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NEW TYPE OF MULTI-BUMP SOLUTIONS FOR SCHRÖDINGER-POISSON

SYSTEMS
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Abstract. In this article, we study the existence of non-radial positive solutions of the Schrödinger-

Poisson system

−∆u+ u+ V (|x|)Φ(x)u = Q(|x|)|u|p−1u, x ∈ R3,

−∆Φ = V (|x|)u2, x ∈ R3,

where 1 < p < 5 and V,Q are radial potential functions. By developing some refined estimates,
via the Lyapunov-Schmidt reduction method, we construct infinitely many multi-bump solutions

when V,Q have some suitable algebraical decay at infinity. The maximum points of those multi-

bump solutions are located on the top and bottom circles of a cylinder. This result not only
gives a new type of multi-bump solutions but also extends the existence of multi-bump solutions

to a general class of potential functions with a relatively slow decay rate at infinity.

1. Introduction

We are interested in the Schrödinger-Poisson system

−∆u+ u+ V (|x|)Φ(x)u = Q(|x|)|u|p−1u, x ∈ R3,

−∆Φ = V (|x|)u2, x ∈ R3,
(1.1)

where 1 < p < 5, V and Q are potential functions satisfying

(A1) V (|x|) = a
|x|m +O

(
1

|x|m+θ

)
as |x| → +∞,

(A2) Q(|x|) = Q0 +
b

|x|n +O
(

1
|x|n+κ

)
as |x| → +∞,

where Q0, θ, κ, a > 0, b ∈ R. This system has physical origins in quantum mechanics and semicon-
ductor theory (see for example [5, 6, 21]). As we see, there are numerous results on the existence
and qualitative properties of solutions for system (1.1), such as positive radial solutions, semiclas-
sical states, nodal solutions and so on. When Q(x) ≡ 1, V (x) ≡ λ > 0, D’Aprile and Mugnai [9]
proved that (1.1) with 3 ≤ p < 5 admits a radial positive solution by using the Mountain pass
theorem, see also [8]. Ruiz [27] introduced a new manifold by using the Pohažev identity and
showed that (1.1) has at least one positive radial solution for all λ > 0 and 2 < p < 5. Moreover,
if 0 < λ < 1

4 , the author established the existence of two positive radial solutions when 1 < p < 2
and one positive radial solution when p = 2. Ambrosetti and Ruiz [2] studied that (1.1) has
infinitely many pairs of radial solutions for 2 < p < 5 and λ > 0. For more related results, one
can refer to [1, 14, 15, 16, 18, 23, 26, 28, 31, 32] and the references therein.

In recent years, the existence of multi-bump solutions has attracted much attention from re-
searchers. When V has a positive local minimum, Ruiz and Vaira [29] established the existence
of infinitely many multi-bump solutions to (1.1) via the Lyapunov-Schmidt reduction method,
whose bumps concentrate near the local minimum of V . When V and Q have a fast algebraic
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decay, Li, Peng and Yan [20] and Ding, Li and Ye [11] constructed infinitely many non-radial
positive multi-bump solutions of (1.1) concentrating near infinity on a plane, respectively. For
more related results, one can refer to [13, 17, 25, 24, 22] and references therein. Motivated by the
above work, this paper is devoted to constructing a new type of multi-bump solutions for (1.1)
when the potentials V and Q just have a slower algebraic decay by using the Lyapunov-Schmidt
reduction method and some delicate estimates. Our main result is as follows.

Theorem 1.1. Let V,Q satisfy (A1), (A2). Then system (1.1) has infinitely many multi-bump
solutions whose maximum points lie on the top and bottom circles of a cylinder, provided that
either 2m,n ≥ p+1

2p when p ∈ (1, 2), or 2m,n > 1/2 when p ∈ [2, 5).

Remark 1.2. Compared with [10, 20], this type of multi-bump solutions is new, which concen-
trates not on a plane, but on a cylinder in R3, which is one novelty. Besides, the range of m,n
is extended at least from 2m,n ≥ 1 to a slow decay 2m,n > 1/2 when p ∈ [2, 5). This is another
novelty of this paper.

2. Notation and energy expansion

Throughout this paper, we use the following notation.

• A1 = p−1
p+1

∫
R3 U

p+1, A2 = 1
8π

∫
R3

∫
R3

U2(x)U2(y)
|x−y| , A3 = 2

p+1

∫
R3 U

p+1, B1 =
∫
R3 U

pe−x1 ;

• H1(R3) is the usual Sobolev space endowed with inner product (u, v) =
∫
R3(∇u∇v+uv)dx

and norm ∥u∥2 =
∫
R3(|∇u|2 + u2)dx;

• D1,2(R3) is the completion of C∞
0 (R3) with respect to the norm ∥u∥2D1,2 =

∫
R3 |∇u|2dx;

• Hk and Dk are symmetric Sobolev subspaces defined by

Hk =
{
u ∈ H1(R3) : u(r cos θ, r sin θ, x3) = u

(
r cos

(
θ +

2jπ

k

)
, r sin

(
θ +

2jπ

k

)
, x3

)
,

j = 1, . . . , k, and u is even in x2

}
,

Dk =
{
Φ ∈ D1,2(R3) : u(r cos θ, r sin θ, x3) = u

(
r cos

(
θ +

2jπ

k

)
, r sin

(
θ +

2jπ

k

)
, x3

)
,

j = 1, . . . , k, and u is even in x2

}
.

