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NORMALIZED SOLUTIONS OF FRACTIONAL KIRCHHOFF EQUATIONS

IN THE DEFOCUSING CASE

ZHENYU GUO, TIANQING ZHANG

Abstract. In this article, we focus on the normalized solutions to the fractional Kirchhoff equa-

tions with subcritical nonlinearities in the defocusing case. By applying distinct suppositions

to the coefficients of nonlinearities, namely q < p, we prove the existence and nonexistence of
normalized solutions. Also we obtain new results on the characterization of ground states of the

fractional Kirchhoff equations.

1. Introduction

The aim of article is to study the fractional Kirchhoff equation(
a+ b

∫
R3

|(−∆)s/2u|2dx
)
(−∆)su = λu+ µ|u|q−2u+ |u|p−2u in R3 (1.1)

with a prescribed mass ∫
R3

u2dx = c2. (1.2)

In this article, except for additional statements, we assume that a, b, c > 0, 0 < s < 1, 2 < q <
p ≤ 2∗s = 6

3−2s (2∗s is the Sobolev critical exponent), N = 3, λ ∈ R is a Lagrange multiplier and

µ < 0 is a parameter. For equation (1.1), we name the focusing case when µ > 0, and defocusing
case when µ < 0. In equation (1.1), (−∆)s with s ∈ (0, 1)), namely the fractional Laplacian, is
generally specified as

(−∆)sv(x) = CsP.V.

∫
R3

v(x)− v(y)

|x− y|3+2s
dy

= Cs lim
ϵ→0+

∫
R3\Bϵ(x)

v(x)− v(y)

|x− y|3+2s
dy

= −1

2
Cs

∫
R3

v(x+ y) + v(x− y)− 2v(x)

|y|3+2s
dy

(1.3)

for v ∈ S(R3), where S(R3) denotes the Schwartz space of rapidly decaying C∞ function, Bϵ(x)
represents an open ball of radius ϵ centered at x, P.V. is the principle value, which is defined by
the latter expression in (1.3),

Cs =
(∫

R3

1− cos(ξ1)

|ξ|3+2s
dξ

)−1

.

For u ∈ S(R3), the fractional Laplacian (−∆)s can be regulated by the Fourier transform (−∆)su =
F−1(|ξ|2sFu), F denotes the usual Fourier transform.
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When setting a = 1, s = 1 and b = 0 (that is to say, (1.1) turns into the Schrödinger equation),
in 1997, Jeanjean [13] studied the existence of the normalized solutions to the Schrödinger equation
in the case of the corresponding energy functional

F (u) =
1

2

∫
RN

|∇u(x)|2dx−
m∑
i=1

ai
σi + 2

∫
RN

|u(x)|σi+2dx

is unbounded from below on the L2-constraint set

S(c) = {u ∈ H1(RN ), ∥u∥L2(RN ) = c}
initially. Lately, such type of problems have attracted extensive attention in the field of partial
differential equations. For instance, Soave [24] gave the existence and some properties of ground
states for the nonlinear Schrödinger equation with combined power nonlinearities

−∆u = λu+ µ|u|q−2u+ |u|p−2u in RN , N ≥ 1,

on the normalized manifold ∫
RN

|u|2dx = a2.

As for other results of the Schrödinger equation, we refer readers to [4, 11, 25, 27] and the references
therein.

When considering the case a = 1, s ̸= 1 and b = 0, i.e., for the fractional Schrödinger equations,
see [18, 29] and the references therein for results about the normalized solutions to the fractional
Schrödinger equations.

When b > 0 and s = 1, equation (1.1) becomes the classic Kirchhoff model; this type of
problems has also been researched by many authors [1, 14, 21]. In fact, such model has relation
to the stationary solutions of equation

utt −
(
a+ b

∫
RN

|∇u|2dx
)
∆u = f(x, u). (1.4)

This equation comes from the traditional D’Alembert wave equation which was given by Kirchhoff
[14] in 1876 in the process of studying the changes in the length of the string during vibrations,
where f(x, u) denotes a general nonlinear term. Additionally, it deserves attention that in [1]
equation (1.4) models some physical systems, where u explains a process which is related to the
average of itself. A lot of papers about the Kirchhoff type equations emerged with the emergence
of this ground breaking article [21]. For example, considering a Kirchhoff model, together with
a critical Trudinger-Moser nonlinearity f(x, u), a class of fractional Kirchhoff-type equation with
Trudinger-Moser nonlinearity was discussed by Xiang, Rădulescu and Zhang [20]. Using appro-
priate assumptions on the potential function V and some energy estimates techniques, Chen and
Huang [6] obtained the existence results of normalized solutions for a fractional Kirchhoff-type
equation (

a+ b

∫
RN

|(−∆)s/2u|2dx
)
(−∆)su+ V (x)u = c|u|p−2u+ µu in RN

with doubly critical exponents (when considering the case N = 4s, the critical Sobolev exponent
2∗s = 2N

N−2s and the fractional Gagliardo-Nirenberg-Sobolev critical exponent 2∗GNS = 2N+8s
N are

equal, and 2N
N−2s = 2N+8s

N = 4). In addition, in 2024, the existence of the normalized solutions to
the fractional Kirchhoff equation with subcritical nonlinearity(

a+ b

∫
RN

|(−∆)s/2u|2dx
)
(−∆)su = λu+ µ|u|q−2u+ |u|p−2u in RN

was studied in [8] in R3 with s ∈ (3/4, 1) and µ < 0.
If the constraint condition (1.2) is considered on this basis, some universal methods do not take

effect. As a result, we need to establish extra claims to solve the technical obstacles. As is known
(such as in [13]), (1.2) has definite physical motivations. Consequently, it has sparked a wave of
research on the normalized solutions. More specifically, the practical application background of
operator (−∆)s includes the following aspects such as fractional quantum mechanics [15], physics
and chemistry [19], conformal geometry and minimal surfaces [5], obstacle problems [23]. Caffarelli
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and Silvestre [2] adopted the extension method which converted this nonlocal problem (due to the
nonlocal feature of the operator (−∆)s on RN (N ≥ 1)) to a local one in higher dimensions. What
makes this amusing, of course, is that this method can go for nonlinear equations with a fractional
Laplacian, we refer readers to [7, 9] and the references therein.

