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MINIMIZERS FOR FRACTIONAL SCHRODINGER EQUATIONS WITH
INHOMOGENEOUS PERTURBATION

LEI ZHANG, LINTAO LIU, HAIBO CHEN

ABSTRACT. In this article, we study a constrained minimization problem arising in fractional
Schrodinger equations with inhomogeneous term m(z) Z 1. We obtain the existence and limit
behavior of constraint minimizers. The argument relies on energy estimates, blow-up analysis,
comparison principle and iteration methods.

1. INTRODUCTION

Consider the following constraint minimizers of L2-subcritical fractional variational problem

I(M) := inf E(u), 1.1
(M) u€H*(RN), [ull3=M (u) (L)

the energy functional E(u) is defined by

E(u) := / [(—A)*2u?dx — 2 m(x)|ulPde, (1.2)
RN p+1Jrw
where N > 2, s € (3,1), p € (1,1 + %), M > 0 and the inhomogeneous term m(z) # 1 satisfies
the assumptions
(A1) m(z) € L. (RM)NCH0 < a < 1), 0 < m(z) < m(0) = max,epy m(z) = 1, and
0 <infyepy m(z) = limy 500 Mm(2) = Moo < 1;
(A2) 0 € R¥ is the unique global maximum point of m(x), and 1 — m(x) = |z|"T2(1 + o(1)) as
|z| — 0, where 7 > 0.
It is well known that the fractional Laplacian (—A)*(s € (0,1)) can be defined by

v(z) —v(y) v(z) —v(y)
—A)*® =CnP.V. 7d =Cns i _—
( ) v(x) N, /]RN |z — y|N+2s Yy = UNn, 51—>n10 R\ (2) |z — y|N+2s
for v € S(RY), where P.V. denotes a Cauchy principal value, S(R") is the Schwartz space of

rapidly decaying C'* function, B.(z) denotes an open ball of radius ¢ centered at x and the nor-

malization constant Cy s = ( Jan~ 1|C|CN075+§1) ! , see [5l, 311 [37] and the references therein for more

details. There are applications of operator (—A)s in some areas such as fractional quantum me-
chanics, physics and chemistry, obstacle problems, optimization and finance, conformal geometry
and minimal surfaces, see [II, 4, [19] 20 28] [32] and the references therein for more details.

When s = 1, this problem is related to the orbital stability waves in nonlinear Schrodinger
equations, which was proposed by Lions in [21]. After the pioneer work of Lions, much attention
has been devoted to the study of the Schrédinger equation. Recently, many scholars have studied
and extended the well-known Bose-Einstein condensates and time-independent Gross-Pitaevskii
equation, the reader is referred to [6l [7, 13| T4} 15 16] 17, 25 26]. These works mainly studied
the situation when m(z) = 1.
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When s € (0, 1), problem (L.1)) originated from the fractional nonlinear Schrédinger equation
(=AY u+V(zx)u= f(z,u), zcRV,

where N > 2,V : RV — R is an external function and f(z,u) is a nonlinearity. In recent
years, the study on equations with the fractional Laplacian has been attracted much interest
[2, 9 10, 11 23], B3, BY]. Cheng [2] considered the following fractional Schrodinger equation

(—AYu+V(zx)u = [ulPtu, zeRY,

where V' (z) is an unbounded potential and 1 < p < 1+%, they proved the existence of ground state
by Lagrange multiplier method. Moreover, in [9], Dipierro, Palatucci and Valdinoci obtained the
existence and symmetry results for solutions with V(z) = 1. Felmer, Quaas and Tan [I1] studied
the same equation with a more general nonlinearity f(z,u) instead of |u|P~!u, they obtained
the existence of positive solutions and analysed the regularity and symmetry properties of these
solutions.

Du, Tian, Wang and Zhang [10] studied the stationary (i.e., time-independent) fractional
Schrédinger equation

(—AYu+V(z)u = pu+af(u), zecRY,

where N > 2, V : RV — R is a trapping potential, 4 € R and a > 0 are parameters, and f is
a subcritical nonlinearity. They proved that the optimal embedding constant for the fractional
Gagliardo-Nirenberg-Sobolev inequality can be expressed by exact form, and established the ex-
istence, nonexistence and mass concentration of L?-normalized solutions for the above equation.
In addition, under a certain type of trapping potentials, by using some delicate energy estimates,
the authors presented a detailed analysis of the concentration behavior of L?-normalized solutions
in the mass critical case.

We note that, when V(x) = 0 there is no result on existence and mass concentration behavior
for inhomogeneous mass subcritical fractional problems. We are going to study the existence
results of minimizers as M — oo. Before describing more details, let us introduce the following
fractional Gagliardo-Nirenberg-Sobolev inequality, see [10].

Lemma 1.1. Letp € (1,14 %). Then

N(Z»_l) 25(p+1)4—vN(11—1)
/R < Co / layapan) / Jul?d)) (1.3)

for uw € H*(RN)\{0}. This equality is attained by a function Q(x) with the following properties:
(i) Q(x) is radial, positive and strictly decreasing in |z|;
(i) Q(x) € H*THRN) N C>(RY) and satisfies

Cl 02
- = < R
e

r € RY; (1.4)

(iil) Q(x) is the unique solution of the fraction Schrédinger equation

2s(p+1)—N(p-—-1) 4s

—A)’u+ U — uP = 0; 1.5
=) Np-1) NGp—1) (9
(iv)
p+1
opt = T ,—1° (16)
2|15
According to Lemma by a simple calculation, we can observe that
2
/ (—A)* QP dx = / QPdr = —— [ |Q"du. (1.7)
RN RN P +1 RN

We now state our main results.

Theorem 1.2. If m(x) satisfies (Al), then there exists at least one minimizer of I(M) for any
M € (0,00).
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To prove Theorem we first prove the strict subadditivity inequality of I(M), then applying
the fractional Gagliardo-Nirenberg-Sobolev inequality to obtain the uniform boundedness of
the minimizing sequences. Moreover, by using the concentration-compactness principle [21], 22],
the compactness of minimizing sequences can be obtained.

Motivated by studies [I3], [15] 25| 27, [36], we are concerned with the limit behavior of minimizers
as M — oo, we have the following result.