By using the Lax-Milgram theorem, for every u ∈ H1(R3), system (1.1) is equivalent to the
single equation

−∆u+ u+ V (|x|)Φu(x)u = Q(|x|)up−1u, u > 0, x ∈ R3,

with a convolution term Φu defined by Φu(x) = 1
4π

∫
R3

V (y)u2(y)
|x−y| dy. By using Hölder inequality

and Sobolev inequality, we obtain

∥Φu∥2D1,2 =

∫
R3

Φuu
2dx ≤ ∥Φu∥L6∥u∥2L12/5 ≤ C∥Φu∥D1,2∥u∥2L12/5 ,∫

R3

Φuu
2dx ≤ C∥u∥4L12/5 ≤ C∥u∥4.

Moreover, if u ∈ Hk, then Φu ∈ Dk. To obtain positive solutions of (1.1), we shall consider the
functional I : u ∈ H1(R3) → R

I(u) =
1

2

∫
R3

(|∇u|2 + u2)dx+
1

4

∫
R3

V (x)Φuu
2dx− 1

p+ 1

∫
R3

Q(x)up+1
+ dx.

which is well defined and is a C1−functional with derivative

⟨I ′(u), v⟩ =
∫
R3

(∇u · ∇v + uv + V (x)Φuuv −Q(x)up+v)dx, ∀v ∈ H1(R3).

Without confusion, we shall denote by u instead of u+ for simplicity.
For j = 1, . . . , k, we set

Ωj :=
{
x = (x1, x2, x3) ∈ R3 :

〈 (x1, x2)

|(x1, x2)|
,
(
cos

2(j − 1)π

k
, sin

2(j − 1)π

k

)〉
≥ cos

π

k

}
,
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Ω+
j :=

{
x = (x1, x2, x3) ∈ Ωj , x3 ≥ 0

}
, Ω−

j :=
{
x = (x1, x2, x3) ∈ Ωj , x3 < 0

}
.

Then Ωj = Ω+
j ∪ Ω−

j . Let

Dk :=
[(min{2m,n}

2π
− α

)
k ln k,

(min{2m,n}
2π

+ α
)
k ln k

]
×
[(min{2m,n}+ 2

2
− β

)
ln k,

(min{2m,n}+ 2

2
+ β

)
ln k
]
,

where α, β > 0 are small constants. For (r, h) ∈ Dk, we take 2k points

P+
j =

(
r cos

2(j − 1)π

k
, r sin

2(j − 1)π

k
, h
)
, P−

j =
(
r cos

2(j − 1)π

k
, r sin

2(j − 1)π

k
, −h

)
.

Clearly, P±
j ∈ Ω±

j . Hereafter, we always assume (r, h) ∈ Dk.
Let U be a ground state solution of

−∆U + U = Up, U ∈ H1(R3),

U(0) = max
x∈R3

U(x) and U > 0.
(2.1)

As is proved in [12] and [19], U is radially symmetric, unique and satisfies

lim
|x|→∞

U(x)e|x||x| = C < +∞ and lim
|x|→∞

U ′(x)

U(x)
= −1.

We denote by UP+
j
(x) = U(x− P+

j ), UP−
j
(x) = U(x− P−

j ), and set an approximate solution of

(1.1) as

Wr,h (x) =

k∑
j=1

(
UP+

j
(x) + UP−

j
(x)
)
.

We firstly cite the following estimates.

Lemma 2.1 ([4, Lemma 2.1]). For each η ∈ (0, 1], there is a constant C > 0 such that for each
x ∈ Ω+

1 ,

k∑
i=2

(
UP+

i
(x) + UP−

i
(x)
)
≤ Ce−ηπ r

k e−(1−η)|x−P+
1 |, UP−

1
(x) ≤ Ce−ηhe−(1−η)|x−P+

1 |.

Lemma 2.2 ([4, Proposition 3.2]). There exists σ > 0 such that

1

2

∫
R3

(
|∇Wr,h|2 + |Wr,h|2

)
− 1

p+ 1

∫
R3

Q(|x|)|Wr,h|p+1

= k
[
A1 − 2B1e

−2π r
k

( k

2πr

)
−B1e

−2h
( 1

2h

)
− bA3

rn
+
nbA3

2

h2

rn+2
+Ok

(
e−2(1+σ)π r

k

)
+Ok

(
e−2(1+σ)h

)
+Ok

( 1

rn+σ

)
+Ok

( h2

rn+2+σ

)]
.

(2.2)

To obtain some estimates, we establish the following integral estimate, which will play an
important role in our proof. It can be regarded as an extension of the well-known translation
estimate [3, Proposition 1.2] to the convolution case.

Lemma 2.3. Suppose that S, T,K : R3 → R are positive continuous radial functions satisfying

|x|a1eb1|x|S(|x|) → c1, |x|a2eb2|x|T (|x|) → c2, |x|dK(|x|) → c3, as |x| → ∞, (2.3)

where ai ∈ R and bi, ci, d > 0. Then there is τ > 0 such that∫
R3

∫
R3

K(|x|)K(|y|)
|x− y|

Sξ(x)Tξ(y) dy dx =
c23

|ξ|2d

∫
R3

∫
R3

S(x)T (y)

|x− y|
dy dx+O

( 1

|ξ|2d+τ

)
(2.4)

as |ξ| → ∞, where Sξ(x) = S(x− ξ) and Tξ(y) = T (y − ξ).
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Proof. By rotation, we can assume ξ
|ξ| = (1, 0, 0). Let 0 < λ < 1, B = Bλ|ξ|(0) and BC =

R3\Bλ|ξ|(0). Then by (2.3) and Hardy-Littlewood-Sobolev inequality, there is some τ > 0 such
that ∫