About equation (1.1), there are usually two classes of treatments. On one hand, we can think
of it as a fixed frequency problem, in other words, we look for solutions u ∈ Hs(R3) by hunting
for critical points of the action functional M : Hs(R3) → R:

M(u) :=
a

2

∫
R3

|(−∆)s/2u|2dx+
b

4

(∫
R3

|(−∆)s/2u|2dx
)2

− λ

2

∫
R3

|u|2dx− µ

q

∫
R3

|u|qdx− 1

p

∫
R3

|u|pdx,
(1.5)

where λ ∈ R is a fixed frequency, readers can see [12, 17] for more results.
On the other hand, we can also search for solutions to (1.1) with a prescribed L2 norm. In

this case, we see λ ∈ R as part of unknown quantity. As everyone knows, equation (1.1) has roots
in the standing wave type solution ψ(x, t) = e−iλtu(x), λ ∈ R to the time-dependent nonlinear
fractional equation defined by:

i
∂ψ

∂t
=

(
a+ b

∫
R3

|(−∆)s/2ψ|2dx
)
(−∆)sψ − f(|ψ|)ψ, in R3, (1.6)

where s ∈ (0, 1), i represents the imaginary unit, and ψ = ψ(x, t) : R3× [0,+∞) → C. It is easy to
see that ψ solves (1.6) if and only if the standing wave u(x) satisfies (1.1) with f(u) = µuq−2+up−2.
After computations, we can see that solutions ψ ∈ C([0, T );Hs(R3)) to (1.6) has conservation of
mass along time, therefore this method is extremely significative from the physical perspective.

Now mention some publications that consider normalized solutions to (1.1). Li, Luo and Yang
[16] proved the existence and properties of solutions to (1.1) with s = 1 under normalized constraint∫
R3 |u|2dx = c2 when a, b > 0 and µ > 0, namely the focusing case. As far as we know, the
defocusing case of problem (1.1) with the condition (1.2) was mainly studied by Soave [24] with
b = 0. The situation b > 0, µ < 0 and s = 1 was studied in [3]. The defocusing case of fractional
Kirchhoff equation was part of Ding’s result [8]. We further extended his results (see Theorem 2.8
and 2.10). In this paper, we take the case of b > 0, µ < 0 and s ∈ (0, 1) into consideration.

Before presenting the main results of our paper, let us first recall that the fractional Sobolev
space Hs(R3) can be defined as follows:

Hs(R3) =
{
u ∈ L2(R3) :

∫
R3

|(−∆)
s
2u|2dx < +∞

}
with the norm

∥u∥2 =

∫
R3

(|(−∆)s/2u|2 + |u|2)dx,

where ∫
R3

|(−∆)
s
2u|2dx =

∫∫
R6

|u(x)− u(y)|2

|x− y|3+2s
dxdy.

Also we define

Hs
r (R3) =

{
u ∈ Hs(R3) : u(x) = u(|x|), x ∈ R3

}
.

In this paper, we denote by | · |p the usual norm in the Lp(R3) space, Sr
c = Sc ∩Hs

r and u∗ the
symmetric decreasing rearrangement of the modulus of u ∈ Hs(R3). The functional Eµ : Sc → R
is regulated as

Eµ(u) =
a

2

∫
R3

|(−∆)s/2u|2dx+
b

4

(∫
R3

|(−∆)s/2u|2dx
)2

− µ

q

∫
R3

|u|qdx− 1

p

∫
R3

|u|pdx,

where Sc is the constraint space

Sc =
{
u ∈ Hs(R3) :

∫
R3

|u|2dx = c2
}
.
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It is easy to check that Eµ ∈ C1(R3,R). Thus, the weak solutions of (1.1) under the constraint
(1.2) can be obtained as critical points of the functional Eµ.

We can easily prove that, if u ∈ Hs(R3) is a weak solution of (1.1), then we have the Pohožaev
identity

Pµ(u) := a|(−∆)s/2u|22 + b|(−∆)s/2u|42 − µδs,q|u|qq − δs,p|u|pp = 0,

where δs,p = 3(p−2)
2sp , δs,q = 3(q−2)

2sq . Therefore, the critical points of Eµ is certainly contained in

the Pohožaev set

Pc,µ =
{
u ∈ Sc : Pµ(u) = 0

}
(see lemma 2.3 for a proof).

By simple calculations, we can show that δs,p ∈ (0, 1) (when 2 < p < 2∗s) and

qδs,q ≤ 4 < pδs,p, if 2 < q ≤ 2 +
8s

3
< p <

6

3− 2s
,

where 2 + 8s
3 is the mass critical exponent for the Kirchhoff constrained minimization problem,

namely, 2+ 8s
N is the threshold exponent for many dynamic problems, see [28] for more information.

In this article, we will be concerned with ground state solutions, wihci are defined as follows.

Definition 1.1. We say that ũ is a ground state of (1.1) on Sc if it is a solution to (1.1) having
minimal energy among all the solutions which belong to Sc:

dEµ|Sc
(ũ) = 0 and Eµ(ũ) = inf{Eµ(u) : dEµ|Sc

(u) = 0, and u ∈ Sc}.

And the set of ground states will be denoted by Zc,µ.