Theorem 1.3. Suppose m(x) satisfies (Al) and (A2). Let vy be a nonnegative minimizer of
I(My). Then, for any sequence { My} with M), — oo as k — oo, there exists a subsequence of vy,
still denoted by v, such that vy has a unique mazximum point Z and satisfies

2s

lim e Tvp(epr + 2) = Q(z) u € HY(RY), (1.8)

k—o0

-1
where limy_yo0 2 = 0, gf = ()7 TNGD, ¢* = 1Q(x)||2 and Q(x) is the unique radially

symmetric positive solution of (|L.5| ‘

Motivated by Maeda [27], we rewrite the constraint variational problem (1.1]) into the equivalent
form

Iy = inf Ey(v), 1.9

vEH*(RN), Hng:l ( ) ( )
where

p—1
2M = 4s

E = —A)* 2 dx — PH e 1 14— 1.10

= [ 1A PoPde = 20 [ m@l e 1<p<i+ T (L10)

which implies that vy; = M~Y2y,, is a nonnegative minimizer of Iy; and Ip; = M*1](M) if

and only if ups is a nonnegative minimizer of I(M). In other words, the proof of Theorem
can be equivalent to analyzing the limit behavior of minimizers for as M — oco. Up to some
necessary scaling of the minimizers, one can obtain the boundedness of minimizers as M — oo.
Another difficult in studying the limit behavior of vy; is to locate the peak of vy, as M — oo.
Inspired by the works in [24] 25] 27], we introduce the following new constraint variational problem

fM = inf EM v), 1.11
vEH=(RN),[|v[5=1 (@) ( )

where Ej(v) is defined by

N oM 4s
E = —A)202de — / PHL gy 1 1+ —. 1.12
uo)i= [ 1Ay - 20 [t 1<p<as R g
By establishing that Ip;— Iy — 0 as M — 0o, one deduces that 2242 fRN (1—m(z))|var|PHde —

0 as M — oo, which is a good way to locate the peak of mlnlmlzers

The rest of this article is organized as follows. Section 2 is devoted to proving Theorem on
the existence of minimizers for . While in remaining section, we give the proof of Theorem
[I:3] Throughout this paper, we use the following notation:

e The space H*(RY) is equipped with the norm [Ju]?> = for (|(—A)*/?ul? + |u|?)dz
e The norm in LP(RY) is denoted by || - ||,,, where p € [1, o0];

e C,Cq,Cy,..., denote different positive constants;

e 77 denoted strongly convergence, ”—” denoted weakly convergence.

2. EXISTENCE OF MINIMIZERS FOR [ (M)

This section is concerned with the proof of Theorem[I.2]on the existence of minimizers for (L.1)).
We first establish the subadditivity inequality of I(M), and then prove Theorem by applying
the concentration-compactness principle. Now, we give the following Lemma about subadditivity.

Lemma 2.1. Assume m(x) satisfies (A1), then for any M € (0,00), it holds that
I(M) < 0. (2.1)
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Moreover, we have the following strict subadditivity inequality
IM)<I(a)+I(M—a) Yac(0,M). (2.2)

Proof. As for ([2.1), set u(z) := ¢V/?u(sx), where ¢ > 0 and u € H*(RYN) satisfies |[u||?> = M.
One can deduce that, for any M € (0, c0),

(M) < E(u) = / (~A)PuPde — —2— | m(@)ugrda
RN P + 1 RN

g2 /2,12 s 2 €z +1
:2(7 ~ A 2|2 d — O\ ulp+id )
5 e [ (s

it then follows that F(u.) < 0 for ¢ > 0 sufficiently small, because w < 2s and m(z) satisfies
(A1), thus, (2.1)) holds. As for (2.2)), for any M € (0,00) and 0 € (1, %]7 we have

I(0a) = inf E(u) = in E(6'?v)
u€H*(RN),[lul|3=0c veEH=(RN), [[v]3=a
. 9 19 20" x 1
ot {a/ L T a3,
vEH*(RV),|[v]|2=a RN p+1 Jgn ¢
2
- inf {9[/ (= A)202de — —=— m(£)|v|p+l}
vEH*(RN),[|[v]3=a RN p+1 gy ¢
200 — "%
LA0=67) / m() ol da |
P+ 1 RN S
< 0I(w),
where the last inequality holds because 6 > 1 and p > 1. This implies that for any M € (0, 00),
M
I(0a) < 0I(a) Va e (0,M),0 € (1, E} (2.3)
Furthermore, it follows from (2.3)) that
M-« M a M
I(M) = i I(M — a(M - )+ MI(E ca) <I(M —a)+I(a) Yae (0,M).
Hence, the proof of Lemma [2.1] is complete. O

Next, we introduce the concentration-compactness principle to fractional Sobolev spaces H®(R™),
see for example [12].

Lemma 2.2. Let N > 2, suppose {un}n>1 C H*(RY) and satisfies
[ tunlPa = o> 0. sup ey < oc.
RN n>1

Then there exists a subsequence {un, }x>1 for which one of the following properties holds.

(i) Compactness: there exists a sequence {yx x>1 in RY, such that, for any e > 0, there exists

0 <r < oo with
/ |ty |2da > p — €.
lo—yr|<r

(ii) Vanishing: for all r < oo, it follows that

lim sup/ |t |2dx = 0.
k=00 yerN Jiz—y|<r

(iii) Dichotomy: there exist a constant 8 € (0, p) and two bounded sequences {vk }x>1, {wk tp>1 C
H*(RN) such that

supp v, N supp wy = 0,
o] + |wi] < |, |,

vkl = B, |lwels = (p— B) as k — oo,
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”uﬂk — Uk — wk”q —0 forqe i272:)7
hkrgg.}f{<(_A)sunkvunk> - <(_A)Svk?7vk?> - <(_A)ka7wk>} = 0.
Proof of the Theorem[1.3 We first claim that —oco < I(M) 0. For any given M € (0,00),

assume |[ul|3 = M. From Lemma there holds that I(M) < 0. On the other hand, applying
(A1) and Gagliardo-Nirenberg-Sobolev inequality (1.3]) to E(u), then yields that

<
<

2
E(u) = /RN [(—A)*?ul*dz — 0T o m(z)|ulP T do
s/2,12 1—p 2s(p+1)—N(p—1) s/2, 12 N(zzl)
> [ 8 - Iy () ) 24)
RN RN
< _4s—=N(p-1) (C’N(pf 1))%’
- 4s 4s

2s(p+1)—N(p—1)
1s

where C = ||Q||3 "M . This implies that E(u) is bounded from below for any M €
(0,00). Let {u,} C H*(RY) be a minimizing sequence satisfies ||u||2 = M and lim,, ., E(u,) =
I(M), then shows that {u,} is bounded uniformly in H*(RY). Moreover, since —oo <
I(M) < 0, we obtain E(uy) < @ for n sufficiently large. Therefore, we can deduce from
that
/ (@) un [P de > P DI (2.5)
- 4

Applying Lemma with p = 1, one can conclude that there exists a subsequence {u,, } of
{un} such that {u,, } satisfies the compactness or the dichotomy or the vanishing.