R3

∫
R3

K(|x|)K(|y|)
|x− y|

Sξ(x)Tξ(y) dy dx

=
(∫

B

∫
B

+2

∫
B

∫
BC

+

∫
BC

∫
BC

)K(|x+ ξ|)K(|y + ξ|)
|x− y|

S(x)T (y) dy dx

=
c23

|ξ|2d

∫
R3

∫
R3

S(x)T (y)

|x− y|
dy dx+O

( 1

|ξ|2d+τ

)
+O

(c3e−τλ|ξ|

|ξ|d

∫
B

∫
BC

c2
|x− y|

S(|x|)|y|−a2e−(b2−τ)|y| dy dx
)

+O
(
e−2τλ|ξ|

∫
BC

∫
BC

c1c2
|x− y|

|x|−a1e−(b1−τ)|x||y|−a2e−(b2−τ)|y| dy dx
)

=
M

|ξ|2d
+O

( 1

|ξ|2d+τ

)
+O

(e−τλ|ξ|

|ξ|d
)
+O

(
e−2τλ|ξ|

)
=

M

|ξ|2d
+O

( 1

|ξ|2d+τ

)
,

where M = c23
∫
R3

∫
R3

S(x)T (y)
|x−y| dy dx. The proof is complete. □

3. Reduction equation

Let Z1 =
∂Wr,h

∂r , Z2 =
∂Wr,h

∂h and

E = {v ∈ Hk : ⟨Z1, v⟩ = 0 and ⟨Z2, v⟩ = 0} .

To apply the reduction method, we define a functional J : E → R by J(ϕ) = I(Wr,h + ϕ). Then
by the Taylor’s expansion, we obtain

J(ϕ) = J(0) + l(ϕ) +
1

2
⟨Lϕ, ϕ⟩ −R(ϕ), (3.1)

where J(0) = I(Wr,h),

l(ϕ) =

∫
R3

( k∑
i=1

(
Up

P+
i

+ Up

P−
i

)
−Q(|x|)W p

r,h

)
ϕ+

∫
R3

V (|x|)ΦWr,h
Wr,hϕ,

⟨Lv1, v2⟩ =
∫
R3

(
∇v1∇v2 + v1v2 − pQ(|x|)W p−1

r,h v1v2

)
+

∫
R3

V (|x|)ΦWr,h
v1v2

+ 2

∫
R3

V (|x|)
(∫

R3

V (|y|)
4π|x− y|

Wr,hv1dy
)
Wr,hv2dx, for all v1, v2 ∈ E,

R(ϕ) =

∫
R3

V (|x|)ΦϕWr,hϕ+
1

4

∫
R3

V (|x|)Φϕϕ
2

− 1

p+ 1

∫
R3

Q(|x|)
(
|Wr,h + ϕ|p+1 −W p+1

r,h − (p+ 1)W p
r,hϕ− 1

2
(p+ 1)pW p−1

r,h ϕ2
)
.

In particular,

⟨Lϕ, ϕ⟩ =
∫
R3

(
|∇ϕ|2 + |ϕ|2 − pQ(|x|)W p−1

r,h ϕ2
)
+

∫
R3

V (|x|)ΦWr,h
ϕ2

+ 2

∫
R3

V (|x|)
(∫

R3

V (|y|)
4π|x− y|

Wr,hϕdy
)
Wr,hϕdx

In the following, we prove that L is invertible and bounded in E, whose proof is slightly different
from [20], because of the presence of two variable quantities r, h of the points P±

j .
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Lemma 3.1. There exists a constant ρ > 0 independent of k such that for any (r, h) ∈ Dk, it
holds

∥Lv∥ ≥ ρ∥v∥, v ∈ E. (3.2)

Proof. We shall prove it by contradiction. Suppose on the contrary that there exist (rk, hk) ∈ Dk

and vk ∈ E with ∥vk∥2 = k such that as k → +∞,

∥Lvk∥ = o(1)∥vk∥. (3.3)

By using the symmetry, it holds that for any ψ ∈ E,∫
Ω1

(
∇vk∇ψ + vkψ − pQ(|x|)W p−1

r,h vkψ
)
+

∫
Ω1

(
V (|x|)ΦWr,h

vkψ
)

+ 2

∫
Ω1

V (|x|)
(∫

R3

V (|y|)
4π|x− y|

Wr,hvkdy
)
Wr,hψ

=
1

k
⟨Lvk, ψ⟩ = o

( 1√
k

)
∥ψ∥.

(3.4)

Clearly, if ψ = vk, then we have ∫
Ω1

(|∇vk|2 + v2k) = 1 (3.5)

and ∫
Ω1

(
|∇vk|2 + v2k − pQ(|x|)W p−1

r,h v2k

)
+

∫
Ω1

(
V (|x|)ΦWr,h

v2k
)

+ 2

∫
Ω1

V (|x|)
(∫

R3

V (|y|)
4π|x− y|

Wr,hvkdy
)
Wr,hvk = o(1).

(3.6)

Let v̄k(x) = vk(x− P+
1 ) and R1 > 0 satisfy BR1

(P+
1 ) ⊂ Ω1. Then∫

BR1
(0)

(|∇vk|2 + v2k) ≤ 1,

and thus there is some v ∈ H1(R3) such that as k → +∞, up to a subsequence,

v̄k ⇀ v weakly in H1(R3),

v̄k → v strongly in L2
loc(R3).

Since v̄k ∈ E is even in x2, v is also even in x2 and satisfies∫
R3

Up−1 ∂U

∂x1
v = 0 and

∫
R3

Up−1 ∂U

∂x3
v = 0. (3.7)

For any R1 > 0 and ψ ∈ C∞
0 (BR1

(0)) being even in x2, let

ψk,j(x) := ψ(x− P+
j ) ∈ C∞

0 (BR1
(P+

j )).

