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WAVE-BREAKING FOR TWO-COMPONENT FORNBERG-WHITHAM

SYSTEMS WITH DISSIPATION

XI ZHU, MIN ZHU, YING WANG, KE WANG

Abstract. In this article, we study the Cauchy problem for a two-component Fornberg-Whitham

(2FW) system in fluid dynamics, incorporating a dissipation term to account for energy loss. In
the 2FW system, the analysis of blow-up phenomena is complicated due to its non-integrable

structure and the lack of sufficient useful conservation laws. Adding dissipation term makes the

problem even more challenging, since the L2 norm of u grows exponentially in time rather than
polynomially. Unlike previous works that focus on Riccati-type inequalities with polynomial

expressions, we consider a case where the involved term exhibits exponential growth. This in-

duces an extension of the Riccati-type inequalities to handle exponential forms, from which we
obtain a new blow-up analysis result. As a consequence, we establish a novel blow-up criterion

and obtain three blow-up results.

1. Introduction

Recent investigations in hydrodynamics have increasingly focused on the formation mechanisms
of wave singularities. A common characteristic of these wave models is the potential development
of singularities within finite time. It is now widely recognized that the interplay between dispersive
and nonlinear effects determines the occurrence of such singularities. In particular, when dispersive
effects dominate nonlinear effects, wave stability is maintained, precluding finite-time singularity
formation. A classical representative of this class is the celebrated Korteweg-de Vries (KdV)
equation [17], which exhibits global smooth solutions and solitary waves due to its strong dispersive
nature. Conversely, when nonlinear effects dominate dispersion, the balance may break down,
leading to finite-time singularities such as wave breaking, where in the solution remains bounded
while its spatial derivative becomes unbounded. This phenomenon captures the essence of physical
wave breaking observed in fluids, where a wave overturns without necessarily reaching infinite
height.

To incorporate both nonlinear and nonlocal dispersive effects in modeling shallow water waves,
Whitham and Fornberg introduced a nonlocal nonlinear dispersive equation, now known as the
Fornberg-Whitham (FW) equation [11, 20]

ut = −3

2
uux + Λx ∗ u, (1.1)

where Λ = 1
2e

−x. This equation reflects a fundamental departure from the KdV-type local dis-
persion, offering a more physically realistic representation of water wave propagation, especially
in regimes where the assumption of weak nonlinearity and long waves may not strictly hold. By
rewriting the nonlocal term explicitly, (1.1) can be expressed in the fully local form

ut − uxxt +
3

2
uux − 9

2
uxuxx − 3

2
uuxxx − ux = 0.
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Unlike the KdV equation, which admits smooth solitary wave solutions, the FW equation
permits the formation of peaked solitary waves (peakons) and finite-time wave breaking. A pro-
totypical peakon solution to (1.1) is given by [11]

u(t, x) =
4

3
e−

1
2 |x− 4

3 t|,

which is continuous but exhibits a discontinuity in its derivative at the wave crest, thereby cap-
turing the sharp interface characteristic of physical wave fronts.

Analogously, the Camassa-Holm (CH) and Degasperis-Procesi (DP) equations [3, 12], renowned
integrable models in hydrodynamics, provide alternative mathematical frameworks for character-
izing wave breaking phenomena. In contrast to the complete integrability of the KdV, CH, and
DP equations, the FW equation exhibits fundamentally different mathematical properties: it is
non-integrable and has no useful conservation laws. This absence of sufficient conserved quantities
significantly complicates the derivation of energy estimates and a priori bounds, thereby posing
substantial challenges to rigorous analysis concerning well-posedness and singularity formation.

In recent years, there has been a growing body of literature devoted to the mathematical
investigation of the FW equation (1.1). Holmes [15] analyzed the local well-posedness of the
equation in Sobolev and Besov spaces, demonstrating that the data-to-solution map is Hölder
continuous but not uniformly continuous with respect to the corresponding topologies. Zhou and
Tian [23] employed bifurcation methods to uncover a variety of traveling wave profiles, including
kink-like and anti-kink-like solutions. Further contributions by the same authors [24] applied
the time-reversing transformation u(t, x) = − 2

3u(−t, x) to derive explicit expressions for peakons
and periodic cusp wave solutions. In parallel, Chen and Li [4] utilized phase plane analysis to
identify smooth solitons, periodic orbits, and ring-shaped traveling waves within the same equation
framework.

Motivated by these developments, Fan, Yang and Tian proposed a two-component extension of
the FW equation, referred to as the 2FW system [10]

ut − utxx + ux + uux − 3uxuxx − uuxxx − ρx = 0, (t, x) ∈ R+ × R,
ρt + (ρu)x = 0, (t, x) ∈ R+ × R,
(u, ρ)(0, x) = (u0, ρ0)(x), x ∈ R,

(1.2)

where u(t, x) denotes the horizontal velocity of the fluid, and ρ(t, x) represents the free surface
elevation relative to a flat bottom. Using bifurcation theory, the authors of [10] established the
existence of various traveling wave solutions to system (1.2), including smooth solitons, kinks,
anti-kinks, and an infinite family of smooth periodic waves.

In the study of blow-up phenomena, Constantin and Escher [7] rigorously established the blow-
up results for the FW equation. Their approach involved analyzing the temporal evolution of the
extremal derivatives of the solution

m(t) := inf
x∈R

ux(t, x), M(t) := sup
x∈R

ux(t, x).

By applying a Riccati-type differential inequality of the form y′(t) ≤ −y(t)2, they demonstrated
that blow-up occurs in finite time if the initial data satisfy the condition

m(0) +M(0) < −2

3
.

Subsequently, Haziot derived an alternative wave-breaking criterion for non-periodic strong solu-
tions of the FW equation. Specifically, if the initial data u0 ∈ Hs(R), with s ≥ 2, satisfies

5k inf
x∈R

u′
0(x) + k sup

x∈R
u′
0(x) ≤ −4,

where k ∈ (0, 3/5), then the corresponding solution undergoes blow-up in finite time [14]. In
contrast, Hörmann addressed blow-up criteria for periodic strong solutions. Wei in [18] refined
the aforementioned blow-up criterion and proposed a new wave-breaking condition. Subsequently,
based on the analysis of Riccati-type inequalities involving time-dependent functions, another
novel wave-breaking condition was established, demonstrating that the FW equation can exhibit
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wave-breaking phenomena even when the initial slope is small [19]. Wu and Zhang [21] investigated
blow-up dynamics for the FW equation in both unbounded and periodic domains. By combining
L2-conservation laws with L∞-estimates, they obtained upper and lower bounds for blow-up rates,
thus providing a quantitative characterization of singularity formation. These results indicate that
nonlinear steepening effects in the FW equation can dominate dispersion, leading to gradient blow-
up in finite time.

For the 2FW system (1.2), the analysis of blow-up phenomena becomes more intricate due
to the absence of L2-conservation for u. Cheng [6] addressed this issue by developing two novel
blow-up criteria based on the conservation of the sign of ρ, the L1-norm of ρ, and a priori L2-
estimates for u. These criteria allow for the derivation of blow-up conditions even in the absence
of classical energy conservation. Building on this foundation, Bai, Wang, and Wei [2] employed
an improved pseudo-parabolic regularization method to prove the existence of weak solutions to
the 2FW system in Hs × Hs−1, for s ∈ (1, 3

2 ]. In addition, they derived sufficient conditions
under which strong solutions develop singularities in finite time. These contributions significantly
enhance the analytical understanding of the 2FW system and provide deeper insights into its
complex blow-up dynamics.

This article investigates the 2FW system with a dissipation term in fluid dynamics

ut − utxx + ux + uux − 3uxuxx − uuxxx − ρx + γuxx = 0, (t, x) ∈ R+ × R,
ρt + (ρu)x = 0, (t, x) ∈ R+ × R,
(u, ρ)(0, x) = (u0, ρ0)(x), x ∈ R.

(1.3)

In this paper, we aim to study the local well-posedness of system (1.3) in Besov spaces after
introducing a dissipation term and to explore the conditions under which blow-up phenomena
may occur.

Analogous to the approach in [6], we utilize the sign-preserving property of ρ, the conservation
law for the L1-norm of ρ, and the prior estimate of the L2-norm of u to investigate the blow-up
behavior of system (1.3). However, in contrast to the non-dissipative system considered in [6], the
inclusion of a dissipative term leads to exponential growth in the L2-norm of u, as opposed to the
polynomial growth observed in the non-dissipative system. In [6, 19], Wei and Chen respectively
employed the following Riccati-type inequalities to derive the blow-up results for the FW equation:

dm

dt
≤ −αm2(t) +A+Bt a.e. for t ≥ 0,

dm

dt
≤ −αm2(t) +A+Bt2 a.e. for t ≥ 0.

In contrast, the Riccati-type inequality used in this paper is expressed as

dm(t)

dt
≤ −αm2(t) + aebt + c a.e. for t ≥ 0,

which leads to a new blow-up criterion (Corollary 3.8). Based on this criterion, we further derive
the blow-up results for the system (1.3).

To compute the blow-up results for the system (1.3), we reformulate it into the nonlocal trans-
port form

ut + uux = Λx ∗ (ρ− u− γux), (t, x) ∈ R+ × R,
ρt + uρx + uxρ = 0, (t, x) ∈ R+ × R,

(u, ρ)(0, x) = (u0, ρ0)(x), x ∈ R.
(1.4)

Subsequently, we introduce η = ρ − 1 and examine the following system to study the local well-
posedness of system (1.3):

ut + uux = Λx ∗ (η − u− γux), (t, x) ∈ R+ × R,
ηt + uηx + ηux + ux = 0, (t, x) ∈ R+ × R,

(u, η)(0, x) = (u0, η0)(x), x ∈ R.
(1.5)
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Here, η(t, x) → 0 as |x| → ∞. To meet Hadamard’s criteria for well-posedness, we establish
the existence, uniqueness, and continuous dependence of solutions in suitable Besov spaces. Ap-
proximate solutions to (1.5) are constructed through linear transport equations, ensuring uniform
bounds over a maximal existence interval. Compactness arguments guarantee convergence to solu-
tions of (1.5), while uniqueness and continuous dependence on initial data follow from an adapted
method in [15], incorporating the auxiliary variable η.