We first prove that the vanishing does not occur. If not, according to vanishing Lemma, we
know that u,, — 0 in LPT1(R"). This is a contradiction with (2.5)).

Next we prove that the dichotomy does not occur. If not, then Lemma iii) shows that
there exist two sequences {vy}, {wy} such that iminf,_, o (E(up,) — E(vy) — E(wg)) > 0, which
implies

limsup (E(vg) + E(wyg)) < I(M). (2.6)
k—o0
By direct calculation, it follows that

1 2(er—1 1
E(u) = ?E(fu) + % /]RN m(x)|ulPTda. (2.7)
Set &, = Hvi\lz’ then ||&xvr |3 = 1, (2.7) shows that
I(M) | 20 —1
E(vg) > (51% ) + ( kP—l— 1 ) /]RN m(x)|v|P T d. (2.8)

Similarly, we have

I(M) | 2007 -

1)
E > m ptlg 2.
(wg) > v T pr /RN (z)wg P dz, (2.9)

where v, = 1/||wy||2. By the fact that & — 872 and v, — (1 — 8)~Y/2 as k — oo, we deduce

from (2.5),(2.8),(2.9) and Lemma iii) that
likminf (E(vk) + E(wy)) > I(M) +
—00

2(¢—1
Mliminf m () |un, P dx
P 1 k—o0 RN )

(2.10)
> I(M) — @I(M) > (M)
- 2 9
where ¢ := min{#~1/2,(1 — 8)~'/?} > 1, due to 8 € (0,1) and I(M) < 0. Combining and
([2.10), we can conclude that the dichotomy does not occur.
Now Lemma[2.2{i) shows that there exists a subsequence of {uy, } (still denoted by {u,, }) and
some {yx} C (RY), such that i, = un, (- + yx) satisfies

— g in H5(RY) for some uy € H*(RY),
U, — up in LIYRY)  for g € [2,27).

Unp,,

(2.11)
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We can see that

lim m(x)|ank|p+1dm:/ m(z)|uo|P T da.
k—oo JpN RN

By the weakly lower semicontinuity, we deduce that
E(ug) < lim E(ty,), (2.12)
k— o0

we observe that I(M) < limg_,oo E(ty, ) from the definition of I(M). If I(M) = limy_, oo E(n, ),

using (2.12) we have
I(M) < E(ug) < klim E(ty,) = I(M), (2.13)
— 00

it follows that wg is a minimizer of I(M) for any M € (0,00). On the other hand, I(M) <
limy 00 E(y, ), we claim that {y,} is bounded in RY. Otherwise, assume y; — oo, then we have

2
I(M) = lim E = li —A)* P, Pde — —— pl
(M) = lim E(uy,) kgr;o{/wl( )* P, [ da D1 fo m(x)|un, [P dx

. 5/2 2 .
g {18020, e = 2 [t gl s
2

p+1

v

i Blin) + -2 [ ()~ mle g, P o
k—oc0 RN

> lim E(iy, ),
k—oc0 )

where the last inequality holds because of inf,cgny m(x) = lim|; o m(z). This is a contradiction,
thus the claim holds. Passing to a subsequence if necessary, we have limy_,., yx — ¥yo for some
yo € RV, Tt follows from (2.11)) that u,, — uo in LI(RY) with ¢ € [2,2%). This yields that

i [ (), e = [ m@luo(e - ).
RN

k— o0 RN

Similar to (2.12) and (2.13), we can deduce that
1(M) < Bluo(-— ) < Jim E(u,)

which implies that uo(- — yo) is a minimizer of I(M). Then the proof is complete. O

3. MASS CONCENTRATION

In this section, we prove Theorem on the concentration behavior of minimizers for I(Mj)
with My — oo as k — co. We first establish the following Theorem.

Theorem 3.1. Suppose m(x) satisfies (Al), (A2). Let uy be a nonnegative minimizer of Ins,
with My — 0o as k — co. Then passing to a subsequence if necessary, ux has a unique mazximum
point Zy, as k is large enough, and Zy, satisfies limy_, o Zr, = 0. Moreover, there also holds that

s —1
Jim & (@ + 2 = (@) TR Q((@)TROT) i HURY), (3)
— 00
—__p-1
where £, := M, """V a* = ||Q|13 and Q(z) is the unique radially symmetric positive solution

of .

3.1. Energy estimates of I);. This section is aimed to establishing the refined energy estimates
of Iy; by employing the analysis of Ij; defined in (|1.11). As for the estimate of Iy, we have the
following Lemma.

Lemma 3.2. Suppose Gy is a nonnegative minimizer of In;. Then

~ M f(pi_pl_)l
fa = —A(—) N (3.2)
Ay
and up to translations, Uy satisfies
1
i = —=an( “Qlan), (3:3)

Var M
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where a* = ||Q||3, Q(x) is the unique radially symmetric positive solution of (1.5]),

Anp = (%)#@(M

2
) Is—N(p—1)
a 4s

and X\ is defined by
A

:45—N(p—1)(N(p—l)>#(;91) (3.4)
4s 4s ’ '

Proof. Suppose i) is a nonnegative minimizer of Ip;, and suppose % is a nonnegative minimizer
of I. First we claim that

~ ~ —1
Iy = a?\jfl, Uy = aﬁ/Qﬂl(OL]V]iE) with a)r = M‘“—I;V(P_l) . (35)
N
Indeed, set 9, := o, tiar(ay; ). Simple calculations show that [|9;]|2 = 1 and

Ine = En(iinr)

2M "
— A /2~ Qd _ ~ p+1d
| Neay e = 2 [ s
oM Ne-»
=a% |(—A)% 20, |2dx — - a2 / |01 [PT (3.6)
RN p+1 RN

2o oM
=T ([ ((-8) 0o 0P do)
RN p"’ 1 ]RN
_2s(p—1)  ~
> M457N(p71)‘[1

Similarly, setting 05 := ajj\v/zﬂl(aMx), we have

From (3.6) and (3.7)), we can deduce that (3.5 holds. Next we prove that
1 2s(p—1)

Li=-A(=)7 (3.8)

P
and 7 satisfies

iy = (M)i@—%—w m—ﬁamQ((Mhs—fw—“ ﬁ—%x) (3.9)

4s 4s

Take a test function 9. = e™V/2@(ex), where 0 < ¥y € H*(RY) satisfies ||7p]|3 = 1 and £ > 0 is a
positive constant, we have
2
+1