Then
k∑

j=1

ψk,j ∈ Hk. Moreover, there are bk,1, bk,2 ∈ R such that

ψ̄k(x) =

k∑
j=1

ψk,j − bk,1Z1 − bk,2Z2 ∈ E, (3.8)

where bk,1 and bk,2 satisfy(
∥Z1∥2 ⟨Z1, Z2⟩
⟨Z1, Z2⟩ ∥Z2∥2

)(
bk,1
bk,2

)
=

(
⟨
∑k

j=1 ψk,j , Z1⟩
⟨
∑k

j=1 ψk,j , Z2⟩

)
= k

(
⟨ψk,1, Z1⟩
⟨ψk,1, Z2⟩

)
.

Observe that

∥Z1∥2 = 2k
(
∥ ∂U
∂x1

∥2 + o(1)
)
, ∥Z2∥2 = 2k

(
∥ ∂U
∂x3

∥2 + o(1)
)
, ⟨Z1, Z2⟩ = o(k).

Then a direct computation shows that there is some C > 0 independent of k such that

max
k

{|bk,1|, |bk,2}| ≤ C.
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This together with (3.8), implies ∥ψ̄k∥2 ≤ Ck. Then by inserting ψ = ψ̄k into (3.4), we obtain∫
Ω1

(
∇vk∇ψ̄k + vkψ̄k − pQ(|x|)W p−1

r,h vkψ̄k

)
+

∫
Ω1

(
V (|x|)ΦWr,h

vkψ̄k

)
+ 2

∫
Ω1

V (|x|)
(∫

R3

V (|y|)
4π|x− y|

Wr,hvkdy

)
Wr,hψ̄k =

1

k
⟨Lvk, ψ̄k⟩ = o

( 1√
k

)
∥ψ̄k∥

= o(1).

Thus,

⟨Lvk, ψk,1⟩ =
1

k
⟨Lvk,

k∑
j=1

ψk,j⟩ =
1

k
⟨Lvk, ψ̄k⟩+

1

k

2∑
i=1

bk,i⟨Lvk, Zi⟩

=
1

k
⟨Lvk, ψ̄k⟩+

2∑
i=1

γk,i⟨ψk,1, Zi⟩,

(3.9)

where (
γk,1
γk,2

)T

=

(
⟨Lvk, Z1⟩
⟨Lvk, Z2⟩

)T ( ∥Z1∥2 ⟨Z1, Z2⟩
⟨Z1, Z2⟩ ∥Z2∥2

)−1

.

Let η ∈ C∞
0 (BR1(P

+
1,k)) be a cutoff function satisfying that

η = 1 in BR1
2
(P+

1,k), |∇η| ≤ CR1
−1, and |∇2η| ≤ CR−2

1 .

Then by taking ψk,1 = ηZj in (3.9), we obtain that

2∑
i=1

γk,i⟨ηZj , Zi⟩ = ⟨Lvk, ηZj⟩+ o(1) = ⟨vk, L(ηZj)⟩+ o(1) = o(1). (3.10)

Since ⟨ηZj , Zi⟩ = ⟨Zj , Zi⟩+ o(1), we see from (3.10) that(
∥Z1∥2 + o(1) o(1)

o(1) ∥Z2∥2 + o(1)

)(
γk,1
γk,2

)
=

(
o(1)
o(1)

)
,

which shows that γk,i = o(1) for i = 1, 2. Then by (3.9), we have ⟨Lvk, ψk,1⟩ = o(1), namely,∫
R3

(
∇vk∇ψk,1 + vkψk,1 − pQ(|x|)W p−1

r,h vkψk,1

)
+

∫
R3

(
V (|x|)ΦWr,h

vkψk,1

)
+ 2

∫
R3

V (|x|)
(∫

R3

V (|y|)
4π|x− y|

Wr,hvkdy

)
Wr,hψk,1 = o(1).

This implies that for any ψ ∈ C∞
0 (BR1

(0)) being even in x2,

⟨Lv̄k, ψ⟩ =
∫
R3

(
∇v̄k∇ψ + v̄kψ − pQ(|x|)W p−1

r,h v̄kψ
)
+

∫
R3

(
V (|x|)ΦWr,h

v̄kψ
)

+ 2

∫
R3

V (|x|)
(∫

R3

V (|y|)
4π|x− y|

Wr,hv̄kdy
)
Wr,hψ = o(1).

(3.11)

Next, we assert that∫
R3

(
V (|x|)ΦWr,h

v̄kψ + 2V (|x|)
(∫

R3

V (|y|)
4π|x− y|

Wr,hv̄kdy
)
Wr,hψ

)
→ 0 as k → +∞. (3.12)
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In fact, by (A1), (A2), Lemma 2.1 and [3, Proposition 2.1], we have

∥ΦWr,h
∥2D1,2(Ω1)

:=

∫
Ω1

|∇ΦWr,h
|2 = 2

∫
Ω+

1

V (|x|)ΦWr,h
W 2

r,h

≤ C
(∫

Ω+
1

V (|x|)6/5
(
U2
P+

1
+
( k∑

i=2

UP+
i
+

k∑
j=1

UP−
j

)2)6/5
dx
)5/6

∥ΦWr,h
∥L6(Ω+

1 )

≤ C
[( ∫

Ω+
1

V (|x|)6/5U12/5

P+
1

)5/6
+
(
e−ηπ r

k + e−ηh
)2(∫

Ω+
1

V (|x|)6/5e− 12
5 (1−η)|x−P+

1 |dx
)5/6]

∥ΦWr,h
∥D1,2(Ω1)

≤ C
( 1

|P+
1 |m

+
(
e−ηπ r

k + e−ηh
)2 1

|P+
1 |m

)
∥ΦWr,h

∥D1,2(Ω1)

≤ C

|P+
1 |m

∥ΦWr,h
∥D1,2(Ω1),

(3.13)

that is,

∥ΦWr,h
∥D1,2(Ω1) ≤

C

|P+
1 |m

.