The organization of this article is as follows. Section 2 presents some preliminary information,
including key definitions and properties of Besov spaces, as well as results on linear transport
equations. Based on these preliminaries, we establish the local well-posedness of the 2FW system.
In Section 3, we extend the classical Riccati-type inequality by incorporating a generalized time-
dependent function f(t) (see (3.19)), which leads to a new blow-up condition of the 2FW system.
Section 4 is devoted to deriving three novel blow-up theorems for the 2FW system.

2. Local well-posedness

In this section, we recall some facts on the Littlewood-Paley analysis and transport equation
theory. Then, we will prove the local well-posedness of the 2FW system (1.3).

2.1. Preliminaries. Let S(R) denote the Schwartz space of smooth functions on R whose deriva-
tives of all orders decay at infinity. Then the set S ′(R) of temperate distributions is the dual set
of S(R) for the usual pairing.

Proposition 2.1 ([8]). Let B := {ξ ∈ Rd, |ξ| ≤ 4
3} and C := {ξ ∈ Rd, 3

4 ≤ |ξ| ≤ 8
3}. There exist

two radial functions χ ∈ C∞
c (B) and φ ∈ C∞

c (C) such that

χ(ξ) +
∑
q≥0

φ(2−qξ) = 1, ∀ξ ∈ Rd,

|q − q′| ≥ 2 ⇒ suppφ(2−q·) ∩ suppφ(2−q′ ·) = ∅,
q ≥ 1 ⇒ supp χ(·) ∩ suppφ(2−q·) = ∅ and

1

3
≤ χ(ξ)2 +

∑
q≥0

φ(2−qξ)2 ≤ 1, ∀ ξ ∈ Rd.

Furthermore, let h := F−1φ and h̃ := F−1χ. Then the dyadic operators ∆q and Sq can be
defined as

∆qf := φ(2−qD)f = 2qd
∫
Rd

h(2qy)f(x− y)dy, for q ≥ 0,

Sqf := χ(2−qD)f =
∑

−1≤k≤q−1

∆kf = 2qd
∫
Rd

h̃(2qy)f(x− y)dy, for q ∈ N,

∆−1f := S0f and ∆qf := 0 for q ≤ −2.

We shall also use the notation Squ :=
∑

k≤q−1 ∆ku. The formal equality u =
∑

q≥−1 ∆qu holds

in S ′(Rd) and is called the Littlewood-Paley decomposition.

Definition 2.2 ([1]). Let s ∈ R and 1 ≤ q, r ≤ ∞. The nonhomogeneous Besov space Bs
q,r is

defined as
Bs

q,r :=
{
f ∈ S ′(Rd) : ∥f∥Bs

q,r
< ∞

}
,

where

∥f∥Bs
q,r

:=


(∑

k∈Z 2
ksr∥∆kf∥rLq

)1/r
, for r < ∞,

supk∈Z 2
ks∥∆kf∥Lq , for r = ∞.

In the case s = ∞, we define B∞
q,r := ∩s∈RB

s
q,r.

In the following lemma, we list some important properties of Besov spaces.

Lemma 2.3 ([8, 9]). Suppose that s ∈ R, 1 ≤ q, r, qi, ri ≤ ∞, i = 1, 2. Then we have

(i) Topological properties: Bs
q,r is a Banach space which is continuously embedded in S ′.
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(ii) Density: C∞
c is dense in Bs

q,r, 1 ≤ q, r < ∞.

(iii) Embedding: Bs
q1,r1 ↪→ B

s−( 1
q1

− 1
q2

)
q2,r2 , if q1 ≤ q2 and r1 ≤ r2,

Bs2
q,r2 ↪→ Bs1

q,r1 locally compact, if s1 < s2.

(iv) Algebraic properties: ∀s > 0, Bs
q,r ∩ L∞ is an Banach algebra. Moreover, Bs

q,r is an
algebra, provided that s > n

q or s ≥ n
q and r = 1.

(v) Complex interpolation:

∥u∥Bs
q,r

≤ ∥u∥1−θ
B

s1
q,r

∥u∥θ
B

s2
q,r

, ∀u ∈ Bs1
q,r ∩Bs2

q,r, θ ∈ [0, 1].

(vi) Fatou’s lemma: If (un)n∈N is bounded in Bs
q,r and un → u in S ′, then u ∈ Bs

q,r and

∥u∥Bs
q,r

≤ lim inf
n→∞

∥un∥Bs
q,r

.

(vii) Let m ∈ R and f be an Sm-multiplier (i.e., f : Rn → R is smooth and satisfies that
∀α ∈ Nn, ∃ a constant Cα, such that |∂αf(ξ)| ≤ Cα(1 + |ξ|)m−|α| for all ξ ∈ Rn). Then
the operator f(D) is continuous from Bs

q,r to Bs−m
q,r .

Lemma 2.4 ([1]). Assume that 1 ≤ q, r ≤ ∞; the following estimates hold:

(1) For s > 0:

∥fg∥Bs
q,r(R) ≤ C

(
∥f∥Bs

q,r(R)∥g∥L∞(R) + ∥f∥L∞(R)∥g∥Bs
q,r(R)

)
,

where C is a constant independent of f and g.
(2) For s1 ≤ 1

q , s2 > 1
q (or s2 ≥ 1

q if r = 1), and s1 + s2 > 0:

∥fg∥Bs1
q,r(R) ≤ C∥f∥Bs1

q,r(R)∥g∥Bs2
q,r(R).

(3) In the Sobolev space Hs = Bs
2,2, for s > 0, we have:

∥f∂xg∥Hs ≤ C
(
∥f∥Hs+1∥g∥L∞ + ∥f∥L∞∥∂xg∥Hs

)
,

where C is a constant independent of f and g.

Now we state some useful results in the transport equation theory, which are crucial to the
proofs of our main theorems later.

Lemma 2.5 ([1, 8, 9]). Suppose that (q, r) ∈ [1,∞]2 and s > −d
q . Let v be a vector field such

that ∇v belongs to L1([0, T ];Bs−1
q,r ) if s > 1 + d

q or to L1([0, T ];B
d/q
q,r ∩ L∞) otherwise. Suppose

also that f0 ∈ Bs
q,r, F ∈ L1([0, T ];Bs

q,r) and that f ∈ L∞([0, T ];Bs
q,r) ∩ C([0, T ];S ′) solves the

d-dimensional linear transport equations

∂tf + v · ∇f = F,

f |t=0 = f0.
(2.1)

Then there exists a constant C depending only on s, q and d such that the following statements
hold:

(1) If r = 1 or s ̸= 1 + d
q , then

∥f∥Bs
q,r

≤ ∥f0∥Bs
q,r

+

∫ t

0

∥F (τ)∥Bs
q,r

dτ + C

∫ t

0

V ′(τ)∥f(τ)∥Bs
q,r

dτ

or

∥f∥Bs
q,r

≤ eCV (t)

(
∥f0∥Bs

q,r
+

∫ t

0

e−CV (τ)∥F (τ)∥Bs
q,r

dτ

)
(2.2)

hold, where

V (t) =


∫ t

0
∥∇v(τ)∥

B
d/q
q,r ∩L∞ dτ if s < 1 + d

q ,∫ t

0
∥∇v(τ)∥Bs−1

q,r
dτ otherwise.
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(2) If s ≤ 1+ d
q and, in addition, ∇f0 ∈ L∞, ∇f ∈ L∞([0, T ]×Rd) and ∇F ∈ L1([0, T ];L∞),

then

∥f(t)∥Bs
q,r

+ ∥∇f(t)∥L∞

≤ eCV (t)
(
∥f0∥Bs

q,r
+ ∥∇f0∥L∞ +

∫ t

0

e−CV (τ)
(
∥F (τ)∥Bs

q,r
+ ∥∇F (τ)∥L∞

)
dτ

)
with V (t) =

∫ t

0
∥∇v(τ)∥

B
d/q
q,r ∩L∞ dτ .

(3) If f = v, then for all s > 0, the estimate (2.2) holds with V (t) =
∫ t

0
∥∂xv(τ)∥L∞ dτ .

(4) If r < ∞, then f ∈ C([0, T ];Bs
q,r). If r = ∞, then f ∈ C([0, T ];Bs′

q,1) for all s′ < s.

We have established the local well-posedness of system (1.3).

2.2. Existence and lifespan of solutions.

Theorem 2.6. Assume that s > max{2+ 1
q ,

5
2}, with q ∈ [1,∞) and r ∈ [1,∞), and take (u0, η0) ∈

Bs
q,r × Bs−1

q,r . Then, for system (1.5), there exists a solution (u, η) in the space C([0, T ];Bs
q,r ×

Bs−1
q,r ), where the time T meets the condition

T < min
{ 1

4C
(
∥u0∥Bs

q,r
+ ∥η0∥Bs−1

q,r

) , 1

4C

}
.

Proof. Let {un}n≥0 and {ηn}n≥0 denote sequences of smooth functions with initial conditions
u0 = 0 and η0 = 0, solving the system below

un+1
t + unun+1

x = Φ−2 [∂x (η
n − un − γun

x)] ,

ηn+1
t + unηn+1

x = −ηnun
x − un

x ,

un+1(x, 0) = χn+1u0(x),

ηn+1(x, 0) = χn+1η0(x),

(2.3)

where χn+1 is a Friedrichs mollifier and Φ = (1− ∂2
x)

1
2 .