I < Bi(5.) = 528/ (=AY 250 2 —
RN p

N(p—1) -
g2 |5 |PTde < 0,
RN

%. Note that the minimizer @ of I 1 satisfies

when ¢ is small enough, due to 2s > al
(=AU = iy + a7 in RN, (3.10)
where fi; is a suitable Lagrange multiplier. It follows from (1.12]) and (3.10]) that
~ F p—1 ~ 1
=-0L+— PHldr > 0. 3.11
H1 1+ 1 fan || T (3.11)
Similar to the proof of [35], Proposition 4.1], we know @; > 0. In view of (1.6]) and (3.10]), it follows
that
1 45 = . N(p—-1) 5
u = ° . 3.12
i (@) = if <2s(p+1)—N(p—1)) Q("Ll (2$(p+1)—N(p—1)> x) (3.12)

Furthermore, since ||@1]|3 = 1, one can deduce that ji; satisfies

. (Np-1D\m=~t=12s(p+1) - Np-1) —2¢2;
# = ( 4s ) N(p-1) ¢ ’
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from which and (3.12), we can deduce that (3.9) holds. Then (L.7), (1.12) and (3.9) show that
(3.8) holds. Thus, combining (3.5)) and (3.8)), we can see that (3.2), (3.3)) hold. O

Based on Lemma [3.2] we can obtain the following energy estimates of Ij.

Lemma 3.3. Suppose m(x) satisfies (A1). Then we have

2s(p—1)

M\ ==~3G-D
lim I = —A(—)4 Yo (3.13)

n—00 Qs
where a* = ||Q||3 and Q(x) is the unique radially symmetric positive solution of (L.5), A is given
by (3.4).

Proof. Let up; be a nonnegative minimizer of I;. According to the definition of I; and I M, We
deduce from Lemma [3.2] that

p—1
~ 2M 7=
Ing = Eps(ung) + (1 —m(x))|up|PT de
p + 1 RN 3 14
_ M 2s(p—1) ( ’ )
> Iy = —A(—) mNEED s M — oo
A«

On the other hand, set a cut-off function ¢ € C§°(RY), such that p(z) =1 for |z| < 1, ¢(z) =0
for |x] > 2,0 < p(z) <1 and |V¢| < 2. Define

A,

ur(z) = N 2p(2)Q(rx), (3.15)
QI3
where 7 > 0, A, is chosen so that |lu,||3 = 1. Applying (L.4)), we have
1<A2<1+C0r N asT — o0 (3.16)
In fact, since ||u,||3 = 1, it follows that
2 2
1= 150 [ PO @ < sl - 42,

which implies the left inequality of (3.16]). On the other hand,

A2 / 9 €T 9 A2
QI o * 2 0l fy 0
thus, we have
2
A% < _elz
J5.(0) @ (x)dz
S0 @@+ Jon o) @ (w)da
fB,(o) Q*(z)dx
<14 fRN\B,(o) |H|§fﬁ|2(3§)dz
- 5, o) @*(x)dz

<1+ 077N,
Furthermore, A2 — 1 as 7 — oo. Combining (1.7)) and (3.16]), we have
Ine < Epr(ur)

p—1
2M =
:/ (=) u, [P — - Im(z)u, [P da
RN p+1 Jry
p—1 p—1
2M 7 on Bt
:/ (8 urPdr = =2 [ fur PP S 2 [ (1= mi@)) P
RN p Py .
A2T23 QMPQ;I Ap_‘_lTN(p{l)
— A s/2 2d . g p+1d
O o QP - S s [ Qartias
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OMEF o2 Aptlp MG
p+1 QI3 RN
M 2t p—1
<(A+Cr N (1 - TﬁT*Q)(**) TR ast o o0,
a

2 ,‘,p;,l,,l
where r > 0 is defined in (A2). Take 7 = (%) As=NP=D (M) FTNETY then yields that

a*

Iy < (M) TN G=D (%) e _ (N( — 1)) TewRD (%) D +o(1)
4s a* 4s a* (3.17)
= f)\(—*> as M — oo,
a
where A is given by (3.4). Therefore, (3.13) follows from (3.14]) and (3.17)) directly, and Lemma
is then proved. O

3.2. Blow-up analysis. The main purpose of this subsection is to establish blow-up analysis of
Iy with M — oo. Motivated by Guo [I8, Lemma 2.2] and Maeda [27, Lemma 4.2], combining a
new trial function and the polynomial decay of @, we first obtain the following Lemma.

Lemma 3.4. Let up; be a nonnegative minimizer of I, then we have

0<Iy—1Iy—0 asM— .

Proof. Set Gy = éﬁaﬂl\/f/zw(aM)Q(de), t > 0, where &) and ¢ are given in Lemma

a* = ||Q||%, Q(x) is the unique radially symmetric positive solution of (1.5) and Ap; > 0 is chosen
so that ||da]|3 = 1. As in Lemma we have

1< A2, < 1+ Cay T+, (3.18)

Using the nonlocal Leibniz rule, we have

[ 8 Panldn [ (a2 e
R R

A2 &29
= SR [ 8) Rl Qe e [ (-A) e
RN

Aﬁmﬁg (3.19)

A)PPp(an ™ e) + p(ay o) (—A)*Q(x)

~ Blgla “x>,c2<x>>| d — / [(—A) 2y P
RN
=T+ To+ T3+ Ty + Ts + Ts,

where

A3 047 2/ ~—t—1 /2 2 /2~ 12
1= DAL | P )| (-A) Q) Pdr — [ (A P,

RN

2 ~2s
7y = S8 [ Q2a) (-2 (a1
a RN

AQ 5(23
1= B[] B (a1,
a RN JRN

7, = o i [ Q)elay ) (~8) Q) (~A) (e Ha)ds,
2 &25

1= 22U [ Qo)) (a0 Ble(art ). Q).

Ty = 2200 [ it 10) (- A)2Q(@) Blp(azi~a), Q(a))da,

a* RN
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and
B((p(d;jﬁ_ll‘),Q(l‘)) _ CSPV . (90(&174_ ;L‘) B fw(éé_&y]]\]ﬁ)s)(@(x) B Q(y))dy

To estimate T — T, two inequalities are established below. By direct calculation, we have
(=A)*Pp(ay )]

~—t—1,\ . (~—t—1
_ CSP.V.| <P(0‘M ) 90(041\/[ y)dy‘
RN

|z — y|[NFe (3.20)
. V(ay ¢l 1 '
SCatl/ |Mdy+C’/ ———dy
M Seyisag ey ja—ylzaty |2 =yl
< Cay ),
where £ =y + 0(z — y) with 6 € (0,1). By the Holder inequality and (3.20)), we obtain
B(p(ay; '), Q(x))
oy [ ol )@ =0,
e |z —y|NFs
lp(ans ') —pan y)P  \1/2 / Q@) —QW)P* | \/?
<C d —_
- (/RN @ =y D) (o T ) (3:21)
lo(anr—'2) — wlay 'yl , \1/2 / Q(z) — Q(y)I* , \1/?
<2 d — = d
. C(/RN o=y 1) (o "l mgrere )
<=5 (t+1) Q) — Qy)|* , \1/?
< 2 e A
= G </RN & —y[N+s dy)
In view of (1.7)), (3.3) and (3.18)), it follows that
AZ -1 6&25 L .
7= W DB [ ot~ 8) /() 2da
a RN
6{23 L s
+ o L #E ) - DI-8) Q@) Pda
a2 . o 3.22
+ 8 [ 8 PQuPdr— [ |-a) P (322
a RN RN
(43— )i