Then by (3.5) and [3, Proposition 1.2], we obtain that for any ψ ∈ C∞
0 (BR1

(0)),∫
R3

V (|x|)ΦWr,h
v̄kψ =

∫
BR1

(0)

V (|x|)ΦWr,h
v̄kψ

≤ C∥ΦWr,h
∥D1,2(BR1

(0))

(∫
BR1

(0)

(V (|x|)v̄kψ)6/5
)5/6

≤ C

|P+
1 |m

(∫
BR1

(0)

(V (|x|)v̄k)12/5
)5/12(∫

BR1
(0)

ψ12/5
)5/12

≤ C

|P+
1 |2m

∥ψ∥.

(3.14)

Now, we claim that ∫
R3

(V (|y|)Wr,h(y)v̄k)
6/5 ≤ C

|P+
1 | 65m

∥v6/5k ∥. (3.15)

Indeed, note from [30, Proposition A.3] that for any ϑ > 0,

k∑
i=2

e−ϑ|P+
1 −P+

i | ≤ Ce−2πϑ r
k and e−ϑ|P+

1 −P−
1 | ≤ Ce−2ϑh, (3.16)

and that∫
R3

(V (|y|)Wr,h(y)v̄k)
6/5

≤ C

k∑
i=1

∫
R3

V 6/5(|y|)U6/5

P±
i

(y)v̄
6/5
k (y)

≤ C
(∫

R3

V 6/5(|y|)U6/5(y − P+
1 )v

6/5
k (y − P+

1 ) +

k∑
i=2

∫
R3

V 6/5(|y|)U6/5(y − P+
i )v

6/5
k (y − P+

1 )

+

∫
R3

V 6/5(|y|)U6/5(y − P−
1 )v

6/5
k (y − P+

1 )
)

=: C(V1 + V2 + V3),
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By using [7, Lemma 6.1.3], we see that

V1 =

∫
R3

V 6/5(|y + P+
1 |)U6/5v

6/5
k

≤
(∫

R3

V 12/5(|y + P+
1 |)U12/5

)
)1/2

(∫
R3

v
12/5
k

)1/2

≤ C

|P+
1 | 65m

∥v6/5k ∥.

(3.17)

By using the symmetry, (3.16) and the exponential decay of U , we have

V2 ≤
k∑

i=2

(∫
R3

V 12/5(|y|)U 12
5 −2τ (y − P+

1 )

)1/2(∫
R3

U2τ (y − P+
i )v

12/5
k (y − P+

1 )

)1/2

≤
k∑

i=2

(∫
R3

V 12/5(|y + P+
1 |)U 12

5 −2τ

)1/2(∫
R3

U2τ (y + P+
1 − P+

i )v
12/5
k

)1/2

≤ C

|P+
1 | 65m

k∑
i=2

(∫
R3

e−2τ |y+P+
1 −P+

i |v
12/5
k

)1/2

≤ C

|P+
1 | 65m

k∑
i=2

(∫
R3

e−2τ |y|e2τ |P
+
1 −P+

i |v
12/5
k

)1/2

≤ C

|P+
1 | 65m

e2πτ
r
k

(∫
R3

e−2τ |y|v
12/5
k

)1/2

≤ C

|P+
1 | 65m

∥v6/5k ∥.

(3.18)

By using a similar argument as (3.18), we can deduce that

V3 ≤ C

|P+
1 | 65m

e2τh
(∫

R3

e−2τ |y|v
12/5
k

)1/2

≤ C

|P+
1 | 65m

∥v6/5k ∥. (3.19)

Obviously, the claim (3.15) follows immediately from (3.17)-(3.19). Furthermore, by using the
Hardy-Littlewood-Sobolev inequality and (3.15), we obtain∫

R3

V (|x|)
(∫

R3

V (|y|)
4π|x− y|

Wr,hv̄kdy
)
Wr,hψdx

≤ C
(∫

BR1
(0)

(V (|x|)Wr,h(x)ψ)
6/5
)5/6(∫

R3

(V (|y|)Wr,h(y)v̄k)
6/5
)5/6

≤ C
(∫

BR1
(0)

(
V (|x+ P+

1 |)Wr,h(x+ P+
1 )
)12/5 )5/12(∫

BR1
(0)

ψ12/5
)5/12 C

|P+
1 |m

∥vk∥

≤ C

|P+
1 |2m

∥ψ∥ ∥vk∥.

(3.20)

This together with (3.14), gives∫
R3

(
V (|x|)ΦWr,h

v̄kψ + 2V (|x|)
(∫

R3

V (|y|)
4π|x− y|

Wr,hv̄kdy
)
Wr,hψ

)
≤ C

√
k

|P+
1 |2m

∥ψ∥.