First, we establish that solutions to (2.3) remain uniformly bounded over a common lifespan.
By applying Lemma 2.5, for constants C1 and C2 that rely on s, q, r, we obtain

∥un+1(t)∥Bs
q,r

≤ eC1Vn(t)∥u0∥Bs
q,r

+ C1

∫ t

0

eC1Vn(t)−C1Vn(τ)
∥∥Φ−2

[
∂x

(
ηn − un − γun

x

)
(τ)

]∥∥
Bs

q,r
dτ

(2.4)

and

∥ηn+1(t)∥Bs−1
q,r

≤ eC2Vn(t)∥η0∥Bs−1
q,r

+ C2

∫ t

0

eC1Vn(t)−C1Vn(τ)
(
∥ηnun

x(τ)∥Bs−1
q,r

+ ∥un
x(τ)∥Bs−1

q,r

)
dτ,

(2.5)

where

Vn(t) =

∫ t

0

∥un
x(τ)∥Bs−1

q,r
dτ ≤

∫ t

0

∥un(τ)∥Bs
q,r

dτ. (2.6)

By Lemma 2.3(vii) , we have constant κ1 depending on s, q, r and γ, such that

∥Φ−2∂x(η
n − un − γun

x)∥Bs
q,r

≤ C(∥un∥Bs
q,r

+ γ∥un
x∥Bs−1

q,r
+ ∥ηn∥Bs−1

q,r
)

≤ κ1(∥un∥Bs
q,r

+ ∥ηn∥Bs−1
q,r

)
(2.7)

and by (vi) in Lemma 2.3, for some constant κ2 = κ2(s, q, r), it holds that

∥ηnun
x(τ)∥Bs−1

q,r
≤ κ2∥un∥Bs

q,r
∥ηn∥Bs−1

q,r
. (2.8)
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Using (2.7) in (2.4) and (2.8) in (2.5), and setting K1 := max{C1, κ1}, K2 := max{C2, κ2}, we
obtain

∥un+1(t)∥Bs
q,r

≤ eK1Vn(t)∥u0∥Bs
q,r

+K1

∫ t

0

eK1Vn(t)−K1Vn(τ)
(
∥un(τ)∥Bs

q,r
+ ∥ηn(τ)∥Bs−1

q,r

)
dτ

(2.9)
and

∥ηn+1(t)∥Bs−1
q,r

≤ eK2Vn(t)∥η0∥Bs−1
q,r

+K2

∫ t

0

eK2Vn(t)−K2Vn(τ)∥un∥Bs
q,r

∥ηn∥Bs−1
q,r

dτ

+K2

∫ t

0

eK2Vn(t)−K2Vn(τ)∥un∥Bs
q,r

dτ.

(2.10)

Taking C := 2max{K1,K2}, we combine (2.9) and (2.10) to write

∥un+1(t)∥Bs
q,r

+ ∥ηn+1(t)∥Bs−1
q,r

≤ eCVn(t)
(
∥u0∥Bs

q,r
+ ∥η0∥Bs−1

q,r

)
+ C

∫ t

0

eCVn(t)−CVn(τ)
(
∥un∥Bs

q,r
+ ∥ηn∥Bs−1

q,r

)
dτ

+ C

∫ t

0

eCVn(t)−CVn(τ)∥un∥Bs
q,r

∥ηn∥Bs−1
q,r

dτ

≤ eCVn(t)
(
∥u0∥Bs

q,r
+ ∥η0∥Bs−1

q,r

)
+ C

∫ t

0

eCVn(t)−CVn(τ)
(
∥un∥Bs

q,r
+ ∥ηn∥Bs−1

q,r

)
dτ

+ C

∫ t

0

eCVn(t)−CVn(τ)

(
∥un∥Bs

q,r
+ ∥ηn∥Bs−1

q,r

)2
2

dτ.

(2.11)

Next, we present a lemma establishing the maximal lifespan.

Lemma 2.7. Let (u, η) be the solution of the 2FW system (1.5). There exists a maximal lifespan
T as stated in Theorem 2.6, such that for all n ∈ N and t ∈ [0, T ],

∥un(t)∥Bs
q,r

+ ∥ηn(t)∥Bs−1
q,r

≤
2
(
∥u0∥Bs

q,r
+ ∥η0∥Bs−1

q,r

)
1− 4C

(
∥u0∥Bs

q,r
+ ∥η0∥Bs−1

q,r

)
t

and

∥un(t)∥Bs
q,r

+ ∥ηn(t)∥Bs−1
q,r

≤ 2
(
∥u0∥Bs

q,r
+ ∥η0∥Bs−1

q,r

)
. (2.12)

Proof. We proceed via induction. For base cases n = 0 and n = 1, the result holds trivially. Let
H0 := ∥u0∥Bs

q,r
+∥η0∥Bs−1

q,r
. Assuming the inductive hypothesis for n ∈ N, applying (2.6) and prior

inequalities yields, for all t ∈ [0, T ],

Vn(t) ≤ − 1

2C
ln (1− 4CH0t) .

Then for every t, τ ∈ [0, T ],

eCVn(t) ≤ (1− 4CH0t)
−1/2

,

which implies

eC(Vn(t)−Vn(τ)) ≤
(1− 4CH0τ

1− 4CH0t

)1/2

.

Plugging the results derived earlier into (2.11) leads to:

∥un+1(t)∥Bs
q,r

+ ∥ηn+1(t)∥Bs−1
q,r

≤ H0

(1− 4CH0t)
1/2

+
2CH0

(1− 4CH0t)
1/2

∫ t

0

1

(1− 4CH0τ)
1/2

dτ

+
2CH2

0

(1− 4CH0t)
1/2

∫ t

0

2CH0

(1− 4CH0t)
3/2

dτ

≤ H0

(1− 4CH0t)
1/2

+ 1− (1− 4CH0t)
1/2
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≤ 2H0

(1− 4CH0t)
1/2

.

Hence, the proof of Lemma 2.7 via induction is complete. □

Next, we aim to show that the sequence {(un, ηn)}n≥0 converges to a solution (u, η) of the system
(1.5). To do so, we apply Arzela-Ascoli’s theorem, with the objective of finding limit points u and
η for the sequences {un}n≥0 and {ηn}n≥0, where u ∈ C

(
[0, T ];Bs−1

q,r

)
and η ∈ C

(
[0, T ];Bs−2

q,r

)
.

According to Lemma 2.7, we know that the sequence {un}n≥0 is uniformly bounded within the
space C

(
[0, T ];Bs

q,r

)
, and the sequence {ηn}n≥0 is uniformly bounded in the space C([0, T ];Bs−1

q,r ).
For the application of Arzela-Ascoli’s theorem, it suffices to prove that the sequence {un}n≥0 is
equicontinuous in the space C

(
[0, T ];Bs−1

q,r

)
and the sequence {ηn}n≥0 is equicontinuous in the

space C([0, T ];Bs−2
q,r ). Take any t1, t2 ∈ [0, T ]. By the Mean Value Theorem,

∥un(t1)− un(t2)∥Bs−1
q,r

≤ |t1 − t2| sup
t∈[0,T ]

∥un
t ∥Bs−1

q,r
. (2.13)

From (2.3) we have

∥un
t ∥Bs−1

q,r
≤ ∥un−1un

x∥Bs−1
q,r

+ ∥Φ−2∂x
(
ηn−1 − un−1 − γun−1

x

)
∥Bs−1

q,r
.

As Bs−1
q,r is an algebra, using (2.7) we have

∥un
t ∥Bs−1

q,r
≤ ∥un−1∥Bs−1

q,r
∥un

x∥Bs−1
q,r

+ κ1

(
∥un−1∥Bs−1

q,r
+ ∥ηn−1∥Bs−2

q,r

)
. (2.14)

Using (2.12) in (2.14) and substituting the outcome into (2.13), we obtain

∥un(t1)− un(t2)∥Bs−1
q,r

≤ M1 · |t1 − t2|,

where M1 = 2H0(κ1 + 2H0). Thus {un}n≥0 is equicontinuous in C
(
[0, T ];Bs−1

q,r

)
and converges

to a limit u ∈ C
(
[0, T ];Bs−1

q,r

)
. Again, by the Mean Value theorem,

∥ηn(t1)− ηn(t2)∥Bs−2
q,r

≤ |t1 − t2| sup
t∈[0,T ]

∥ηnt ∥Bs−2
q,r

. (2.15)

Using (2.3), we have

∥ηnt ∥Bs−2
q,r

≤ ∥un−1ηnx∥Bs−2
q,r

+ ∥un−1
x ηn−1∥Bs−2

q,r
+ ∥un−1

x ∥Bs−2
q,r

.

And as Bs−2
q,r is an algebra, from (2.8) we obtain

∥ηnt ∥Bs−2
q,r

≤ ∥un−1∥Bs−2
q,r

∥ηnx∥Bs−2
q,r

+ κ2

(
∥un−1

x ∥Bs−1
q,r

∥ηn−1∥Bs−2
q,r

)
+ ∥un−1∥Bs−1

q,r
. (2.16)

Putting (2.12) in (2.16) and substituting the result in (2.15) yields

∥ηn(t1)− ηn(t2)∥Bs−2
q,r

≤ M2 · |t1 − t2|,

where M2 = 2H0[1 + 2(1 + κ2)H0]. Consequently, the sequence {ηn}n≥0 is equicontinuous in
C
(
[0, T ];Bs−2

q,r

)
and converges to a limit η ∈ C

(
[0, T ];Bs−2

q,r

)
. By Cantor’s diagonalization ar-

gument, for any test function φ ∈ C∞
c (R), the quantities ∥φun − φu∥Bs−1

q,r
and ∥φηn − φη∥Bs−2

q,r

converge uniformly to 0 on [0, T ] as n → ∞. Using the Fatou property of Besov spaces from
Lemma 2.3(vi), for all t ∈ [0, T ],

∥u(t)∥Bs
q,r

≤ lim inf
n→∞

∥un(t)∥Bs
q,r

,

∥η(t)∥Bs−1
q,r

≤ lim inf
n→∞

∥ηn(t)∥Bs−1
q,r

.