< MM QA ) |(—A) Q) Pda

a* RN
< Od?\ff—(t-{-l) (N+4s)

Using (1.7), (3.18)) and (3.20]), we have
A2 ~2s _9s - R
I Ty| < CEMEM 5 2s(t+1) / |Q2dx < C(1+ Cay TN G2t a9 My 0. (3.23)
a RN

Applying (1.7), (3.18)),(3.21)) and [29, Proposition 3.4], we obtain

2 ~2

A s _ 2
< oA [ [ Q@ _QWE,,,
a* RN JRN |$ -y

|N+s
A2 &s(lft) 5
e o M GIR

14 édx/[(t+1)(N+4s)

a0 [ aslgiePa
a RN
< C(1 4 Cay MW+ a0

as M — oo.

(3.24)
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as M — oo, where @ denote the Fourier transform of Q. By the Hélder inequality, (1.7)), (3-18)
and (3.20]), we obtain that

il < AU ( [ Qa2 oPar)

X (/RN go%d;j%x”(_A)stde)1/2
<CA2 S(C' ~—23(t+1)/ Q*(x dm)l/ (/ |(—A)S/2Q|2d$)l/2
RN

<C(+Ca _(t+1)(N+4q)) 7070 as M = oo
From the Hélder inequality, (L.7), (3-18), (3.20) and (3.21)), it follows that

7 <CA?”~2$(/RN Q(@)l(~A) 2p(iy ) )

< ([ Betast 0. Qunar) " (3.26)

s(t+1)

<C(l1+ Ca t+1)(N+4a)) ﬁj~—s(t+1)dj;l S

(3.25)

1/2

<C(1+Ca t+1)(N+4S)) 1\/(1 38 a5 M = oo

Similarly,

|T6‘ <CA?\4 ?\fl([RN (,02<OZJT/[t 1 )|(—A)S/ZQ|2dl’ / B2 7t 1 )Q(m))dx)l/Q

~ _ s(t+1)
< C(1 + Gay N+ 520 5= 53 (3.27)

<C(l+ C’d}}tﬂ)(N'F%))o?jV([%_%t) as M — oo.
By the fact that ¢ > 3, we then deduce from (3.19)), (3.22)-(3.27)) that

/ |(— A)S/QuMFda:f/ [(=A) 20y |?de — 0 as M — co. (3.28)
RN

RN
By (1.4) and (3.18)), we obtain that

N(p—1)

TR BT /RNm@)u—soP“(“t 12))Q" (a)da

et Apr Qpr 1
<M= 7\&?]”1 /“t_1 >1|QP+ (x)dz
Q,, x>

p*l

<01+ Cay, “*”‘N“s))”“(a*)fl(M) APHG T DN = (N25) (o)

a*

)

~ 254 (t+1)[N—(N+2s)(p+1
< O EFDIN=(N429) ()
then from (3.3) and (Ms), we conclude that

M / m(x)|an [P da
RN

21 1 AP+1~77

N(p-1)
- (%) aiM/RN m(Gy @)t (g 2)QP T (2)de

p+1a
— s P [ (it - 09 @ 0@ @)

4 AP+1 23
+ / e ap ) — NP (@) da
N( RN
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4s Ap'H %\;}
p+1
+ No—1 @ o QP (x)dx

> —C4A§’\j1 ﬁjd’““) _ 05A;]o\j[—ld?\flég\if+l)[N7(N+2s)(P+1)]
4s  APFTR2S  MANTF N(p—1) e
* 5 ~ p+1d
+ Nip-1) a* (a*) is ¢ /]RN 2] v
= 0GB o g2 DIN-(N 2 (D] gt /
R

ltiar|PT de  as M — oo.
N

which implies that

= / [P de — M / m(x)lan [P de — 0 as M — oo. (3.29)
RN RN
Moreover
0<In—1In
< En(fiar) — En (i)
=/ (—=A)* 2| dw—/ |(=A)* 2ty |2 da (3.30)
RN RN
2M "7 oM
+ - |t [P da — ’ m(z)|ap|PT de,  for large k.

P +1 RN p+ 1 RN
it follows from (3.28)-(3.30) that 0 < I, — Iy — 0as M — co. Thus, we completes the proof. [
Remark 3.5. Obviously, Lemma [3.4] shows that

p—1
~ 2M =

Ing(upr) — Ing(uw =

() m(unr) P 1 Jan

(1 —m(2))|up|P T dx — 0.

Let us be a nonnegative minimizer of I, with My — oo as k — oco. we define

_ p—1
Ep =M, “ V"7V with M), — oo as k — oo; (3.31)
Wy, = ég/Quk(ékx) with M), — oo as k — oo. (3.32)

By simple analysis, we know that there exist some positive constants Cs, C7, C§ and C%, such
that

oﬁg/ |(=A)* %40, )?de < C7  and cg,.g/ [(—A) 24y, |PH de < CL. (3.33)
RN RN

Indeed, some calculations yields that

/ (—A) 24y 2de = £ / (—A) i P,
RN RN

_N(-1)
/ P de = & / (i [2dz.
RN RN

Applying (1.9), (3.31) and (3.34), we conclude that

(3.34)

M
9s s 05 2M, ? . 2 .
Ty = €k2 [/]RN I(=4) /ka| do+e 2 pi 1 /]RN(1 a m<x))|u}€|p+1dw a Zm /]RN |wk|p+1dw]'

This implies from Lemma [3.3] and Remark [3.5] that

2s(p—1)

(a*)==Ne=D (/RN [(=A)% 24,2 da — —/ |wk|1’+1dx) — -2 <0. (3.35)
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If [on [(=A) 202 dz — oo as k — oo. Setting 77 = [ |[(=A)¥ %0y [?dz and 1wy (z) =
v,iv/%k(*yka:), one can deduce that [|(— )5/2uk||2 = ||lux||2 = 1. Applying the Gagliardo-Nirenberg-

Sobolev inequality (1.3), it yields ||uk||p+1 < Copt- Moreover, we can deduce that
e p+1 N(p—1)—4s N(p—1)—4s
fRNfT(NJZ;:'/?wiT;dm - fRNfT(N_z];L/zﬁixzdz k = < CoptVy, 3 —0 (3.36)
as k — oo. However, from , we have
f]RN [y [Pt
Jaw [(=A)3/ 21y [*d
which contradicts (3.36)), thus [~ [(—A)%/%iy|?dz < C7. This fact combined with Gagliardo-

Nirenberg-Sobolev inequality (L.3), we can conclude [y |g[PT'dz < C%. On the other hand,
(3-35) shows that [iy [@g|P+dz > Cf. Then (L.3) further implies that [~ [(—A)*/2dy|?dz > C.