To go over the obstacles about the convergence of the Palais Smale (hereinafter referred to as
PS) sequence of Eµ, we build the sequence {un}n∈N satisfying

Pµ(un) → 0,

when n→ ∞. Thanks to the normalized condition (1.2), we define the dilations

(ω ∗ u)(x) = e3ω/2u(eωx), a.e. in R3

which retain the L2 norm, more precisely,∫
R3

(ω ∗ u)2dx =

∫
R3

u2dx,

and it is a continuous map from R×Hs(R3) into Hs(R3). Furthermore, we introduce the following
fiber map

Jµ
u (ω) := Eµ(ω ∗ u) = ae2sω

2
|(−∆)s/2u|22 +

be4sω

4
|(−∆)s/2u|42 − µ

eqδs,qsω

q
|u|qq −

epδs,psω

p
|u|pp,

where δs,q = 3(q−2)
2sq and δs,p = 3(p−2)

2sp . By using the functional Jµ
u , we cast a function into the

Pohožaev set. Soave [24] and Li, Luo and Yang [16] have also applied such idea.
The main results of this paper are organized as follows:

• If µ < 0, 2 < q < p = 2 + 8s
3 = p̄, we prove that (1.1) under the condition (1.2) does not

have solution.
• If 2 < q ≤ 2 + 8s

3 < p < 6
3−2s are given constants and µ < 0 satisifies an additional

assumption, we prove that there exists λ < 0 such that (1.1) under the condition (1.2) has
a solution. The solution is radially symmetric, and is a ground state on Sc.

• If 2 < q ≤ 2 + 8s
3 < p < 6

3−2s are given constants and µ < 0 satisfies an additional
assumption, we also give a characterization to the set of ground states.

For overcoming some technical difficulties, the main proof of our results involves the techniques
used by Soave [24], Li, Luo and Yang [16]. This paper is organized as follows. In section 2 we
give the notation and assumptions and we enunciate our main results. In section 3 we prove some
results concerning the subcritical case (namely, the main results in this paper).
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2. Preliminaries and main results

Lemma 2.1 ([7]). Let s ∈ (0, 1) and p ∈ [1,+∞) be such that sp < N . Then, there exists a
positive constant Ss = Ss(N, p, s) such that, for any measurable and compactly supported function
u : RN → R, we have

Ss|u|22∗s ≤
∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy, (2.1)

where 2∗s = 2N
N−2s is the so-called fractional critical exponent. Moreover, (2.1) becomes equality if

and only if ũ = K(µ̄2 + |x − x0|2)−
N−2s

2 with K ∈ R\{0}, µ̄ > 0, x0 ∈ RN fixed constants, Ss is
the best Sobolev embedding constant.

It is known that if p ∈ (2, 2∗s), then there exists an optimal constant C(s, p) such that

|u|p ≤ C(s, p)|(−∆)s/2u|δs,p2 |u|1−δs,p
2 , (2.2)

holds for all u ∈ Hs(RN ). (2.2) is called of the fractional Gagliardo-Nirenberg inequality.

Lemma 2.2 ([18]). Let u ∈ Hs(RN ), N ≥ 2 satisfy the equation

(−∆)su = g(u),

then
N − 2s

2

∫
RN

|(−∆)s/2u|2dx = N

∫
RN

G(u)dx,

where G(u) =
∫ u

0
g(t)dt.

Lemma 2.3. Let p, q ∈ (2, 2N
N−2s ] and λ, µ ∈ R. If u ∈ Hs(RN ) is a weak solution of the equation

in the N -dimensional space corresponding to equation (1.1), then it satisfies the Pohožaev identity

Pµ(u) := a|(−∆)s/2u|22 + b|(−∆)s/2u|42 − µδs,q|u|qq − δs,p|u|pp = 0, (2.3)

where δs,q = N(q−2)
2sq and δs,p = N(p−2)

2sp .

Proof. Set A = a+ b
∫
RN |(−∆)s/2u|2dx. According to the lemma 2.2, we have

(−∆)su =
1

A
(λu+ µ|u|q−2u+ |u|p−2u). (2.4)

Let f(u) = 1
A (λu+ µ|u|q−2u+ |u|p−2u), then F (u) = 1

A (λ2 |u|
2 + µ

q |u|
q + 1

p |u|
p). According to the

assumption that u is a weak solution to the equation in the N -dimensional space corresponding
to equation (1.1) (in other words, multiplying the above equation by u and integrating), one has
that ∫

RN

A(−∆)su · udx = (λ|u|22 + µ|u|qq + |u|pp). (2.5)

The above equality implies that

A|(−∆)s/2u|22 = (λ|u|22 + µ|u|qq + |u|pp). (2.6)

Multiplying by N
N−2s , it holds that

N

N − 2s
A|(−∆)s/2u|22 =

N

N − 2s
λ|u|22 +

N

N − 2s
µ|u|qq +

N

N − 2s
|u|pp. (2.7)

By lemma 2.2, we have that

|(−∆)s/2u|22 =
2N

A(N − 2s)

(λ
2
|u|22 +

µ

q
|u|qq +

1

p
|u|pp

)
. (2.8)

Combining the above two equations, we obtain that(
1− N

N − 2s

)
A|(−∆)s/2u|22 = µ

( 2N

q(N − 2s)
− N

N − 2s

)
|u|qq +

( 2N

p(N − 2s)
− N

N − 2s

)
|u|pp.

From the above equality, one deduces that

A|(−∆)s/2u|22 = µδs,q|u|qq + δs,p|u|pp.
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Thus, the fractional Pohožaev identity holds, namely,

a|(−∆)s/2u|22 + b|(−∆)s/2u|42 = µδs,q|u|qq + δs,p|u|pp. □

For convenience, we decompose the set Pc,µ into three disjoint sets as follows:

Pc,µ = P+
c,µ ∪ P0

c,µ ∪ P−
c,µ,

where

P+
c,µ = {u ∈ Pc,µ, 2a|(−∆)s/2u|22 + 4b|(−∆)s/2u|42 − µqδ2s,q|u|qq − pδ2s,p|u|pp > 0}

=
{
u ∈ Pc,µ, (J

µ
u )

′′
(0) > 0

}
,

P−
c,µ = {u ∈ Pc,µ, 2a|(−∆)s/2u|22 + 4b|(−∆)s/2u|42 − µqδ2s,q|u|qq − pδ2s,p|u|pp < 0}

=
{
u ∈ Pc,µ, (J

µ
u )

′′
(0) < 0

}
,

P0
c,µ = {u ∈ Pc,µ, 2a|(−∆)s/2u|22 + 4b|(−∆)s/2u|42 − µqδ2s,q|u|qq − pδ2s,p|u|pp = 0}

=
{
u ∈ Pc,µ, (J

µ
u )

′′
(0) = 0

}
,

where

(Jµ
u )

′′
(0) =

(
2a|(−∆)s/2u|22 + 4b|(−∆)s/2u|42 − µqδ2s,q|u|qq − pδ2s,p|u|pp

)
s2.