This implies u ∈ L∞ (
[0, T ];Bs

q,r

)
and η ∈ L∞ (

[0, T ];Bs−1
q,r

)
. Next, we demonstrate that u ∈

C
(
[0, T ];Bs

q,r

)
and η ∈ C

(
[0, T ];Bs−1

q,r

)
. It remains to prove that for every fixed t ∈ (0, T ),

lim
|t−t′|→0

∥u(t)− u(t′)∥Bs
q,r

= 0 (2.17)

and

lim
|t−t′|→0

∥η(t)− η(t′)∥Bs−1
q,r

= 0. (2.18)
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Let ε > 0. To establish (2.17), it suffices to select δ > 0 such that ∥u(t) − u(t′)∥Bs
q,r

< ε for all

t, t′ ∈ [0, T ] satisfying |t− t′| < δ. For any n ∈ N, by the triangle inequality,

∥u(t)− u(t′)∥Bs
q,r

≤ ∥u(t)− un(t)∥Bs
q,r

+ ∥un(t)− un(t′)∥Bs
q,r

+ ∥u(t′)− un(t′)∥Bs
q,r

.

By the Fatou property stated in Lemma 2.3(vi), we know that the sequence {un}n≥0 converges to
u in L∞([0, T ];Bs

q,r). Thus, there exists an N0 ∈ N such that

∥u(t)− un(t)∥Bs
q,r

<
ε

3
and ∥u(t′)− un(t′)∥Bs

q,r
<

ε

3
for all n ≥ N0. (2.19)

Choosing N > N0 sufficiently large, from (2.19) we have

∥u(t)− u(t′)∥Bs
q,r

≤ 2ε

3
+ ∥uN (t)− uN (t′)∥Bs

q,r
.

Since uN ∈ C([0, T ];Bs
q,r) by Lemma 2.7, there exists δ > 0 depending on N such that

∥uN (t)− uN (t′)∥Bs
q,r

<
ε

3
whenever |t− t′| < δ. (2.20)

Hence, (2.20) implies (2.17), and (2.18) follows by analogous reasoning. Therefore, we conclude
that (u, η) ∈ C([0, T ];Bs

q,r×Bs−1
q,r ), proving the existence of a solution to the 2FW system (2.3). □

2.3. Uniqueness.

Proposition 2.8. Let s > max
{
2 + 1

q ,
5
2

}
, q ∈ [1,∞], and r ∈ [1,∞). Consider two solutions

(u(1), η(1)) and (u(2), η(2)) of the 2FW system (2.3) in the space C([0, T ];Bs
q,r×Bs−1

q,r ), correspond-

ing to initial data (u
(1)
0 , η

(1)
0 ) and (u

(2)
0 , η

(2)
0 ) in Bs

q,r ×Bs−1
q,r . Define the difference variables

w = u(1) − u(2), v = η(1) − η(2), w0 = u
(1)
0 − u

(2)
0 , v0 = η

(1)
0 − η

(2)
0 .

Then, for some β ∈ R, the following inequality holds

∥w(t)∥Bs−1
q,r

+ ∥v(t)∥Bs−2
q,r

≤
(
∥w0∥Bs−1

q,r
+ ∥v0∥Bs−2

q,r

)
eβt. (2.21)

Proof. To establish the uniqueness of solutions to the 2FW system (2.3), we analyze the differ-
ence between two arbitrary solutions and apply Gronwall’s inequality. Specifically, consider the
difference variables w and v defined above. By leveraging the a priori estimates from Lemma 2.5,
combined with the algebraic properties (iv) and transport properties (v) of Besov spaces stated in
Lemma 2.3, we derive the differential inequality

d

dt

(
∥w(t)∥Bs−1

q,r
+ ∥v(t)∥Bs−2

q,r

)
≤ β

(
∥w(t)∥Bs−1

q,r
+ ∥v(t)∥Bs−2

q,r

)
.

Applying Gronwall’s inequality to this linear differential inequality yields the exponential bound
(2.21), which implies that the solution map is Lipschitz continuous with respect to the initial data.
This Lipschitz continuity guarantees the uniqueness of solutions in the space C([0, T ];Bs

q,r×Bs−1
q,r ).

The detailed computations follow standard techniques for hyperbolic systems and are omitted here
for brevity. □

2.4. Continuous dependence on initial Data. To demonstrate the continuous dependence of
solutions on initial data, we shall prove that the sequence of solutions (ui, ηi)i≥0 corresponding

to the approximating initial data (ui
0, η

i
0)i≥0 converges to the exact solution (u, η) in the space

C([0, T ];Bs
q,r ×Bs−1

q,r ), i.e.,

lim
i→∞

∥ui − u∥C([0,T ];Bs
q,r)

= 0, (2.22)

lim
i→∞

∥ηi − η∥C([0,T ];Bs−1
q,r ) = 0. (2.23)
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For an arbitrary ε > 0, consider the solution (ui
ε, η

i
ε) to the 2FW system (1.5) with regular-

ized initial data (χ1/εu
i
0, χ1/εη

i
0), and similarly denote (uε, ηε) as the solution corresponding to

(χ1/εu0, χ1/εη0). By the triangle inequality,

∥ui − u∥C([0,T ];Bs
q,r)

≤ ∥ui − ui
ε∥C([0,T ];Bs

q,r)
+ ∥ui

ε − uε∥C([0,T ];Bs
q,r)

+ ∥uε − u∥C([0,T ];Bs
q,r)

.
(2.24)

The first and third terms on the right-hand side of (2.24) display analogous analytical properties,
thus only one component requires estimation. For simplicity, we focus on the final term. Let
(un, ηn) denote the approximate solution to the linear transport system (2.3) with initial data
(χnu0, χnη0). This yields

∥uε − u∥C([0,T ];Bs
q,r)

≤ ∥uε − un∥C([0,T ];Bs
q,r)

+ ∥un − u∥C([0,T ];Bs
q,r)

. (2.25)

From the lifespan analysis in Section 2.2, the convergence limn→∞ ∥un − u∥C([0,T ];Bs
q,r)

= 0 holds.

This ensures the existence of N1 ∈ N such that

∥un − u∥C([0,T ];Bs
q,r)

≤ ε

6
for all n ≥ N1.

Let (un
ε , η

n
ε ) stand for the approximate solution of system (2.3) that corresponds to the mollified

initial data (χnχ1/εu0, χnχ1/εη0). Then, by examining the first term on the right hand side of
(2.25), we arrive at

∥uε − un∥C([0,T ];Bs
q,r)

≤ ∥uε − un
ε ∥C([0,T ];Bs

q,r)
+ ∥un

ε − un∥C([0,T ];Bs
q,r)

. (2.26)

As Section 2.2 demonstrates that limn→∞ ∥un
ε −uε∥C([0,T ];Bs

q,r)
= 0, there exists N2 ∈ N such that

∥un
ε − uε∥C([0,T ];Bs

q,r)
≤ ε

12
for all n ≥ N2.

Let wn
ε = un

ε − un and vnε = ηnε − ηn. Then (wn
ε , v

n
ε ) satisfies the linear transport system (2.3)

with initial data

wn
ε (0, x) = χnχ1/εu0(x)− χnu0(x),

vnε (0, x) = χnχ1/εη0(x)− χnη0(x).

Taking 1/ε sufficiently large and applying the linear transport estimate from Lemma 2.5, we obtain

∥wn
ε ∥C([0,T ];Bs

q,r)
≤ ∥χnχ1/εu0 − χnu0∥C([0,T ];Bs

q,r)
≤ ε

12
.

Hence, from (2.26) we deduce that ∥uε−un∥C([0,T ];Bs
q,r)

≤ ε
6 for all n ≥ N2. LetN3 = max(N1, N2).

Then (2.25) shows ∥uε − u∥C([0,T ];Bs
q,r)

< ε
3 and (2.24) yields that for all i ≥ N3,

∥ui − u∥C([0,T ];Bs
q,r)

≤ ε

3
+ ∥ui

ε − uε∥C([0,T ];Bs
q,r)

+
ε

3
. (2.27)

Given that the mollified initial data (χ1/εu
i
0, χ1/εη

i
0) and (χ1/εu0, χ1/εη0) lie in Bs+1

q,r × Bs
q,r, the

corresponding solutions (ui
ε, η

i
ε) and (uε, ηε) belong to C([0, T ];Bs+1

q,r × Bs
q,r). We define wi

ε =

ui − ui
ε, v

i
ε = ηi − ηiε, and (wi

ε, v
i
ε) obeys the linear transport equations

∂tw
i
ε + uε∂xw

i
ε = −wi

ε∂xu
i
ε +Φ−2[∂x(v

i
ε − wi

ε − γ∂xw
i
ε)],

∂tv
i
ε + uε∂xv

i
ε = −wi

ε∂xη
i
ε − viε∂xu

i
ε − ηε∂xw

i
ε − ∂xw

i
ε.

(2.28)

Using Lemma 2.5 on the first equation of system (2.28), we have

∥ui
ε − uε∥Bs

q,r
≤ ∥ui

0 − u0∥Bs
q,r

.

Since {ui
0}i≥0 converges to u0, there exists an n0 ∈ N such that ∥ui

ε − uε∥Bs
q,r

< ε
3 for all i ≥ n0.

Set n1 = max(N3, n0). Therefore, (2.27) implies that for every i ≥ n1,

∥ui − u∥C([0,T ];Bs
p,r)

< ε.

which proves (2.22).
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Now we prove (2.23). Similarly, we have

∥ηi − η∥C([0,T ];Bs−1
q,r )

≤ ∥ηi − ηiε∥C([0,T ];Bs−1
q,r ) + ∥ηiε − ηε∥C([0,T ];Bs−1

q,r ) + ∥ηε − η∥C([0,T ];Bs−1
q,r ).