— 1, ask — oo,

Lemma 3.6. Let uy be a nonnegative minimizer of Ips, as k — oco. Then there exist a sequence
{yr}, Ro >0 and n > 0, such that the function

wi(z) = wg(r + yg) = éfcv/zuk(ékx + Exuk), (3.37)
satisfies
lim inf / whdz > 1 >0, (3.38)
k—oo BRO (0)

where €y is given in (3.31). Moreover, {éxyr} is uniformly bounded as k — oo, and for any
sequence {yi}, there exists a subsequence, still denoted by {yr}, such that z := Yk LN Yo, for
some point yo € RN and yo is a global maximum point of m(x), that is yo = 0.

Proof. First, we claim that there exist a sequence {y;} € R and Ry,n > 0 such that

k—o0

lim inf / WP de > > 0. (3.39)
Brg (yx)
Suppose by contradiction that for any R > 0, there exists a subsequence {0y}, such that

lim bup/ p'de—O
Bry (y)

k—o0 yERN

By the fact that 1 < p < 1 + 4 N, we deduce from [12, Lemma 2.8] that @, — 0 as k — oo in
LPFYRY), which contradicts (3. 33 Then and (3:39) show that (3.38) holds.

Next, we show that {éxy} is bounded. By contradlctlon suppose that {£;yx} is unbounded.
Then for any sequence {yy}, there exists a subsequence {y;} such that limy_, o €2 + Exyr| — 00
and limy_ oo m(Exx + €xyYr) = Moo < 1, where the constants me, > 0 and Ry > 0 are given in

(A1) and (3.38), respectively. By Remark [3.5] and (3.37)), we have
p—1

2M, %

p+1

from which and (3.38)), we obtain that

_N(=1)
g, /sz(l —m(épx + éryr))[Wx [P dr — 0 ask — oo,

2M, b
p+1

Np-1) 2
0= €, / (1 — m(Exx + Epyr)) [P THde > ——£,2°(1 — moo)n  as k — oo,
RN p+1

which is a contradiction. Thus, {éxyx} is uniformly bounded as k — oco. Moreover, zj, 1= éyx LN
Yo, for some point yo € RY. Finally, using (3.38) and Fatou’s Lemma, we know that

liminf/ (1 =m(épx + ékyk))|wk|p+1dx >(1- m(yo))/ lim inf \wk|p+1dx > (1 —m(yo))n,
k—o0 RN RN k— o0

which with Remark [3.5] we can conclude that yo = 0. By the assumption (A2) that 0 is the unique
maximum point of m(z). Then the proof is complete. O
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To obtain the limitting behavior of wy, we first concentrate on the L*-estimate and decay
estimate of wy.
Lemma 3.7. Let wy, be given by Lemma[5.6. Then there exists a constant C > 0, such that
lwilloo < C  forallk € N. (3.40)

Moreover,
wr — 0 as |z| = oo, uniformly for large k. (3.41)

Proof. Since uy is a nonnegative minimizer of Ips,, we can derive that wuj satisfies the Euler-
Lagrange equation

(—A)up = e + M, T m(z)u? i RV, (3.42)
where i € R is a suitable Lagrange multiplier and satisfies
e = /RN (=A)2uPde — M /RN (@) |un|Pdz = oy, — Z%Mﬁl /RN (@) g [ da
Then from , we have
(—A)Swy, = upéSwy, + m(Exz + Exyr)wh. (3.43)

Combining (1.9), (3.37), , Lemma [3.3] and Lemma it follows that

—1_  p=t —1_ p=1
=& (T + P [ (- miaun o - P [ i)
R R

p+1 p+1
=y, — p;l/ Jw [P da (3.44)
k k P + 1 RN ’
__2s(p—1) -1
=—X\a") BoNG-D — P lwg[PTdr <0 ask — oo.
p+ 1 RN

By (3.43) and ([3.44)), we have
(—A) wy < wi. (3.45)

By a similar argument to the one in [3] Lemma 2.4] or [8, Proposition A.1], (3.40) holds.
Now we show wy, — 0 as || — oo uniformly for large k. The problem (3.43) can be rewritten

as
(—AYwy = he(z) nRY,
where
hi(7) == uéiwy + (m(€pr + Ekyk) — Dwl + wh.
According to the argument in [8, Proposition A.1], we know that wy,(z) € L"(RY) for 2 < r < oo.

Using (3.33) and (3.44), we can conclude that the uniform boundedness {2} as k — oo. And
by Lemma that {éxyx} is bounded in RY. As for the inhomogeneous term, from Remark

and (3.32)), one can deduce that

N(p-1)

/ (m(ép + xyr) — Dl de =&, 2 / (m(z) — V)ultde -0 ask — occ. (3.46)
RN RN

Combining the above facts with (3.40), we deduce that h, € C°°(RY) for large k. Thus, using
(3.40) and [32], Proposition 2.9], we have

lwellcro@yy < Cllwklloo + |he]loe) < C for a <25 —1, as k — oo.

Finally, the fact wy € L™(RY) N CH*(RYN) for 2 < r < oo, which implies that lim| g0 wi(z) =0
uniformly for large k. Thus, (3.41]) holds. O

Lemma 3.8. Let wy be given by Lemmal|3.6, Then there exists a constant C > 0, such that

lwlloo < T s uniformly for large k,

where C' > 0 is a constant independent of k.
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Proof. By the boundedness of {u£7°}, we may assume that
PRER = =, (3.47)
for some v € RT, as k — oo. According [32, Lemma 4.3], there exists a function 1, such that

C
0<y < [ENREEE (3.48)
(~A)$+ ¥ =0 inRY\Bg, (), (3.49)

for some suitable Ry > 0. By (3.47)), we deduce that there exists Ry > 0 sufficiently large such
that for large k,