Next we state a lemma that is a type of minimax principle. But first, we state a related definition.

Definition 2.4. Let X be a topological space and B be a closed subset of X. We say that a class
F of compact subsets of X is a homotopy-stable family with extended boundary B if for any set
A in F and any η ∈ C([0, 1]×X;X) satisfying η(t, x) = x for all (t, x) ∈ ({0} ×X) ∪ ([0, 1]×B),
we have that η({1} ×A) is in F .

Lemma 2.5 ([10, Theorem 5.2]). Let Φ be a C1 functional on a complete connected C1-Finsler
manifold X and consider a homotopy-stable family F with an extended closed boundary B. Set
m = m(Φ, F ) = infA∈F maxx∈A Φ(x) and let F be a closed subset of X satisfying

(1) A ∩ F\B ̸= ∅ for each A ∈ F .
(2) supΦ(B) ≤ m ≤ inf Φ(F ). Then, for any sequence of sets {An}n in F such that

limn supAn
Φ = m, there exists a sequence {xn}n in X\B such that

lim
n→∞

Φ(xn) = m, lim
n→∞

∥dΦ(xn)∥ = 0,

lim
n→∞

dist(xn, F ) = 0, lim
n→∞

dist(xn, An) = 0.

Lemma 2.6 ([18]). Let N ≥ 2, then Hs
r (RN ) is compactly embedding into Lp(RN ) for p ∈ (2, 2∗s).

Lemma 2.7 ([18]). Let s ∈ (0, 1). For any u ∈ Hs(RN ), the following inequality holds∫∫
R2N

(u∗(x)− u∗(y))2

|x− y|N+2s
dxdy ≤

∫∫
R2N

(u(x)− u(y))2

|x− y|N+2s
dxdy.

Next, we state the main results of this paper.

Theorem 2.8 (Subcritical case). Let N = 3 and 2 < q < p = 2 + 8s
3 = p̄. If b ≥ 4

p̄C(s, p̄)
p̄cp̄−4,

then there is no solution to problem (1.1)-(1.2) for any µ < 0.

Now, we define the constant

C0 :=
( a

δs,pC(s, p)pcp(1−δs,p)

) 1
pδs,p−2

.

Theorem 2.9 (Subcritical case). Let N = 3 and 2 < q ≤ 2 + 8s
3 < p < 2∗s = 6

3−2s be given
constants. If µ < 0 satisfies

(1− 1

δs,p
)(a+ bC2

0 )C
2−qδs,q
0 + µ

(δs,q
δs,p

− 1
)
C(s, q)qcq(1−δs,q) := ϵ0 < 0, (2.9)

then Eµ|Sc
has a critical point ũ at a positive level m(c, µ) = infu∈Pc,µ Eµ(u) > 0 satisfying: ũ is

radially symmetric, it solves (1.1) for some λ̃ < 0 and it is a ground state of (1.1) on Sc, where
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C(s, q) is an optimal constant such that the fractional Gagliardo-Nirenberg inequality holds (see
inequality (2.2)).

The following theorem characterizes the ground states.

Theorem 2.10 (Subcritical case). Under the assumptions of Theorem 2.9, if u ∈ Zc,µ (see
Definition 1.1 for the definition of Zc,µ), then eiθ|u| ∈ Zc,µ for each θ ∈ R. Moreover, if u is a
ground state, then the associated Lagrange multiplier λ is negative.

3. Subcritical case

In this part we prove Theorems 2.8, 2.9 and 2.10. First we list some lemmas. Since some of
these lemmas appear in the references, we omit their proof here.

Lemma 3.1 (Jeanjean [13]). For u ∈ Sc and s ∈ R, the map ϕ 7→ s ∗ ϕ from TuSc to Ts∗uSc is a
linear isomorphism with inverse ψ 7→ (−s) ∗ ψ, where TuSc = {ϕ ∈ Sc :

∫
RN uϕdx = 0}.

Next, we will discuss the convergence of a class of special PS sequences satisfying appropriate
additional assumptions. The idea used in the proof was first introduced by Jeanjean [13]. Then
Soave [24] applied this idea to study the normalized solutions to the nonlinear Schrödinger equation
with mixed nonlinearities.

Lemma 3.2 (Compactness of PS sequences). Let 2 < q ≤ 2 + 8s
3 < p < 6

3−2s be given constants.

We suppose that {un}n∈N ⊂ Sc is a PS sequence for Eµ|Sc
at level c ̸= 0 and it holds

(i) Pµ(un) → 0 as n→ ∞.
(ii) µ < 0 and (2.9) holds.

Then, going to a subsequence, un → u strongly in Hs(R3), and u ∈ Sc is a radial solution to (1.1)
for some λ < 0.

Proof. In this lemma, we argue directly. Since Pµ(un) → 0 as n→ ∞, we have that

a|(−∆)s/2un|22 + b|(−∆)s/2un|42 − µδs,q|un|qq − δs,p|un|pp = o(1), (3.1)

as n→ ∞. Therefore,

c+ 1 ≥ Eµ(un)

=
a

2

∫
R3

|(−∆)s/2un|2dx+
b

4

(∫
R3

|(−∆)s/2un|2dx
)2

− µ

q

∫
R3

|un|qdx− 1

p

∫
R3

|un|pdx

= a
(1
2
− 1

pδs,p

)∫
R3

|(−∆)s/2un|2dx+ b
(1
4
− 1

pδs,p

)(∫
R3

|(−∆)s/2un|2dx
)2

− µ

q

(
1− qδs,q

pδs,p

)∫
R3

|un|qdx+ o(1)

≥ a
(1
2
− 1

pδs,p

)∫
R3

|(−∆)s/2un|2dx+ b
(1
4
− 1

pδs,p

)(∫
R3

|(−∆)s/2un|2dx
)2

+ o(1),

as n → ∞, where we used the fact that Eµ(un) → c, the equivalent deformation of (3.1) and