(2.29)

Applying the triangle inequality to the last term on the right-hand side, we obtain

∥ηε − η∥C([0,T ];Bs−1
q,r ) ≤ ∥ηε − ηn∥C([0,T ];Bs−1

q,r ) + ∥ηn − η∥C([0,T ];Bs−1
q,r ). (2.30)

Similarly, limn→∞ ∥ηn−η∥C([0,T ];Bs−1
q,r ) = 0 as shown in Subsection 2.2, hence there exists N4 ∈ N

such that ∥ηn − η∥C([0,T ];Bs−1
q,r ) <

ε
6 for all n ≥ N4. The first term on the right-hand side of (2.30)

implies

∥ηε − ηn∥C([0,T ];Bs−1
q,r ) ≤ ∥ηε − ηε

n∥C([0,T ];Bs−1
q,r ) + ∥ηεn − ηn∥C([0,T ];Bs−1

q,r ). (2.31)

Using a similar technique to that in (2.26), we obtain N5 ∈ N such that ∥ηεn − ηε∥C([0,T ];Bs−1
q,r ) <

ε/12 for all n ≥ N5. Recall that wε
n = uε

n − un and vε
n = ηε

n − ηn. Then system (2.3) with
initial data is solved by (wε

n, vε
n), which implies

wn
ε (0, x) = χnχ1/εu0(x)− χnu0(x),

vnε (0, x) = χnχ1/εη0(x)− χnη0(x).

Reapplying the linear transport estimate from Lemma 2.5 and selecting 1/ε sufficiently large, we
derive

∥vεn∥C([0,T ];Bs−1
q,r ) ≤ ∥χnχ1/εη0 − χnη0∥C([0,T ];Bs−1

q,r ) <
ε

12
.

Replacing this in (2.31) yields that ∥ηε − ηn∥C([0,T ];Bs−1
q,r ) < ε

6 for all n ≥ N5. Set N6 =

max{N4, N5}. Then we have ∥ηε − η∥C([0,T ];Bs−1
q,r ) < ε

3 from (2.30). Consequently, (2.29) im-

plies that for all i ≥ N6,

∥ηi − η∥C([0,T ];Bs−1
q,r ) <

ε

3
+ ∥ηεi − ηε∥C([0,T ];Bs−1

q,r ) +
ε

3
. (2.32)

Now, using Lemma 2.5 for the second equation in (2.28) we obtain

∥ηεi − ηε∥Bs−1
q,r

≤ ∥η0i − η0∥Bs−1
q,r

.

Given the convergence of {η0i}i≥0 to η0, there exists n2 ∈ N such that ∥ηεi − ηε∥Bs−1
q,r

< ε
3 for all

i ≥ n2. We define n3 = max{N6, n2}. Then, applying (2.32), we derive that for every i ≥ n3,

∥ηi − η∥C([0,T ];Bs−1
q,r ) < ε,

thereby establishing (2.23).
This completes the proof of local well-posedness for the 2FW system (1.5) in Besov spaces

Bs
q,r ×Bs−1

q,r where s > max{2 + 1
q ,

5
2}.

3. Blow-up criterion

We now establish a blow-up criterion for solutions to (1.4). To this end, we first introduce the
ordinary equation governing the flow generated by u:

dq(t, x)

dt
= u(t, q(t, x)), x ∈ R, t ∈ [0, T ),

q(0, x) = x, x ∈ R.
(3.1)

Consequently, equation (3.1) yields a unique solution q ∈ ([0, T ) × R) where q(t, x) is strictly
increasing in x satisfying

qx(t, x) = exp
(∫ t

0

ux(τ, q(τ, x)) dτ
)
> 0,
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for all (t, x) ∈ [0, T ) × R. Additionally, the mapping q(t, ·) : R → R is a diffeomorphism for
each t ∈ [0, T ). As a result, for any u ∈ L∞(R), the flow generated by q preserves its L∞-norm,
specifically,

∥u(t, x)∥L∞ = ∥u(t, q(t, x))∥L∞ .

By employing an approach similar to that in [13], we establish the following lemma.

Lemma 3.1. Let (u0, ρ0) ∈ Hs × Hs−1, s > 3
2 , and T be the maximal existence time of the

corresponding solution of (1.4). Then we have

ρ(t, q(t, x))qx(t, x) = ρ0(x).

To establish the blow-up criterion for system (1.4), we first introduce the following lemmas.

Lemma 3.2 ([16]). If r > 0, then Hr ∩L∞ is an algebra. There exists a positive constant C only
depending on r such that

∥fg∥Hr ≤ C
(
∥f∥L∞∥g∥Hr + ∥g∥L∞∥f∥Hr

)
.

Lemma 3.3 ([16]). Let r > 0, if f ∈ Hr ∩W 1,∞ and g ∈ Hr−1 ∩L∞, then there exists a positive
constant C only depending on r such that

∥[Φr, f ]g∥L2 ≤ C
(
∥∂xf∥L∞ |Φr−1g∥L2 + ∥g∥L∞∥Φrf∥L2

)
,

where [A,B] denotes the commutator of the linear operators A and B, Φ = (1− ∂2
x)

1/2.

Lemma 3.4 ([5]). Let r > 0, if f ∈ Hr+1 ∩W 1,∞ and g ∈ Hr ∩ L∞, then there exists a positive
constant C only depending on r such that

∥[Φr, f ]∂xg∥L2 ≤ C
(
∥∂xf∥L∞∥Φrg∥L2 + ∥g∥L∞∥Φr+1f∥L2

)
,

where Φ = (1− ∂2
x)

1/2.

The following lemma establishes the conservation of ∥ρ∥L1 and shows that ∥u∥L2 has an expo-
nential bound in time t.

Lemma 3.5. Let (u, ρ) be the strong solution in Lemma 2.7. If ρ0 does not change sign on R,
then

∥ρ∥L1 = ∥ρ0∥L1 , ∥u∥L2 ≤
(∥ρ0∥L1

4γ
+ ∥u0∥L2

)
e2γt − 1

4γ
∥ρ0∥L1 , ∀t ∈ [0, T ).

Proof. By considering the second equation in (1.4), we infer that

d

dt

∫
R
ρ dx = − d

dt

∫
R
(ρux)(t, x) dx = 0.

By the sign-preservation theorem (as established in [22]), the ∥ρ∥L1 remains conserved provided the
initial density ρ0 does not change sign on R. Multiplying the first equation in (1.4) by u, integrating
by parts, and invoking Hölder’s inequality together with Young’s convolution inequality, we deduce

∥u∥L2

d

dt
∥u∥L2 =

1

2

d

dt

∫
R
u2 dx

= −
∫
R
u2ux dx−

∫
R
u(Λ ∗ ux) dx+

∫
R
u(Λx ∗ ρ) dx− γ

∫
R
u(Λ ∗ u) dx+ γ

∫
R
u2 dx

≤ ∥u∥L2∥Λx ∗ ρ∥L2 + γ∥u∥2L2 + γ∥u∥L2∥Λ ∗ u∥L2

≤ 1

2
∥ρ0∥L1∥u∥L2 + 2γ∥u∥2L2 .

Therefore,
d

dt
∥u∥L2 ≤ 1

2
∥ρ0∥L1 + 2γ∥u∥L2 .

Using ODE theory we obtain that

∥u∥L2 ≤
(∥ρ0∥L1

4γ
+ ∥u0∥L2

)
e2γt − 1

4γ
∥ρ0∥L1 .

The proof of Lemma 3.5 is therefore complete. □
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Now, we present ta blow-up criterion.

Lemma 3.6. Let (u0, ρ0) ∈ Hs×Hs−1 with s ≥ 2, and let (u, ρ) be the unique solution to system
(1.4) corresponding to this initial data. Suppose T > 0 is the maximal existence time. Then, if
T < ∞, it must hold that ∫ T

0

∥ux(t)∥L∞(R) dt = ∞.

Moreover, the solution blows up in finite time T > 0 if and only if

lim inf
t→T

inf
x∈R

ux(t, x) = −∞. (3.2)

Proof. Observe that Λ∗f = Φ−2f . Applying the operator (Φsu)Φs to the first equation in system
(1.4) and integrating over the spatial variable x, we obtain

1

2

d

dt

∫
R
(Φsu)2 dx = −

∫
R
ΦsuΦs(uux) dx+

∫
R
ΦsuΦs−2ρx dx−

∫
R
ΦsuΦs−2ux dx

+ γ

∫
R
ΦsuΦsu dx− γ

∫
R
ΦsuΦs−2u dx

= −
∫
R
ΦsuΦs(uux) dx−

∫
R
Φs−1ux Φ

s−1ρ dx

+ γ

∫
R
ΦsuΦsu dx− γ

∫
R
ΦsuΦs−2u dx

≤ −
∫
R
ΦsuΦs(uux) dx−

∫
R
Φs−1ux Φ

s−1ρ dx+ 2γ∥u∥2Hs .

(3.3)

Using Hölder’s inequality and Lemma 3.3, we have∣∣ ∫
R
ΦsuΦs(uux) dx

∣∣
=

∣∣ ∫
R
Φsu[Φs, u]ux dx+

∫
R
uΦsuΦsux dx

∣∣
≤ ∥[Φs, u]ux∥L2∥Φsu∥L2 +

1

2
|(uxΦ

su,Φsu)|

≤ C
(
∥ux∥L∞ ∥Φs−1ux∥L2 + ∥Φsu∥L2 ∥ux∥L∞

)
∥u∥Hs +

1

2
∥ux∥L∞ ∥u∥2Hs

≤ C∥ux∥L∞ ∥u∥2Hs .