Thus the claim (3.12) follows immediately from 2m > 1/2.
Now, by letting k → +∞ as in (3.11), we deduce that∫

R3

∇v∇ψ + vψ − pUp−1vψ = 0 (3.21)

for any ψ ∈ C∞
0 (BR1

(0)) being even in x2. Moreover, for any ψ ∈ C∞
0 (BR1

(0)), let φ(y) =
ψ(y)+ψ(y1,−y2, y3) in (3.21). Clearly, φ is even in x2 and (3.21) holds for ψ = ϕ. Since v is even
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in x2, (3.21) holds for ψ(y1,−y2, y3). So (3.21) holds for all ψ ∈ C∞
0 (BR1

(0)). Namely,

−△v + v − pUp−1v = 0 inR3. (3.22)

Since v is even in x2, by the non-degeneracy property of U , we can get from (3.22) that there are
c1, c2 ∈ R such that v = c1

∂U
∂x1

+ c2
∂U
∂x3

. Inserting it into (3.7), we obtain easily that c1 = c2 = 0.

Thus v ≡ 0. Therefore, for large k,
∫
BR1

(P+
1 )
v2k = o(1). This implies∫

Ω1

(
|∇vk|2 + v2k − pQ(|x|)W p−1

r,h v2k

)
≥ 1

2
+ o(1). (3.23)

In view of (3.14) and (3.20), we can use a similar argument to deduce that∫
Ω1

(
V (|x|)ΦWr,h

v2k + 2V (|x|)
(∫

R3

V (|y|)
4π|x− y|

Wr,hvkdy
)
Wr,hvk

)
≤ C

|P+
1 |2m

∥vk∥ → 0, as k → +∞.

(3.24)

Inserting (3.23) and (3.24) into (3.6), we obtain a contradiction. So (3.2) holds and the proof is
complete. □

Recall that

⟨lk, ϕ⟩ =
∫
R3

( k∑
i=1

(
Up

P+
i

+ Up

P−
i

)
−Q(|x|)W p

r,h

)
ϕ+

∫
R3

V (|x|)ΦWr,h
Wr,hϕ. (3.25)

Compared to [20], the following estimate is more acurate.

Lemma 3.2. For (r, h) ∈ Dk, there exists some σ > 0 such that for k large enough,

∥lk∥ ≤


C0

k
p

p+1
(1−σ)min{2m,n}− 1

2
, if 1 < p < 2,

C0

k(1−σ)min{2m,n}− 1
2
, if 2 ≤ p < 5,

(3.26)

where C0 > is independent of k.

Proof. By a similar calculation as for (3.13), we can deduce that
∫
Ω1

(V (|x|)Wr,h)
3 ≤ C

|P+
1 |3m .

Then by the symmetry, we obtain∫
R3

V (|x|)ΦWr,h
Wr,hϕ ≤ k

∫
Ω1

V (|x|)ΦWr,h
Wr,hϕ

≤ Ck∥ΦWr,h
∥L6(Ω1)

(∫
Ω1

(V (|x|)Wr,h)
3
dx
)1/3

∥ϕ∥L2(Ω1)

≤ C
√
k∥ΦWr,h

∥D1,2(Ω1)

(∫
Ω1

(V (|x|)Wr,h)
3
dx
)1/3

∥ϕ∥L2(R3)

≤ C
√
k

|P+
1 |2m

∥ϕ∥H1(R3) ≤
C

k2m− 1
2

∥ϕ∥H1(R3).

(3.27)

Recall from [4, (4.15), (4.16)] that there is a small number σ > 0, such that∫
R3

( k∑
i=1

(
Up

P+
i

+ Up

P−
i

)
−W p

r,h

)
ϕ ≤


C

k
p

p+1
(1−σ)min{2m,n}− 1

2
∥ϕ∥H1(R3), if 1 < p < 2,

C

k(1−σ)min{2m,n}− 1
2
∥ϕ∥H1(R3), if 2 ≤ p < 5

(3.28)

and from [4, Lemma 4.2] that ∫
R3

Q(|x|)W p
r,hϕ ≤ C

kn−
1
2

∥ϕ∥H1(R3). (3.29)

Thus (3.26) follows immediately from (3.25) and (3.27)-(3.29). The proof is complete. □
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In view of (3.1), Lemmas 3.1 and 3.2, to find a critical point of J is equivalent to solving

ϕ = A(ϕ) := −L−1lk − L−1R′(ϕ). (3.30)

A direct calculation as [20, Lemma 2.3] shows that there is some constant C > 0, independent of
k, such that

∥Ri(ϕ)∥ ≤ C∥ϕ∥min(3,p+1)−i, i = 0, 1, 2, (3.31)

where Ri denotes the derivative of i order for R. Here we omit the details of the proof. Then we
have the following result.

Proposition 3.3. There exists an integer k0 > 0 such that for each k ≥ k0, there is a C1 map
ϕ : Dk → Hk, ϕ = ϕ(r, h) ∈ E satisfying (3.30). Moreover, there is a small σ > 0 such that

∥ϕ∥ ≤


C∗

k
p

p+1 (1−2σ)min{2m,n}− 1
2

if 1 < p < 2,

C∗

k(1−2σ)min{2m,n}− 1
2

if 2 ≤ p < 5.

Proof. Define

B :=
{
ϕ ∈ E : ∥ϕ∥ ≤


C∗

k
p

p+1
(1−2σ)min{2m,n}− 1

2
if 1 < p < 2,

C∗

k(1−2σ)min{2m,n}− 1
2

if 2 ≤ p < 5.