(—A)’wy + %wk < il wy + m(px + Epyr)wh + %wk <0 for|z| > Ra. (3.50)
Let R3 = max{Ry, R2}. For large k, set
d:= inf >0 and wg=(6+ 1)¢ — dwy, (3.51)
Brs(0)

where § = sup ||wg || < 00, we claim that Wy > 0 uniformly for large k. Indeed, if not, then there
exists a sequence {z;} such that

wlerﬂlgN wg(z) = Jlgrolo wi(z;) < 0. (3.52)
Combining (3.41)) and (3.48]), we deduce that
lim g(x) =0 uniformly for large k. (3.53)
|z]— o0

Then, (3.52) and (3.53) show that {z;} is bounded. Moreover, up to a subsequence, let z; — .
for some z, € RN as j — oco. From (3.52)), we have

inf Wy (z) = wi(xs) <0, (3.54)

zeRN
which implies that

; Cs [ wp(xs +y) + dp(zs —y) — 20 (2s)
A () = — =2 dy <0, 3.55
(o) inle) == | WhE= y< (8.55)
from which and (3.51), we obtain w(z.) = 69 + ¢ — dwy > dd + 1 —dd > 0 in Bp, (). Thus,
(3.54) shows that

zs € RV\Bg, (o). (3.56)
It follows from (|3.48])-(3.51]) that
(—A)*y + %wk >0 € RM\Bp,0)- (3.57)

Using (3.54)-(3.57), we deduce that 0 < (=A)*wy(2«) + 3wk (x.) < 0, which is a contradiction, so
Wy > 0 uniformly for large k. Then (3.47) shows that

wr < (04 1) uniformly for large k,

C
d < —————
1/} -1 + |£L"N+2S
thus, we complete the proof of Lemma[3.8] O
The next Lemma shows the limitting behavior of wy.
Lemma 3.9. Let wy, be given by Lemma[3.6 Then passing to a subsequence if necessary, we have

klim wg(x) = (a*)_45*13f17*1) Q[(a*)_“jv_(;*l) x+ o] in HY(RY) for some 3o € RY,
—00

where a* = ||Q||3 and Q(z) is the unique radially symmetric positive solution of (1.5]).
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Proof. From , we can know that wy is bounded uniformly in H*(RY™). Using and
taking k — oo, passing to a subsequence, then we have wy — wg in H*(RY) for some wy € H*(RY)
satisfies

(=A)*wy = —ywo +wh  in RY, (3.58)
where v > 0 be given by Lemma By , we know that wy # 0. Similar to the proof of [34]
Proposition 4.4], we have that wg € C*(RY) for some a € (0,1). Applying [29, Lemma 3.2], we
have

B Cy Wo(x + 1) + Wo(x — y) — 2o (x .
(—A)wg(x) = _T/RN 0@ +y) IyFJS““QS y) ol )dy in RY.

Assume that there exists Z € RY, such that wo(Z) = 0, this together with wy > 0 and wy Z 0
leads to

Cs Wo (T +y) + Wo(T — y)

(*A)Swo(f) - T 5 |y|N+23

d 0.
2 RN y <

However, it is evident that
(—A) wo(T) = —ywo(T) + wg(T) = 0,
which is a contradiction. Thus, wo(z) > 0 for € R, Since the equation (1.5, up to translations,
admits a unique positive solution @, it then follow from (3.58)) that, there exists o € RY such
that )
1
wo(z) = y71Q(y2x + &) for some 7y € RY. (3.59)

We now claim that

/ m(épxr + ékyk)wz+1(:c)dz — m(ére + ) wh T (z)de. (3.60)

RN RN

Noting that

/ m(Exr + ékyk)wﬁﬂ(x)dx — / m(Epr + ékyk)wgﬂ(x)dx
RN RN

g/ b (2) — ™ ()| da
]RN

:/ |%“wrw?%MM+/ w? () — Wl (@) de
Bgr(0) RN\BRr(0)
= A + By

where R > 0 is arbitrary. By the fact that |a™ — b™| < L|a — b|™ for a,b > 0,m > 1 and L > 1,
we have

A < L/ lwl T (z) — wht (z)|dz — 0 as k — oo, (3.61)
Br(0)

due to Sobolev embedding theorem and the uniform boundedness of wy, in RY. On the other hand,

from Lemma (1.4) and (3.59), for any € > 0, there exists a constant R. > 0 independent of k,
such that

Bks/ b () + w2 da
RN\Br(0)

C (3.62)
< /RN\BR(O) ‘x|(N+2s)(P+1)dx

< CRN-WN+29)(+D) < 0 VR > R, as k — oo,

since the arbitrariness of e, we conclude from (3.61)) and (3.62)) that (3.60) holds.

Next, we prove that |wg||3 = 1. By contradiction, we assume that |Jwg||3 = I, where [ € (0, 1),
due to [Jwo |3 < limg 00 [|wi]|3 = 1. Using the Brézis-Lieb Lemma, we have

lwill3 = [lwoll3 + lwi — wol3 +o(1) as k — oo,
lwwllp iy = llwollpy iy + llw —wollpiy +o(1)  as k — oo, (3.63)

1(=2)"2wr|3 = [(=2)*2wo |3 + I(=A)*"2(wx —wo) |3 +o(1) as k — oo.
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Set w; := 42, it follows from (3.8)), (3-34)-(3-37), (3.60), (3.63) and Lemmathat

p—1
I, = lim é2s</ [(=A)% 2wy, 2da — 2M,* / m(x)|uk|p+1dx)
k—oo © \ Jon p+1 Jrn
= (/RN [(—A)*Pwy|*dw — ol LG 5kyk)|wo|p+1dx)
2
> lim </ [(—A)* 2wy |2de — —— |w0|p+1dm)
k—oco \ JpN p+1 Jzgn
2
:/ |(=A)* 2w 2da + 1im/ [(=A)*2 (wy, — wo)[2de — —— |wo [P da
RN k—oo JrN p+1 Jgn
2
> —AV 200 Pdr — —2— pHlg
> [ Ayt - —= [ ot
1%
=1 [(=A) 2|2 de — —— Jwy [P dx
RN p+1 RN

1 -
=1 —A) 2| Pde — —— PHdg) > 11
([ ayr2upae - — [ jular) > ih,

which implies that [ > 1, due to I; < 0, this is a contradiction. Thus, ||wo||3 = 1. Moreover, we
__4s(p—1)
can obtain that v = [|Q|l, * ¥* . Since ||wi||3 = ||wo||3 = 1, one can derive that wy — wp in

L?(RN) as k — oo. Then using the interpolation inequality and the Sobolev inequality, we have

wy, — wo  in LYRY), ¢ € [2,2%) as k — oo.