(3.4)

Similarly, we obtain ∣∣ ∫
R
Φs−1uxΦ

s−1ρ dx
∣∣ ≤ C∥u∥Hs∥ρ∥Hs−1 . (3.5)

Substituting (3.4) and (3.5) into (3.3) gives

d

dt

∫
R
(Φsu)2 dx ≤ C∥u∥Hs (∥ux∥L∞∥u∥Hs + ∥ρ∥Hs−1 + 2γ∥u∥Hs) . (3.6)

Next, applying (Φs−1ρ)Φs−1 to the second equation in (1.4) and integrating over R, we find

1

2

d

dt

∫
R
(Φs−1ρ)2dx = −

∫
R
Φs−1ρΦs−1(ρxu)dx−

∫
R
Φs−1ρΦs−1(ρux)dx.

Recall that Φs−1(ρux) = [Φs−1, ρ]ux+ρΦs−1ux. Employing Lemmas 3.2, 3.4 and Hölder inequality,
we arrive at∣∣ ∫

R
Φs−1ρΦs−1(ρxu)dx

∣∣ = ∣∣∣ ∫
R
Φs−1ρ[Φs−1, u]ρxdx+

∫
R
uΦs−1ρΦs−1ρxdx

∣∣∣
≤ C(∥ux∥L∞∥ρ∥2Hs−1 + ∥u∥Hs∥ρ∥Hs−1∥ρ∥L∞)

and ∣∣ ∫
R
Φs−1ρΦs−1(ρux)dx

∣∣ ≤ C∥ρ∥Hs−1(∥ρ∥Hs−1∥ux∥L∞ + ∥ρ∥L∞∥ux∥Hs−1).
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From the above, we obtain

d

dt

∫
R
(Φs−1ρ)2dx ≤ C∥ρ∥Hs−1(∥ux∥L∞∥ρ∥Hs−1 + ∥u∥Hs∥ρ∥L∞). (3.7)

Adding (3.6) and (3.7), followed by the application of the Cauchy-Schwarz inequality, yields

d

dt

∫
R
[(Φsu)2 + (Φs−1ρ)2]dx ≤ C(∥u∥2Hs + ∥ρ∥2Hs−1)(1 + 2γ + ∥ux∥L∞ + ∥ρ∥L∞).

By Gronwall’s inequality, we obtain

∥u(t)∥2Hs + ∥ρ(t)∥2Hs−1 ≤ CeC
∫ t
0
(1+2γ+∥ux(τ)∥L∞+∥ρ(τ)∥L∞ ) dτ ,

where C > 0 is a constant depending on ∥u0∥Hs and ∥ρ0∥Hs−1 .
Since ∥ρ∥L∞ can be controlled by ∥ux∥L∞ (via Lemma 3.1), it follows that if the maximal

existence time T < ∞ and

lim sup
t→T

(∥u(t)∥Hs + ∥ρ(t)∥Hs−1) = ∞,

then necessarily ∫ T

0

∥ux(t)∥L∞ dt = ∞. (3.8)

Now assume that (3.2) is not satisfied, i.e., there exists A > 0 such that

ux(t, x) ≥ −A, ∀(t, x) ∈ [0, T )× R. (3.9)

Then Lemma 3.1 implies
|ρ(t, q(t, x))| ≤ |ρ0(x)|eAt. (3.10)

As a preliminary step, we establish an a priori bound for ∥u∥H1 + ∥ρ∥L2 . Applying the operator
Φ2 = 1− ∂2

x to the first equation in system (1.4) yields

ut − uxxt = −Φ2uux + ρx − ux − γuxx.

By multiplying equation by u and integrating over R, and using the Cauchy-Schwarz inequality
together with assumption (3.9), we derive the following estimate,

1

2

d

dt

∫
R

(
u2 + u2

x

)
dx = −

∫
R
u2ux dx+

∫
R
u∂2

x(uux) dx+

∫
R
uρx dx

−
∫
R
uux dx− γ

∫
R
uuxx dx

=

∫
R
uuxuxx dx−

∫
R
ρux dx+ γ

∫
R
u2
x dx

= −1

2

∫
R
u3
x dx−

∫
R
ρux dx+ γ

∫
R
u2
x dx

≤ 1

2
A

∫
R
u2
x dx+

1

2

∫
R
u2
x dx+

1

2

∫
R
ρ2 dx+ γ

∫
R
u2
x dx.

(3.11)

Similarly, we next multiply the second equation in (1.4) by ρ, to find after some computation that

1

2

d

dt

∫
R
ρ2dx = −

∫
R
ρρxudx−

∫
R
ρ2uxdx = −1

2

∫
R
uxρ

2dx ≤ 1

2
A

∫
R
ρ2dx. (3.12)

Combining (3.11) and (3.12), we obtain

d

dt

∫
R
(u2 + u2

x + ρ2)dx ≤ (1 + 2γ +A)

∫
R
(u2 + u2

x + ρ2)dx.

Using Gronwall’s inequality, we have

∥u∥2H1 + ∥ρ∥2L2 ≤ Ce(1+2γ+A)t, (3.13)

holds for every t ∈ [0, T ), where C = C(∥u0∥H1 , ∥ρ0∥L2).
We fix x ∈ R, and denote

p(t) = ux(t, q(t, x))−
γ

2
,
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for t ∈ [0, T ), where q(t, x) is determined in (3.1). Differentiating the first equation in (1.4) with
respect to x and using the identity ∂2

xΛ ∗ f = Λ ∗ f − f lead to

uxt + u2
x + uuxx = Λ ∗ (ρ− u− γux)− (ρ− u− γux). (3.14)

Using Young’s inequality, the Sobolev embedding Hs(R) ↪→ L∞(R) for s > 1
2 and (3.14), it follows

that
dp

dt
= −u2

x + Λ ∗ (ρ− u− γux)− (ρ− u− γux)

≤ −
(
u2
x − γux +

γ2

4

)
+

γ2

4
+ |ρ|+ |u|+ 1

2
∥ρ∥L∞ +

1 + γ

2
∥u∥L2

≤ −p2 +
γ2

4
+

3

2
∥ρ∥L∞ +

3 + γ

2
C∥u∥H1 .

(3.15)

Combining (3.10), (3.13) and (3.15), we derive

p′(t) ≤ −p2 +
γ2

4
+

3

2
∥ρ0∥L∞eAt +

3 + γ

2
Ce(

1+2γ+A
2 )t

≤ −p2 +
γ2

4
+ C(1 + γ + ∥ρ0∥L∞)e(

1+2γ
2 +A)t.

(3.16)

We introduce the function

F (t) = p(t)− ∥u0,x∥L∞ −
√

γ2

4
+ C(1 + γ + ∥ρ0∥L∞)e(

1+2γ
2 +A)t.

At t = 0, it holds that

F (0) = u0,x − γ

2
− ∥u0,x∥L∞ −

√
γ2

4
+ C(1 + γ + ∥ρ0∥L∞) < 0.

We now claim that

F (t) ≤ 0, ∀t ∈ [0, T ). (3.17)

Assume to the contrary that there exists t0 ∈ [0, T ) such that F (t0) > 0. We define

t1 := min{t < t0 : F (t) = 0}.

Then F (t1) = 0 and F ′(t1) ≥ 0, which imply that

p(t1) = ∥u0,x∥L∞ +

√
γ2

4
+ C(1 + γ + ∥ρ0∥L∞)e(

1+2γ
2 +A)t1

and

p′(t1) ≥
C(1 + γ + ∥ρ0∥L∞)

(
1+2γ

2 +A
)
e(

1+2γ
2 +A)t1

2

√
γ2

4 + C(1 + γ + ∥ρ0∥L∞)e(
1+2γ

2 +A)t1
> 0. (3.18)

However, from (3.16) it follows that

p′(t1) ≤ −
(
∥u0,x∥L∞ +

√
γ2

4
+ C(1 + γ + ∥ρ0∥L∞)e(

1+2γ
2 +A)t1

)2

+
γ2

4
+ C(1 + γ + ∥ρ0∥L∞)e(

1+2γ
2 +A)t1 < 0,

which contradicts (3.18). Therefore, (3.17) holds. Since x ∈ R is arbitrary and the flow map q(t)
preserves the L∞-norm, we conclude that for all t ∈ [0, T ),

sup
x∈R

{
ux(t, x)−

γ

2

}
≤ ∥u0,x∥L∞ +

√
γ2

4
+ C(1 + γ + ∥ρ0∥L∞)e(

1+2γ
2 +A)t.

Hence, we obtain the estimate

|ux(t, ·)| ≤ Ce(
1+2γ

2 +A)t,

where C = C(∥u0∥Hs , ∥ρ0∥Hs−1). Combining this with (3.8) yields that the maximal existence
time T = ∞, which contradicts the assumption T < ∞.
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On the other hand, due to the Sobolev embedding Hs(R) ↪→ L∞(R) for s > 1
2 , we conclude

that if condition (3.2) holds, then the corresponding solution must blow up in finite time. This
completes the proof of Lemma 3.6. □

In deriving the finite-time blow-up results of the 2FW system (1.4), our initial step involves
analyzing the Riccati-type inequality

dm(t)

dt
≤ −αm2(t) + f(t) a.e. for t ≥ 0. (3.19)

Proposition 3.7 ([19]). Let α be a positive constant, f(t) ( ̸≡ Const.) be a positive, differentiable,
and nondecreasing function for t ≥ 0. Assume that m(t) is a continuous and almost everywhere
differentiable function satisfying (3.19). Additionally, suppose that the initial value m0 = m(0)(<
0) satisfies

m0 ≤ −

√
1

αt0

(∫ t0

0

f(s)ds−m0

)
,

where t0 is the smallest positive root of the equation αm2
0 − f(t) = 0. Then there exists a finite

time T ∈ (0, t0] such that m(t) is monotonically decreasing in [0, T ) and blows up in the time T
in the sense that

lim inf
t→T

m(t) = −∞.

Moreover, the blow-up rate can be estimated by

m(t) ≤ − α

T − t
as t → T.

In this article, we define f(t) = aebt + c, where a, b, c ≥ 0. Based on this definition, we derive
the following important results, which extend the applicability of Riccati-type inequalities and
offer new insights into the blow-up behavior of system (1.4).