}
where σ > 0 is a small number as (3.26). With the aid of Lemma 3.2 and (3.31), a standard
argument can show that there is a sufficiently large number C∗ > C0 such that for k sufficiently
large, A is a strict contraction map such that A(B) ⊂ B. Then by the contraction mapping
theorem, there is a C1 map ϕ : Dk → B such that J ′ (ϕ(r, h)) = 0. The proof is complete. □

4. Energy estimate

With the help of Lemmas 2.2 and 2.3, we obtain the following energy expansion of approximate
solution. We firstly recall from [10, Lemma A.6] that

r

k ln k

k∑
i=2

1

|P+
1 − P+

i |
=

1

π
+ o(1). (4.1)

Then by using a similar argument, we can prove that there is some C0 > 0 such that

k∑
i=2

1

|P+
1 − P−

i |
= C0 + o(1). (4.2)

Proposition 4.1. For all (r, h) ∈ Dk, there is a small number σ > 0 such that

I(Wr,h) = k
[
A1 +

a2A2

r2m
− ma2h2A2

r2m+2
− bA3

rn
+
nbA3

2

h2

rn+2
− 2B1e

−2π r
k

( k

2πr

)
−B1e

−2h
( 1

2h

)
+
a2A2k ln k

πr2m+1
+
a2A2C0k ln k

r2m+1
+
ma2A2h

2k ln k

πr2m+3

+
ma2A2C0h

2k ln k

r2m+3
+

a2A2

2hr2m
+
ma2A2h

2r2m+2
+Ok

( 1

r2m+σ

)
+Ok

( h2

r2m+2+σ

)
+Ok

( 1

rn+σ

)
+Ok

( h2

rn+2+σ

)
+O

( k ln k

r2m+1+σ

)
+O

( h2k ln k
r2m+3+σ

)
+O

( 1

r2m+σh

)
+O

( h

r2m+2+σ

)
+Ok

(
e−2(1+σ)π r

k

)
+Ok

(
e−2(1+σ)h

)]
,

(4.3)

where Ai, B1 are defined in section 2.
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Proof. For fixed R > 0, by using Lemmas 2.1 and 2.3, there is some σ > 0 such that for k large
enough,

1

8π

k∑
i=2

∫
BR(P+

1 )

∫
BR(P±

i )

V (|x|)V (|y|)
|x− y|

W 2
r,h(x)W

2
r,h(y) dy dx

=
1

8π

k∑
i=2

∫
BR(P+

1 )

∫
BR(P±

i )

V (|x|)V (|y|)
|x− y|

(UP+
1
+ C(e−η πr

k + e−ηh)e−(1−η)|x−P+
1 |)2

× (UP±
i
+ C(e−η πr

k + e−ηh)e−(1−η)|y−P±
i |)2 dy dx

=
1

8π

k∑
i=2

∫
BR(P+

1 )

∫
BR(P±

i )

V (|x|)V (|y|)
|x− y|

U2
P+

1
U2
P±

i

+O(
1

|P+
1 |2m+σ

)

=
1

8π

k∑
i=2

∫
BR(0)

∫
BR(0)

V (|x+ P+
1 |)V (|y + P±

i |)
|x− y + P+

1 − P±
i |

U2(x)U2(y) +O(
1

|P+
1 |2m+σ

)

=
1

8π|P+
1 |2m

k∑
i=2

∫
BR(0)

∫
BR(0)

a2

|x− y + P+
1 − P±

i |
U2(x)U2(y) +O(

1

|P+
1 |2m+σ

)

≤ a2A2

|P+
1 |2m

k∑
i=2

1

|P+
1 − P±

i |
+O(

1

|P+
1 |2m+σ

)

=
a2A2

|P+
1 |2m

k∑
i=2

1

|P+
1 − P±

i |
+O(

1

|P+
1 |2m+σ

).

(4.4)

Then by (4.1) and (4.2), it follows that

k∑
i=2

∫
BR(P+

1 )

∫
BR(P+

i )

V (|x|)V (|y|)
|x− y|

W 2
r,h(x)W

2
r,h(y) dy dx =

a2A2

π|P+
1 |2m

k ln k

r
+O(

1

|P+
1 |2m+σ

)

k∑
i=2

∫
BR(P+

1 )

∫
BR(P−

i )

V (|x|)V (|y|)
|x− y|

W 2
r,h(x)W

2
r,h(y) dy dx =

a2A2C0

|P+
1 |2m

k ln k

r
+O(

1

|P+
1 |2m+σ

).

(4.5)

As for (4.4), we have

1

8π

∫
BR(P+

1 )

∫
BR(P−

1 )

V (|x|)V (|y|)
|x− y|

W 2
r,h(x)W

2
r,h(y) dy dx =

a2A2

2h|P+
1 |2m

+O(
1

|P+
1 |2m+σ

). (4.6)

By the exponential decay of U , Lemmas 2.1 and 2.3, we have∫
Ω+

1 \BR(P+
1 )

∫
R3

V (|x|)V (|y|)
|x− y|

W 2
r,h(x)W

2
r,h(y) dy dx

≤ C

∫
Ω+

1 \BR(P+
1 )

∫
R3

V (|y|)
|x− y|

(
U2
P+

1
(x) +

( k∑
i=2

UP+
i
(x) +

k∑
j=1

UP−
j
(x)
)2)

W 2
r,h(y) dy dx

≤ Ce−R

∫
Ω+

1 \BR(P+
1 )

∫
R3

V (|y|)
|x− y|

e−|x−P+
1 |W 2

r,h(y) dy dx

+
(
e−ηπ r

k + e−ηh
)2 ∫

Ω+
1 \BR(P+

1 )

∫
R3

V (|y|)
|x− y|

e−2(1−η)|x−P+
1 |W 2

r,h(y) dy dx

≤ C
(
e−R +

(
e−ηπ r

k + e−ηh
)2 )

≤ C

|P+
1 |2m+σ

.

