es
Devashish Sonowal
Universidad Carlos III de Madrid
Avenida de la Universidad, 30, 28911 Leganés
Madrid, Spain
email: devashish.sonowal@iit.comillas.edu

Return to the EJDE web page