Corollary 3.8. Assume constants α > 0, a > 0, b ≥ 0, c ≥ 0 and a continuous, almost everywhere
differentiable function p(t) satisfying

dp(t)

dt
≤ −αp2(t) + aebt + c a.e. for t ≥ 0. (3.20)

If the initial value p0 = p(0) < 0 satisfies

p0 ≤ −
√

1

α

(a
b
ebt0 + ct0 − p0 −

a

b

)
, (3.21)

then there exists a finite time 0 < T ≤ T̂ such that m(t) decreases monotonically on [0, T ) and
blows up in the time T in the sense that

lim inf
t→T

p(t) = −∞.

Here, T̂ is bounded by

0 < T̂ ≤ ln
αp20 − c

a
.

Proof. We introduce an auxiliary function defined as

P (t) = αp20t−
∫ t

0

(aebs + c) ds+ p0.

The first and second derivatives of the function are given by

P ′(t) = αp20 − (aebt + c) and P ′′(t) = −abebt.

Note that t0 is the smallest positive root of the equation αp20 −
(
aebt + c

)
= 0. Follows directly

from the properties of f(t) that

P ′(t) ≥ P ′(t0) = 0, ∀t ∈ [0, t0],
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this implies P (t) is monotonically increasing over [0, t0]. Given P (0) = p0 < 0 and P (t0) ≥ 0

(from (3.21)), the Mean Value Theorem ensures the existence of T̂ ∈ [0, t0] such that

P (T̂ ) = 0 and P ′(T̂ ) ≥ 0. (3.22)

Specifically:

(1) If P (t0) = 0, set T̂ = t0.
(2) If P (t0) > 0, applying the Mean Value Theorem to the continuous function P (t) on [0, t0]

guarantees the existence of T̂ ∈ (0, t0) such that

P (T̂ ) = 0 and P ′(T̂ ) ≥ P ′(t0) = 0,

this thereby verifies (3.22) holds.

For the time T̂ established earlier, we assert that if p(t) is defined on [0, T̂ ) and satisfies the
inequality (3.20) with the constraint (3.21), then

p′(t) < 0, ∀t ∈ [0, T̂ ). (3.23)

Given condition (3.21), we derive that

p0 ≤ −
√

1

αt0
((a+ c)t0 − p0) < −

√
a+ c

α
,

furthermore, the inequality (3.20) implies p′(0) < 0. Assuming the contrary, there exists a time

t̃ ∈ (0, T̂ ) such that

p′(t̃) = 0 and p′(t) < 0, ∀t ∈ [0, t̃).

Invoking (3.20) and (3.22), we derive

0 = p′(t̃) ≤ −αp2(t̃) + f(t̃) < −αp2(0) + f(T̂ ) = −P ′(T̂ ) ≤ 0.

This contradiction necessarily implies the correctness of (3.23) for all t ∈ [0, T̂ ). Additionally, we
obtain

p(t) ≤ p0 < 0, ∀t ∈ [0, T̂ ). (3.24)

Re-examining (3.20), for t ∈ [0, T̂ ), (3.24) directly implies

p′(t) ≤ −αp2(t) +
p2(t)

p20(0)
f(t) =

( 1

p20
f(t)− α

)
p2(t).

By solving the inequality, we derive that

1

p0
− 1

p(t)
≤ 1

p20

∫ t

0

f(s) ds− αt, t ∈ [0, T̂ ),

thus,

p(t) ≤
( 1

p0
− 1

p20

∫ t

0

f(s) ds+ αt
)−1

=
p20
P (t)

, t ∈ [0, T̂ ).

Given the monotonic increase of P (t) over [0, T̂ ) and the condition P (T̂ ) = 0, the preceding

inequality implies that p(t) decreases monotonically and undergoes finite-time blow-up at T ≤ T̂ ,

where the critical time T̂ satisfies 0 < T̂ ≤ ln
αp2

0−c
a . So, the desired result follows. □

Remark 3.9. Unlike the form of f(t) commonly used in existing studies on Riccati-type inequali-
ties, this paper adopts an exponential form for f(t). This choice is motivated by the inclusion of a
dissipation term in system (1.4), which causes the L2-norm of u, to be governed by an exponential
function. Through this corollary, we extend the functional form of f(t) in Riccati-type inequalities
and derive the following blow-up results.
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4. Blow-up data

In mathematical models for water waves, wave breaking refers to the scenario where the solution
remains uniformly bounded in amplitude, yet its spatial derivative becomes singular within finite
time. Understanding the formation of such singularities is essential for the theoretical study of
nonlinear wave dynamics. In this section, we investigate the onset of wave-breaking behavior
and establish new blow-up conditions for the Cauchy problem associated with system (1.4). In
addition, we examine the influence of different classes of initial data on the development of finite-
time singularities, highlighting the critical role played by the initial wave profile.

We now present the three blow-up results of this paper. As a direct consequence of the gener-
alized Riccati-type inequality established in Corollary 3.8, we rigorously prove the first blow-up
scenario under critical energy conditions.

Theorem 4.1. Let (u0, ρ0) ∈ Hs ×Hs−1 for s > 3
2 . If ρ0 does not change sign on R and there

exist some x0 ∈ R such that ρ0(x0) = 0| and

u0,x(x0) ≤ −

√
B

2γ
e2γt0 + Ct0 − u0,x(x0)−

B

2γ
+

γ

2
. (4.1)

Then the solution to (1.4) blows up at the time T0 estimated by 0 < T0 ≤ ln
u0,x(x0)

2−C
B . where

B =
(γ2 + 2γ + 1 + |2γ − 2|

8γ2
∥ρ0∥L1 +

γ2 + 3γ + 2

2γ
∥u0∥L2 + |u0|

)
,

C =
4γ2 + |3γ − 1|

8γ2
∥ρ0∥L1 +

γ2

4
.

Proof. By examining the dynamics of u(t, q(t, x0)) along the characteristics q(t, x0) given by (3.1),
we derive

d

dt
u(t, q(t, x0)) = (ut + uux)(t, q(t, x0))

= Λx ∗ (ρ− u− γux)(t, q(t, x0))

= (Λx ∗ (ρ− u) + γu− γΛ ∗ u)(t, q(t, x0)),

then, by convolution young inequality and Lemma 3.5, we have∣∣(du
dt

− γu)(t, q(t, x0))
∣∣ ≤ Λx ∗ (ρ− u)(t, q(t, x0))− γΛ ∗ u(t, q(t, x0))

≤ ∥Λx∥L∞∥ρ∥L1 + ∥Λx∥L2∥u∥L2 + γ∥Λ∥L2∥u∥L2

=
1

2
∥ρ0∥L1 +

1 + γ

2

[(∥ρ0∥L1

4γ
+ ∥u0∥L2

)
e2γt − 1

4γ
∥ρ0∥L1

]
=

3γ − 1

8γ
∥ρ0∥L1 +

(γ + 1

8γ
∥ρ0∥L1 +

γ + 1

2
∥u0∥L2

)
e2γt.

Therefore,

(
du

dt
− γu)(t, q(t, x0)) ≤

3γ − 1

8γ
∥ρ0∥L1 +

(γ + 1

8γ
∥ρ0∥L1 +

γ + 1

2
∥u0∥L2

)
e2γt,

invoking the classical theory of ordinary differential equations, we derive that

u ≤ eγt
[ ∫ s

0

(3γ − 1

8γ
∥ρ0∥L1e−γs +

(γ + 1

8γ
∥ρ0∥L1 +

γ + 1

2
∥u0∥L2

)
eγs

)
ds+ u0

]
≤

( |2γ − 2|+ r + 1

8γ2
∥ρ0∥L1 +

γ + 1

γ
∥u0∥L2 + |u0|

)
e2γt +

|3γ − 1|
8γ2

∥ρ0∥L1 ,

similarly, we have

(
du

dt
− γu)(t, q(t, x0)) ≥ −

[3γ − 1

8γ
∥ρ0∥L1 +

(γ + 1

8γ
∥ρ0∥L1 +

γ + 1

2
∥u0∥L2

)
e2γt

]
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and

u ≥ −
[( |2γ − 2|+ r + 1

8γ2
∥ρ0∥L1 +

γ + 1

γ
∥u0∥L2 + |u0|

)
e2γt +

|3γ − 1|
8γ2

∥ρ0∥L1

]
,

so, we obtain

|u| ≤
( |2γ − 2|+ γ + 1

8γ2
∥ρ0∥L1 +

γ + 1

γ
∥u0∥L2 + |u0|

)
e2γt

+
|3γ − 1|
8γ2

∥ρ0∥L1 , ∀t ∈ [0, T ).

(4.2)

Set m(t) = ux(t, q(t, x0)), n(t) = ρ(t, q(t, x0)), p(t) = ux(t, q(t, x0)) − γ
2 . Along with the

trajectory of q(t, x0), one has
dn

dt
= −mn,

combining this with n(0) = ρ0(x0) = 0, we have

n(t) = n(0) exp
(
−
∫ t

0

m(τ) dτ
)
= 0.

Next, differentiating the first equation of (1.4) with respect to x, we obtain, with the help of
the relation ∂2

xΛ ∗ f = −f + Λ ∗ f ,
utx + uuxx = −u2

x − (ρ− u− γux) + Λ ∗ (ρ− u− γux),

which together with (3.1) and estimate (4.2), leads to

dp

dt
= (utx + uuxx)(t, q(t, x0))

= −u2
x + [u− ρ+ γux + Λ ∗ (ρ− u− γux)](t, q(t, x0))

≤ −(ux − γ

2
)2 + u+

1

2
∥ρ0∥L1 +

γ + 1

2
∥u∥L2 +

γ2

4

≤ −p2 +
1

2
∥ρ0∥L1 +

γ2

4
+

|3γ − 1|
8γ2

∥ρ0∥L1 − 1

4γ
∥ρ0∥L1

+
( |2γ − 2|+ γ + 1

8γ2
∥ρ0∥L1 +

γ + 1

γ
∥u0∥L2 + |u0|

)
e2γt

+
(γ + 1

8γ
∥ρ0∥L1 +

γ + 1

2
∥u0∥L2

)
e2γt

≤ −p2 +
4γ2 + |3γ − 1|

8γ2
∥ρ0∥L1 +

γ2

4

+
(γ2 + 2γ + 1 + |2γ − 2|

8γ2
∥ρ0∥L1 +

γ2 + 3γ + 2

2γ
∥u0∥L2 + |u0|

)
e2γt.