(4.7)
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Therefore, by Lemma 4.4 and (4.5)-(4.7), we obtain

1

4

∫
R3

V (|x|)ΦWr,h
W 2

r,h(x)dx

=
k

2

∫
Ω+

1

V (|x|)
(( k∑

l=1

∫
BR(P±

l )

+

∫
R3\
(∑k

l=1 BR(P±
l )

) ) 1

4π|x− y|
V (y)W 2

r,h(y)dy
)
W 2

r,h(x)dx

=
k

8π

∫
Ω+

1 ∩BR(P+
1 )

∫
BR(P+

1 )

V (|x|)V (|y|)
|x− y|

W 2
r,h(x)W

2
r,h(y) dy dx+ kOk

( 1

|P+
1 |2m+σ

)
+

k

8π

(∫
Ω+

1 ∩BR(P+
1 )

∫
BR(P−

1 )

+

k∑
l=2

∫
Ω+

1 ∩BR(P+
1 )

∫
BR(P±

l )

)V (|x|)V (|y|)
|x− y|

W 2
r,h(x)W

2
r,h(y) dy dx

=
k

8π

∫
Ω+

1 ∩BR(P+
1 )

∫
BR(P+

1 )

V (|x|)V (|y|)
|x− y|

[
U2
P+

1
(x) +Ok

(
UP+

1
(x)
( k∑

i=2

UP+
i
(x) +

k∑
j=1

UP+
1
(x)
))]

×
[
U2
P+

1
(y) +Ok

(
UP+

1
(y)
( k∑

i=2

UP+
i
(y) +

k∑
j=1

UP−
j
(y)
))]

dy dx+ kOk

( 1

|P+
1 |2m+σ

)
+

k

8π

( a2A2

π|P+
1 |2m

k ln k

r
+
a2A2C0

|P+
1 |2m

k ln k

r

)
+

k

8π

( a2A2

2h|P+
1 |2m

)
=

k

8π

∫
Ω+

1 ∩BR(0)

∫
BR(0)

V (|x+ P+
1 |)V (|y + P+

1 |)
|x− y|

U2(x)U2(y) dy dx+ kOk

( 1

|P+
1 |2m+σ

)
+ kOk

(∫
Ω+

1 ∩BR(0)

∫
BR(0)

V (|x+ P+
1 |)V (|y + P+

1 |)
|x− y|

U2(x)U(y)e−(1−η)|y|
(
e−ηπ r

k + e−ηh
)
dy dx

)
+ k
( a2A2

π|P+
1 |2m

k ln k

r
+
a2A2C0

|P+
1 |2m

k ln k

r

)
+ k
( a2A2

2h|P+
1 |2m

)
= k

a2A2

|P+
1 |2m

+ kOk

(
1

|P+
1 |2m+σ

)
+ k

(
a2A2

π|P+
1 |2m

k ln k

r
+
a2A2C0

|P+
1 |2m

k ln k

r

)
+ k

(
a2A2

2h|P+
1 |2m

)
= k

[a2A2

r2m
− ma2h2A2

r2m+2
+Ok

( 1

r2m+σ

)
+Ok

(
h2

r2m+2+σ

)
+
a2A2k ln k

πr2m+1
+
a2A2C0k ln k

r2m+1

+
ma2A2h

2k ln k

πr2m+3
+
ma2A2C0h

2k ln k

r2m+3
+

a2A2

2hr2m
+
ma2A2h

2r2m+2
+O(

k ln k

r2m+1+σ
) +O(

h2k ln k

r2m+3+σ
)

+O(
1

r2m+σh
) +O(

h

r2m+2+σ
)
]
.

(4.8)
Note that

I(Wr,h) =
1

2

∫
R3

(
|∇Wr,h|2 + |Wr,h|2

)
− 1

p+ 1

∫
R3

Q(|x|)|Wr,h|p+1 +
1

4

∫
R3

V (|x|)ΦWr,h
W 2

r,h.

Then (4.3) follows from (4.8) and (2.2) immediately. The proof is complete. □

5. Proof of Theorem 1.1

Let ϕr,h = ϕ(r, h) be the map obtained in Proposition 3.3. We define a function F : Dk → R
by

F (r, h) = I(Wr,h + ϕr,h).

With the same argument in [4, Proposition 5.3], we can easily check that if (r, h) ∈ Dk is a critical
point of F (r, h), then Wr,h + ϕr,h is a solution of (1.1).

Proof of Theorem 1.1. In view of Lemma 3.2, Proposition 4.1 and (3.31), by using the Taylor
expansion, we can deduce that

F (r, h) = I(Wr,h) +Ok(∥lk∥ ∥ϕ∥+ ∥ϕ∥2)
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= k
[
A1 +

a2A2

r2m
− ma2h2A2

r2m+2
− bA3

rn
+
nbA3

2

h2

rn+2
− 2B1e

−2π r
k

( k

2πr

)
−B1e

−2h
( 1

2h

)
+Ok

( 1

r2m+σ

)
+Ok

( h2

r2m+2+σ

)
+Ok

( 1

rn+σ

)
+Ok

( h2

rn+2+σ

)
+Ok

(
e−2(1+σ)π r

k

)
+Ok

(
e−2(1+σ)h

)]
.

Then by following the same arguments as [4, Lemma 5.2], via the Miranda theorem, we can prove
that F (r, h) has an interior maximum point (rk, hk) ∈ Dk. Then uk =Wrk,hk

+ϕrk,hk
is a solution

of (1.1), where ϕrk,hk
∈ E satisfies Proposition 3.3, which implies

∫
R3

(
|∇ϕrk,hk

|2 + |ϕrk,hk
|2
)
→ 0

as k → ∞. The proof is complete. □
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