−µ
q

(
1 − qδs,q

pδs,p

)
> 0 (since µ < 0, 0 < qδs,q < pδs,p). From the above inequality and the fact

that |un|22 = c2, we deduce that {un} is a bounded sequence in Hs(R3). Besides, Hilbert space
Hs(R3) is a reflexive Banach space. In the reflexive Banach space Hs(R3), bounded sequence
{un} has weakly convergent subsequence {un} (for the sake of brevity, the subsequence of {un} is
still represented by {un}). According to lemma 2.6, Hs

r (R3) ↪→ Lp(R3) compactly for p ∈ (2, 2∗s),
there exists u ∈ Hs

r (R3) such that

un ⇀ u in Hs
r (R3), un → u in Lp(R3), un(x) → u(x) a.e. in R3, (3.2)

as n→ ∞.
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Since {un} is a bounded PS sequence of Eµ|Sc
, by applying the Lagrange multipliers rule, we

conclude that there exists λn ∈ R such that

a

∫
R3

(−∆)s/2un(−∆)s/2ϕdx+ b|(−∆)s/2un|22
∫
R3

(−∆)s/2un(−∆)s/2ϕdx

− µ

∫
R3

|un|q−2unϕdx−
∫
R3

|un|p−2unϕdx− λn

∫
R3

unϕdx

= o(1)∥ϕ∥Hs ,

(3.3)

for all ϕ ∈ Hs(R3). Letting ϕ = un, we have that

a|(−∆)s/2un|22 + b|(−∆)s/2un|42 − µ|un|qq − |un|pp − λn|un|22 = o(1)∥un∥Hs . (3.4)

Therefore,

λn =
1

c2

(
a|(−∆)s/2un|22 + b|(−∆)s/2un|42 − µ|un|qq − |un|pp

)
+ o(1)∥un∥Hs . (3.5)

As {un} is a bounded sequence in Hs(R3)∩Lp(R3)∩Lq(R3), from the above equation we obtain
that {λn} is a bounded sequence. Thus, going if necessary to a subsequence, there exists λ ∈ R
such that

λn → λ (3.6)

as n→ ∞. In the remaining of this proof, we prove that λ < 0. From Pµ(un) → 0 as n→ ∞, we
obtain that

a|(−∆)s/2un|22 + b|(−∆)s/2un|42 = µδs,q|un|qq + δs,p|un|pp + o(1) ≤ δs,p|un|pp + o(1). (3.7)

Employing the fractional Gagliardo-Nirenberg inequality (2.2), we derive that

a|(−∆)s/2un|22 ≤ a|(−∆)s/2un|22 + b|(−∆)s/2un|42
≤ δs,p|un|pp + o(1)

≤ δs,pC(s, p)
p|(−∆)s/2un|

pδs,p
2 |un|

p(1−δs,p)
2 + o(1).

(3.8)

It is easy to obtain that u ̸≡ 0: assuming by contradiction that u ≡ 0, then we obtain that
limn→∞ |un|qq = limn→∞ |un|pp = 0. Using that Pµ(un) → 0 we deduce that Eµ(un) → 0, while
this contradicts the assumption that Eµ(un) → c ̸= 0. Thus we have u ̸≡ 0. Since un ∈ Sc and
the weak lower semi-continuity of the norm, it follows that |u|2 ≤ c, then we have that

C0 =
( a

δs,pC(s, p)pcp(1−δs,p)

) 1
pδs,p−2 ≤ B, (3.9)

where B = limn→∞ |(−∆)s/2un|2. That is to say, for n large enough, we obtain that

|(−∆)s/2un|2 ≥ C0. (3.10)

Inserting (3.1) into (3.5), we have that

λn =
1

c2

[(
1− 1

δs,p

)(
a+ b|(−∆)s/2un|22

)
|(−∆)s/2un|22 + µ

(δs,q
δs,p

− 1
)
|un|qq

]
+ o(1). (3.11)

According to the fractional Gagliardo-Nirenberg inequality (2.2), we obtain that

|un|qq ≤ C(s, q)q|(−∆)s/2un|
qδs,q
2 |un|

q(1−δs,q)
2 . (3.12)

By un ∈ Sc, we have that

|un|qq ≤ C(s, q)q|(−∆)s/2un|
qδs,q
2 cq(1−δs,q). (3.13)

Further, by 1 − 1
δs,p

< 0 (since 0 < δs,p < 1), combining (3.9), (3.11) with (3.13), we can deduce

that

λn ≤ 1

c2
|(−∆)s/2un|

qδs,q
2

[(
1− 1

δs,p

)
(a+bC2

0 )C
2−qδs,q
0 +µ

(δs,q
δs,p

−1
)
C(s, q)qcq(1−δs,q)

]
+o(1). (3.14)
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By (3.10) and (2.9), we derive that

λn ≤ 1

c2
C

qδs,q
0

[(
1− 1

δs,p

)
(a+ bC2

0 )C
2−qδs,q
0 + µ

(δs,q
δs,p

− 1
)
C(s, q)qcq(1−δs,q)

]
+ o(1). (3.15)

Therefore, considering condition (2.9), we obtain that

λn ≤ 1

c2
C

qδs,q
0 ϵ0 + o(1), (3.16)

for n adequately large. Taking the limit of the above formula as n→ ∞, we have that

λ ≤ 1

c2
C

qδs,q
0 ϵ0 < 0. (3.17)

Thus λ < 0, and the claim is proved.
Finally, we prove that un → u strongly in Hs(R3). By taking the limit of (3.3), one has

a

∫
R3

(−∆)s/2u(−∆)s/2ϕdx+ bB2

∫
R3

(−∆)s/2u(−∆)s/2ϕdx− µ

∫
R3

|u|q−2uϕdx

−
∫
R3

|u|p−2uϕdx− λ

∫
R3

uϕdx = 0,

(3.18)

for all ϕ ∈ Hs(R3), that is, u satisfies

(a+B2b)(−∆)su = λu+ µ|u|q−2u+ |u|p−2u,

namely, u solves (1.1) for some λ < 0. Testing (3.18), (3.3) with ϕ = un − u, we can see that

(a+B2b)

∫
R3

|(−∆)s/2(un − u)|2dx− λ

∫
R3

|un − u|2dx→ 0,

as n→ ∞. Since λ < 0, we deduce that {un} converges strongly to u in Hs(R3). □

Lemma 3.3. Let µ < 0, and 2 < q ≤ 2 + 8s
3 < p < 2∗s be given constants. Then P0

c,µ = ∅ and

Pc,µ is a smooth manifold of codimension 2 in Hs(R3).