(4.3)

Applying Corollary 3.8 to (4.3), we establish that if u0(x0) satisfies the initial condition (4.1), then
there exists a finite time T0 such that

lim inf
t→T0

ux(t, q(t, x0)) = −∞.

This, combined with Lemma 3.6 and the finite-time boundedness of u ensured by (4.2), yields the
desired wave-breaking conclusion. □

Remark 4.2. The introduction of dissipative terms into the 2FW system induces significant
qualitative distinctions in blow-up dynamics compared to its non-dissipative counterpart. Cru-
cially, the temporal window for singularity formation becomes confined within a bounded interval
T ∗ ∈ (Tmin, Tmax), yet defies precise determination. This analytical limitation fundamentally
stems from the exponential asymptotic behavior of the Riccati-type differential inequality gov-
erning f(t), where the transcendental equation αm2

0 − f(t) = 0 resists closed-form solution for
its minimal positive root. Finally, through innovative analysis of a newly developed Riccati-type
inequality governing the amplification dynamics, we derive rigorous temporal bounds for solution
blow-up in the dissipative system.
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Utilizing the monotonicity of the exponential function in (4.3) over [0, T ], we adopt an alterna-
tive method to establish the second wave-breaking result for the 2FW system.

Theorem 4.3. Let the initial data satisfy (u0, ρ0) ∈ Hs ×Hs−1 with s > 3
2 , and assume that ρ0

does not change sign on R. Suppose there exists a point x1 ∈ R and a constant T > 0 such that
ρ0(x1) = 0, and

u0,x(x1) ≤ −k
(G1/4(T ) +

√
G1/2(T ) + 8(k+1)

(2k−
√
k)T

2

)2

+
γ

2
, for k ≥ 1, (4.4)

where

G(T ) =
4γ2 + |γ − 1|

8γ2
∥ρ0∥L1 +

γ2

4
+
(γ2 + 6γ + 1

8γ2
∥ρ0∥L1 +

γ2 + 3γ + 2

2γ
∥u0∥L2 + |u0|

)
e2γT .

Then the corresponding solution (u, ρ) to system (1.4) blows up in finite time, and the lifespan T1

satisfies the estimate

T1 ≤ −2(k + 1)

2k −
√
ku0,x(x1) +

√
−u0,x(x1)G1/4(T )

≤ T.

Proof. From inequality (4.3), it follows that

dp

dt
≤ −p2 +G(T ), t ∈ [0, T ].

Assumption (4.4) yields

p(0) = u0,x(x1)−
γ

2
≤ −k

(G1/4(T ) +
√

G1/2q(T ) + 8(k+1)

(2k−
√
k)T

2

)2

< −kG1/2(T ).

By a standard continuity argument (see also Corollary 3.8), we deduce that p(t) remains continu-
ous, hence

p(t) < p(0) < −kG1/2(T ) < 0, t ∈ [0, T ]. (4.5)

We now define the auxiliary function

p̃(t) = p(t) +
√

−p(t)G1/4(T ).

From (4.5), it follows that

p̃(t) = −
√

−p(t)(
√
−p(t)−G1/4(T )) < −

√
−p(0)(

√
−p(0)−G1/4(T )) = p̃(0) < 0.

Moreover, since p′(t) < 0 and p(t) < −kG1/2(T ), we obtain

p̃′(t) = p′(t)
[
1− 1

2

G1/4(T )√
−p(t)

]
<

(
1− 1

2
√
k

)
p′(t) ≤ −

(
1− 1

2
√
k

)(
p2 −G(T )

)
.

On the other hand, expanding p̃2(t) gives

p̃2(t) = p2(t)− p(t)G1/2(T ) + 2p(t)
√
−p(t)G1/4(T ) ≤

(
1 +

1

k

)
(p2 −G(T )),

so that
d

dt

(
1

p̃(t)

)
= − p̃′(t)

p̃2(t)
≥

1− 1
2
√
k

1 + 1
k

=
2k −

√
k

2(k + 1)
. (4.6)

Integrating this inequality over [0, t], we obtain

p̃(t) ≤ 1
1

p̃(0) +
2k−

√
k

2(k+1) t
=

1
1

u0,x(x1)− γ
2 +

√
−u0,x(x1)+

γ
2 G

1/4(T )
+ 2k−

√
k

2(k+1) t
.

This leads to
p(t) ≤ p̃(t) → −∞, as t → T1,

where

T1 ≤ − 2(k + 1)

2k −
√
k

1

u0,x(x1)− γ
2 +

√
−u0,x(x1) +

γ
2G

1/4(T )
.
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Assumption (4.4) ensures that

−u0,x(x1) +
γ

2
−G1/4(T )

√
−u0,x(x1) +

γ

2
− 2(k + 1)

(2k −
√
k)T

≥ 0.

This completes the proof. □

Remark 4.4. From (4.3), once the initial value u0,x(x1) is determined, we can always find a
specific T based on monotonicity such that u0,x(x1) satisfies condition (4.4), thereby determining
the blow-up time.

We now present the final blow-up result. The proof relies on a refined time estimation tech-
nique, involving the construction of a suitable time parameter T2 (see (4.8)) to ensure that the
desired inequality is satisfied. However, the presence of the exponential term eγT2 in the original
formulation prevents the derivation of an explicit expression for T2.

To address this, we adopt the inequality relaxation technique, utilizing the lower-bound approx-
imation of the exponential function eγT2 ≥ γT2 (which holds when γT2 ≥ 0). This transforms the
problem into a more tractable quadratic inequality. Ultimately, we successfully derive an explicit
lower-bound estimate for T2.

Theorem 4.5. Let the initial data satisfy (u0, ρ0) ∈ Hs ×Hs−1 with s > 3
2 . Suppose there exists

a point x2 ∈ R such that

u0,x(x2) < −(1 + ε)A exp
(
2γ

√
ln(1 + 2

ε )

2Aγ

)
+

γ

2
,

where

A =

√
5γ2 + |3γ − 1|+ 2γ + 1 + |2γ − 2|

8γ2
∥ρ0∥L1 +

γ2

4
+

γ2 + 3γ + 2

2γ
∥u0∥L2 + |u0|

and ε > 0. Then the corresponding solution (u, ρ) to system (1.4) blows up in finite time. More-
over, the maximal existence time is bounded above by√

ln
(
1 + 2

ε

)
2Aγ

.

Proof. From (4.3) we have

dp(t)

dt
≤ −p(t)2 +

4γ2 + |3γ − 1|
8γ2

∥ρ0∥L1 +
γ2

4

+
(γ2 + 2γ + 1 + |2γ − 2|

8γ2
∥ρ0∥L1 +

γ2 + 3γ + 2

2γ
∥u0∥L2 + |u0|

)
e2γt

≤ −p(t)2 +
(4γ2 + |3γ − 1|+ γ2 + 2γ + 1 + |2γ − 2|

8γ2
∥ρ0∥L1 +

γ2

4

+
γ2 + 3γ + 2

2γ
∥u0∥L2 + |u0|

)
e2γt

= −p(t)2 +A2e2γt,

(4.7)

where

A =

√
5γ2 + |3γ − 1|+ 2γ + 1 + |2γ − 2|

8γ2
∥ρ0∥L1 +

γ2

4
+

γ2 + 3γ + 2

2γ
∥u0∥L2 + |u0|.

Taking

T2 =

√
ln(1 + 2

ε )

2Aγ
(4.8)
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and K(T2) = AeγT2 , it is found that

2K(T2)T2 − ln
(
1 +

2

ε

)
= 2AeγT2T2 − ln

(
1 +

2

ε

)
≥ 2AγT 2

2 − ln
(
1 +

2

ε

)
≥ 0. (4.9)

By the assumption of the theorem, we have

p(0) < −(1 + ε)K(T2),

implying

0 <
p(0)−K(T2)

p(0) +K(T2)
= 1− 2K(T2)

p(0) +K(T2)
≤ 1 +

2

ε
.

It then follows from (4.9) that

1

2K(T2)
ln

p(0)−K(T2)

p(0) +K(T2)
≤ T2. (4.10)

From (4.7), we have
dp(t)

dt
≤ −p2(t) +K2(T2), ∀t ∈ [0, T2] ∩ [0, T ). (4.11)

Since p(0) < −(1+ ε)K(T2) < −K(T2) and (4.10) holds, the standard continuity argument shows
p(t) ≤ −K(T2) for all t ∈ [0, T2] ∩ [0, T ). Solving (4.11) yields

p(0) +K(T2)

p(0)−K(T2)
e2K(T2)t − 1 ≤ 2K(T2)

p(t)−K(T2)
≤ 0.

From 0 < p(0)+K(T2)
p(0)−K(T2)

< 1, there exists

0 < T <
1

2K(T2)
ln

(p(0)−K(T2)

p(0) +K(T2)

)
≤ T2,

such that limt→T p(t) = −∞. This completes the proof. □

Remark 4.6. As can be seen from Theorem 4.5, the lifespan of the solution changes with the
positive parameter ε. As ε > 0 increases, both the required initial condition m0 and the lifespan
T decrease. This implies that the steeper the slope of the solution at a certain point, the more
rapidly the blow-up phenomenon occurs.
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