_ 4s(p—1)
Further, substituting v = [|Q[|, *~"*~" into (3.59), we can deduce that Lemma [3.9 holds. [

3.3. Proof of main resutls. In this section, we prove Theorem [I.3]on the concentration behavior
of minimizers for Ip; with M — oco. We first give the proof of Theorem [3.1]

Proof of Theorem[3.1} From ([3.41)), one knows that uj, admits at least one global maximum point.
Let z be any global maximum point of ug, according to Lemma[3.6that z; := &ryx — 0 as k — oo.
Hence, we deduce from (3.37) that wy(z) attains its global maximum point at j = 25, One
can verify that {2_”%’2’6} is bounded uniformly in RY. Otherwise, it follows from ([3.41) that
limg 00 [Jwi|loo = 0 as |zx| — oo, which contradicts to (3.38]). This further implies that, passing

to a subsequence if necessary

lim z; = lim z;, = 0. (3.64)
k— o0 k—o0
By Lemma we have
w(x) — (a*)*ﬁ@—ncg((a*r#ﬁ—wx + :zo) (3.65)

in H*(RY) for some &y € RV, as k — oo, where wy, is given by Lemma We next prove that
we (@) = (a*)*ﬁ&—w((a*r#ﬁ—wx n :;;0) in C2_(RV) as k — co. (3.66)
Indeed, it follows from that
(=A)*wy, = uréiwy + m(épa + Epyr)wh = g(wg) in RY, (3.67)

where pi € R is a suitable Lagrange multiplier. Similar to the proof of Lemma [3.6] we know that
|wk||co < C uniformly in k, then (3.64) shows that g(wy) € L>(RY). Applying [32, Proposition

2.9], we have
llwe||cre (RY) < C(||lwilloo + [l9(wi)|los) < C for some o € (0,1) as k — oo. (3.68)
From this, (Al) and ||wg||c < C, we assert that

[m(éxx + Eryr)wpllco.o @y
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Im(éxx + Eryr) — m(Ery + Eryr)| W ()] Im(Ery + Enyr)l|wy (z) — wy (y)|

< C + sup +sup
ay |z —yl|* a#y |z — yl@

< O+ Cysup [m(éxx + Eryr) — mExY + Eryr)|
B T#y |z —y|*

Im(Ery + Exyr)[lwy, () —we (Y], 1 1

s P ) =g ) 4 0l )
zty
m(ErT + ExYr) — M(ExY + ExYn wy () —wy(y

< 0+ oy e 1) 4y 25— )]

for any t > 0 fixed, we obtain

Mgcjﬂ*agc if g —y| <T,

40— ) (359
Wil?) 7 WVl < op=o < ¢ i o —y| > T,
|z —y|*
and
[m(Ex® + Exyr) — m(Exy + Exyi)| COTV <O ifjp—y| <T,
|z —y|*
(e + E) = m(Eay + Eun)| 70
kT Ekl’f | SKYTERIN] < o= < ¢ i |z —y| > T
T —y|“
It follows from (3.69)) and (3.70) that
[m(éxz + Eryr)wi||co.a@myy < C for large k. (3.71)
The same procedure may be easily adapted to obtain
lwil|co.a@myy < C  for large k. (3.72)

Hence, combining (3.71)) and (3.72)), we conclude ||g(wg )| co.« @~y < C for large k. Applying [32,
Proposition 2.8], we obtain

lwellcre @yy < Cllwklloe + lg(we)||coa@y)) < € for large k, (3.73)
where g1 = a + 2s — 1. Differentiating , we obtain
(=) (W), = fr (We)a, + Exm/ (Exz + Exyi)wl + m(Exa + Epye)pwl " (wi)a, = G()
fori=1,2,...,N. Obviously, shows that
[(wi)e, lcoer@yvy < C and  ||m/(Exz 4 Epyr)wy || co.er mavy < € for large k. (3.74)
Using (3.73), and (A1), we conclude that
Im(éx + Exyr)wh " (wi)a, [l oo mn)

[miEe + el (@) V(@) — miEwy + e )ul” (1) Vo)

< C + sup R
oy |z -y
N N -1 -1
< €4 sup MO+ Eep) 0] (@) — 0] @)V (@) o5
oy |z —yl@ :
A A —1
4 sup m(épx + Epyp) wy " (Y| Vwr(z) — Vg (y)|
oty |z —yl®
p—1 v ~ ~ . ~ N
+ sup [wi Wl wk(y)llm(rkx +|5kyk) m(Ery + Eryr)| < C for large k.
Ay T —y|¢

We also conclude that

H(’LUk;)mj”cO,a(RN) S C and Hm’(ékx +ékyk)w:z‘|co,a(RN) S C for large k, (376)
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in the same way. By the fact that || wg|lcc < C uniformly in &, we then derive from (3.75]) and (3.76)
that ||G(z)|lec < C. Applying [32] Proposition 2.8] again, we deduce that for some g5 € (0, 1),

[(wk)a; l[cre2 @y < C(l[(wh)as lloo + |1G(2)]loc) < C - for large k, (3.77)

which implies that [[w||c2@yy < C. Thus, holds.

Noting that the origin is a local maximum point of wy, for all £ > 0, and it follows from
that it is also a global maximum point of (). Moreover, it is evident that x = 0 is the unique
global maximum point of @, then we conclude that £y = 0. Thus, we have

wy — (a*)_“*;?P*U Q ((a*)_“*l’jvi(ll)*l)x) in H*(RY) as k — oo. (3.78)

Finally, we shall prove the uniqueness of global maximum point of wy as k is large enough.
From the definition of zj, and (3.67)), we have (—A)*wg(2;) > C > 0. Using Remark 3.5
and 7 one can deduce thatw,(Z;) > C > 0 for large k. It then follows from (3.41) that all
local maximum points of wy must stay in a finite ball By in RY as k is large enough, where R
is independent of k. Letting R > 0 small enough, such that Q”(:) < 0 for 0 < ¢ < R. Then [30,
Lemma 4.2] implies that {wy} has no critical points other than the origin, that is, 2, is the unique
maximum point of uy as k is large enough. Hence, we complete the proof of Theorem O

Proof of the Theorem[1.3 Now, based on the Theorem let v, be a nonnegative minimizer

of I(My) and ¢, := (%)745‘1&”‘”. Note from Theorem (3.1 that ¢, = (a*)4s—%7;—1>ék and

e
v = M;/Quk, it follows that

— _ PRI FRE N ) _
ef tup(err + Z1) = (@) =N EPT M Tug (e + Zk)

= (@)= e & Pug (e + 2)

(a*) TR (q*) " =R Q ((a*)—#ﬁm i’fx)
€k

(3.79)

=Q(x) in H*(RN) as k — oo,

which implies that (1.8) holds. Moreover, as for the uniqueness and limit behavior of the local
maximum point Zj of vy, we can obtain from Theorem directly. Consequently, we complete
the proof. O
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