Proof. Suppose by contradiction that this is not the case, namely we set P0
c,µ ̸= ∅, then from the

definition of P0
c,µ, we can derive that there exists u ∈ Sc such that

Pµ(u) = 0 and (Jµ
u )

′′
(0) = 0.

Therefore,

a|(−∆)s/2u|22 + b|(−∆)s/2u|42 = µδs,q|u|qq + δs,p|u|pp, (3.19)

2a|(−∆)s/2u|22 + 4b|(−∆)s/2u|42 = µqδ2s,q|u|qq + pδ2s,p|u|pp. (3.20)

Combining (3.19) with (3.20), one has

(pδs,p − 2)a|(−∆)s/2u|22 + (pδs,p − 4)b|(−∆)s/2u|42 = µδs,q(pδs,p − qδs,q)|u|qq ≤ 0, (3.21)

where pδs,p > 4 ≥ qδs,q by 2 < q ≤ 2 + 8s
3 < p < 2∗s, δs,q > 0 by q > 2. Then, it follows that

|(−∆)s/2u|2 = 0. (3.22)

Further, from (3.19), (3.21) and the fractional Gagliardo-Nirenberg inequality (2.2), we obtain
that

|u|q = 0 and |u|p = 0.

Thus, we deduce that u ≡ 0, which is in contradiction with u ∈ Sc. So we obtain P0
c,µ = ∅. To

proof that Pc,µ is a smooth manifold of codimension 2 in Hs(R3) is very similar to the one of [24,
lemma 5.2], therefore we omit it here. □

Since P0
c,µ = ∅ by lemma 3.3, we observe that Pc,µ is a natural constraint in the following sense.

Lemma 3.4. Let µ < 0 and 2 < q ≤ 2 + 8s
3 < p < 2∗s be given constants. If u ∈ Pc,µ is a critical

point for Eµ|Pc,µ
, then u is a critical point for Eµ|Sc

.
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Proof. From lemma 3.3, we see that Pc,µ is a smooth manifold of codimension 2 in Hs(R3) and
P0
c,µ = ∅. If u ∈ Pc,µ is a critical point for Eµ|Pc,µ

, then by the Lagrange multipliers rule, one gets
that there exist λ, ν ∈ R such that

⟨E′
µ(u), ϕ⟩ − λ

∫
R3

uϕdx− ν⟨P ′
µ(u), ϕ⟩ = 0

for any ϕ ∈ Hs(R3), that is, u solves[
(1− 2ν)a+ (1− 4ν)b

∫
R3

|(−∆)s/2u|2dx
]
(−∆)su

= λu+ µ(1− νqδs,q)|u|q−2u+ (1− νpδs,p)|u|p−2u in R3.

(3.23)

By lemma 2.2, we obtain that

3− 2s

2
(1− 2ν)a

∫
R3

|(−∆)s/2u|2dx+
3− 2s

2
(1− 4ν)b

(∫
R3

|(−∆)s/2u|2dx
)2

− 3

2
λ

∫
R3

u2dx+
3µ(νqδs,q − 1)

q

∫
R3

uqdx+
3(νpδs,p − 1)

p

∫
R3

updx = 0 in R3.

(3.24)

Multiplying (3.23) by u and integrating, then combining it with (3.24), we obtain that

(1− 2ν)a

∫
R3

|(−∆)s/2u|2dx+ (1− 4ν)b
(∫

R3

|(−∆)s/2u|2dx
)2

+ µδs,q(νqδs,q − 1)

∫
R3

uqdx+ δs,p(νpδs,p − 1)

∫
R3

updx = 0.

(3.25)

By (3.25) and Pµ(u) = 0, we have that

ν
(
2a|(−∆)s/2u|22 + 4b|(−∆)s/2u|42 − µqδ2s,q|u|qq − pδ2s,p|u|pp

)
= 0,

which implies that ν = 0 since u /∈ P0
c,µ: from lemma 3.3, we see that Pc,µ is a smooth manifold

of codimension 2 in Hs(R3) and P0
c,µ = ∅, namely,(

2a|(−∆)s/2u|22 + 4b|(−∆)s/2u|42 − µqδ2s,q|u|qq − pδ2s,p|u|pp
)
̸= 0. □

Lemma 3.5. For every u ∈ Sc, there exists a unique tu ∈ R such that tu ∗u ∈ Pc,µ. Moreover, tu
is the unique critical point of Jµ

u and it is a strict maximum point at the positive level. Moreover,

(i) Pc,µ = P−
c,µ.

(ii) Jµ
u is strictly decreasing and concave on (tu,+∞) and tu < 0 implies that Pµ(u) < 0.

(iii) The function u ∈ Sc 7→ tu is of class C1.
(iv) If Pµ(u) < 0, then tu < 0.

Proof. For every u ∈ Sc, according to the definition of Jµ
u (τ), we obtain

lim
τ→−∞

Jµ
u (τ) = 0+ and lim

τ→+∞
Jµ
u (τ) = −∞.

Thus, Jµ
u has at least one global maximum point tu at positive level. Besides, this is the one and

only critical point of Jµ
u . For each u ∈ Sc, we define

h(t) =
at2s

2
|(−∆)s/2u|22 +

bt4s

4
|(−∆)s/2u|42 −

tpδs,ps

p
|u|pp − µ

tqδs,qs

q
|u|qq.

Indeed, Jµ
u (τ) = h(eτ ), then we obtain Jµ

u
′(τ) = h′(eτ )eτ . Thus, it is sufficient to study the

function h. The derivative of h can be written as h′(t) = t4s−1η(t), where

η(t) = ast−2s|(−∆)s/2u|22 + bs|(−∆)s/2u|42 − δs,pst
(pδs,p−4)s|u|pp − µsδs,qt

(qδs,q−4)s|u|qq,

and η satisfies

lim
t→0+

η(t) = +∞, lim
t→+∞

η(t) = −∞, η′(t) < 0, for all t > 0.
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From the above analysis for the function η, we obtain it has a unique zero point t̃ in (0,+∞). By

h′(t) = t4s−1η(t), it holds that the function h has a unique critical point t̃ and tu = ln t̃. By

lim
t→0+

h(t) = 0+, and lim
t→+∞

h(t) = −∞,

we deduce that h(t̃) > 0.
From the above arguments and sPµ(tu ∗ u) = (Jµ

u )
′(tu), we deduce that for each u ∈ Sc, there

exists a unique tu ∈ R such that Pµ(tu ∗ u) = 0, namely, tu ∗ u ∈ Pc,µ. Let u ∈ Pc,µ, then we

obtain tu = 0 and as tu is a maximum point of Jµ
u , we obtain that (Jµ

u )
′′
(0) ≤ 0. Since P0

c,µ = ∅,
we conclude that (Jµ

u )
′′
(0) < 0. Thus, Pc,µ = P−

c,µ. From the calculus above, we can also deduce
that Jµ

u is strictly decreasing and concave on (tu,+∞).
Since (Jµ

u )
′(t) < 0 if and only if t > tu, we conclude that Pµ(u) =

1
s (J

µ
u )

′(0) < 0 if and only if
tu < 0.

Item (iii) holds when applying the implicit function theorem to the function Φ(τ, u) = (Jµ
u )

′(τ).

We use that Φ(tu, u) = (Jµ
u )

′(tu) = 0, that ∂τΦ(tu, u) = (Jµ
u )

′′
(tu) < 0, and the fact that it is not

possible to pass with continuity from P+
c,µ to P−

c,µ (since P0
c,µ = ∅), therefore we obtain u 7→ tu is

C1. □

Lemma 3.6. It holds that
m(c, µ) = inf

u∈Pc,µ

Eµ(u) > 0.

Proof. Setting u ∈ Pc,µ, by fractional Gagliardo-Nirenberg inequality and µ < 0 we obtain that

a|(−∆)s/2u|22 ≤ δs,p|u|pp ≤ δs,pC(s, p)
p| −∆s/2u|pδs,p2 |u|p(1−δs,p)

2 . (3.26)

From the definition of Pc,µ, we obtain u ∈ Sc, namely, |u|2 = c. Therefore,

|(−∆)s/2u|2 ≥
( a

δs,pC(s, p)pcp(1−δs,p)

) 1
pδs,p−2 ⇒ inf

Pc,µ

|(−∆)s/2u|2 > 0. (3.27)

For every u ∈ Pc,µ, we obtain that

Eµ(u) =
(1
2
− 1

pδs,p

)
a|(−∆)s/2u|22 +

(1
4
− 1

pδs,p

)
b|(−∆)s/2u|42 −

µ

q

(
1− qδs,q

pδs,p

)
|u|qq

≥
(1
2
− 1

pδs,p

)
a|(−∆)s/2u|22.

Then pδs,p > 2 and (3.27) imply that

m(c, µ) = inf
Pc,µ

Eµ(u) > 0.

□

Lemma 3.7. For 2 < q ≤ 2 + 8s
3 < p < 2∗s and µ < 0, there exists k > 0 small enough such that

0 < sup
Āk

Eµ(u) < m(c, µ) and u ∈ Āk ⇒ Eµ(u), Pµ(u) > 0,

where Āk = {u ∈ Sc : |(−∆)s/2u|22 ≤ k}.

Proof. For u ∈ Āk with k small enough, thanks to the fractional Gagliardo-Nirenberg inequality
and the fact that pδs,p > 4 (because of p > 2 + 8s

3 ), we have that

Eµ(u) =
a

2
|(−∆)

s
2u|22 +

b

4
|(−∆)

s
2u|42 −

µ

q
|u|qq −

1

p
|u|pp

≥ a

2
|(−∆)

s
2u|22 −

1

p
C(s, p)pcp(1−δs,p)|(−∆)

s
2u|pδs,p2 > 0

and that

Pµ(u) = a|(−∆)
s
2u|22 + b|(−∆)

s
2u|42 − µδs,q|u|qq − δs,p|u|pp

≥ a|(−∆)
s
2u|22 − C(s, p)pcp(1−δs,p)|(−∆)

s
2u|pδs,p2 δs,p > 0.
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Then, if u ∈ Āk, we have that supĀk
Eµ(u) ≥ Eµ(u) > 0 and Pµ(u) > 0. Now, replacing k with

a smaller quantity, recalling that m(c, µ) > 0 by lemma 3.6 and applying fractional Gagliardo-
Nirenberg inequality, we conclude that

Eµ(u) ≤
a

2
|(−∆)

s
2u|22 +

b

4
|(−∆)

s
2u|42 +

|µ|
q
C(s, q)qcq(1−δs,q)|(−∆)

s
2u|qδs,q2 < m(c, µ).

Thus supĀk
Eµ(u) < m(c, µ). □

Now, we define Ec
µ = {u ∈ Sc : Eµ(u) ≤ c} and the minimax class

τ̃ := {γ = (α, β) ∈ C([0, 1],R× Sr
c ) : γ(0) ∈ (0, Āk) and γ(1) ∈ (0, E0

µ)},
where Sr

c = Sc ∩Hs
r . We define the minimax level as follows:

σ(c, µ) = inf
γ∈τ̃

max
(τ,u)∈γ([0,1])

Ẽµ(τ, u),

where

Ẽµ(τ, u) = Eµ(τ ∗ u) = Jµ
u (τ)

=
ae2sτ

2
|(−∆)s/2u|22 +

be4sτ

4
|(−∆)s/2u|42 − µ

eqδs,qsτ

q
|u|qq −

epδs,psτ

p
|u|pp.

Proof of Theorem 2.8. Assume by contradiction that if there exists a solution u to (1.1)-(1.2),
then by the Pohožaev identity Pµ(u) = 0, we obtain that

a|(−∆)s/2u|22 + b|(−∆)s/2u|42 = µδs,q|u|qq +
4

p̄
|u|p̄p̄,

where δs,p̄ = 4
p̄ when p = 2 + 8s

3 = p̄. Since b ≥ 4
p̄C(s, p̄)

p̄cp̄−4, by the fractional Gagliardo-

Nirenberg inequality, we have that

a|(−∆)s/2u|22 + b|(−∆)s/2u|42 −
4

p̄
|u|p̄p̄

≥ a|(−∆)s/2u|22 + b|(−∆)s/2u|42 −
4

p̄
C(s, p)p̄cp̄−4|(−∆)s/2u|42 ≥ 0,

and hence we deduce that

0 > µδs,q|u|qq = a|(−∆)s/2u|22 + b|(−∆)s/2u|42 −
4

p̄
|u|p̄p̄ ≥ 0,

which is a contradiction. □

Proof of Theorem 2.9. Through simple analysis we can see that it is suffice to prove that there
exists a PS sequence such that conditions (i) and (ii) of lemma 3.2 hold. By

lim
τ→−∞

Jµ
u (τ) = 0+ and lim

τ→+∞
Jµ
u (τ) = −∞,

it follows that there exist τ1 and τ2 ∈ R satisfying

Jµ
u (τ) ≤ k for all τ < τ1 (k > 0),

Jµ
u (τ) ≤ 0 for all τ > τ2.

Next, we define γu : [0, 1] → R× Sr
c by

γu(p) =
(
0, ((1− p)τ1 + pτ2) ∗ u

)
, (3.28)

which is a path in τ̃ , therefore σ(c, µ) is a real number.
Now, we aim to prove the claim that for all γ ∈ τ̃ , there exists τγ ∈ (0, 1) such that

α(τγ) ∗ β(τγ) ∈ P−
c,µ. (3.29)

Actually, γ(0) = (0, β(0)) ∈ (0, Āk) and sPµ(t ∗ u) = (Jµ
u )

′(t). According to lemma 3.7, we obtain
Pµ(β(0)) =

1
s (J

µ
u )

′(0) > 0, further, by lemma 3.5, we obtain t0∗β(0) = tβ(0) > 0.

In addition, by Eµ(β(1)) = Ẽµ(γ(1)) ≤ 0, we deduce that tα(1)∗β(1) = tβ(1) < 0. Indeed,
Jβ(1)(τ) > 0 for each τ ∈ (−∞, tβ(1)], and Jβ(1)(0) = Eµ(β(1)) ≤ 0, it is necessary that tβ(1) < 0.
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Furthermore, lemma 3.5 implies that the function u ∈ Sc 7→ tu ∈ R is continuous. Then there
exists τγ ∈ (0, 1) such that tα(τγ)∗β(τγ) = 0. This amounts to α(τγ) ∗β(τγ) = tα(τγ)∗β(τγ) ∗

(
α(τγ) ∗

β(τγ)
)
∈ Pc,µ = P−

c,µ. By (3.29), it follows that

max
γ([0,1])

Ẽµ ≥ Ẽµ(γ(τγ)) = Eµ(α(τγ) ∗ β(τγ)) ≥ inf
P−

c,µ∩Sr
c

Eµ.

Then we obtain that

σ(c, µ) ≥ inf
P−

c,µ∩Sr
c

Eµ. (3.30)

Besides, taking u ∈ P−
c,µ ∩ Sr

c and γu the corresponding path defined in (3.28), we derive that

Eµ(u) = Ẽµ(0, u) = max
γu([0,1])

Ẽµ ≥ σ(c, µ),

then we obtain that

inf
P−

c,µ∩Sr
c

Eµ ≥ σ(c, µ). (3.31)

Formulas (3.30) and (3.31) imply that

inf
P−

c,µ∩Sr
c

Eµ = σ(c, µ). (3.32)

Next, we prove a claim that:

inf
Pc,µ∩Sr

c

Eµ = inf
Pc,µ

Eµ. (3.33)

This is equivalent to verifying that infPc,µ
Eµ ≥ infPc,µ∩Sr

c
Eµ. Suppose by contradiction that

there exists u ∈ Pc,µ \ Sr
c with Eµ(u) < infPc,µ∩Sr

c
Eµ. Then we set v := |u|∗, the symmetric

decreasing rearrangement of the modulus of u, which belongs to Sr
c . By lemma 2.7, we obtain

Eµ(v) ≤ Eµ(u) and Pµ(v) ≤ Pµ(u). From u ∈ Pc,µ \ Sr
c , we have Pµ(u) = 0. If Pµ(v) = 0, we

immediately derive a contradiction, hence we assume that Pµ(v) < 0. In this case, from lemma
3.5, we know that tv < 0. But then we obtain a contradiction in the following way

Eµ(u) < Eµ(tv ∗ v)

=
ae2stv

2
|(−∆)s/2v|22 +

be4stv

4
|(−∆)s/2v|42 −

µ

q
eqδs,qstv |v|qq

− 1

pδs,p

[
ae2stv |(−∆)s/2v|22 + be4stv |(−∆)s/2v|42 − µδs,qe

qδs,qstv |v|qq
]

= a(
1

2
− 1

pδs,p
)e2stv |(−∆)s/2v|22 + b(

1

4
− 1

pδs,p
)e4stv |(−∆)s/2v|42 −

µ

q
(1− qδs,q

pδs,p
)eqδs,qstv |v|qq

≤ a(
1

2
− 1

pδs,p
)|(−∆)s/2u|22 + b(

1

4
− 1

pδs,p
)|(−∆)s/2u|42 −

µ

q
(1− qδs,q

pδs,p
)|u|qq

= Eµ(u),

where we used that tv ∗ v and u lie in Pc,µ. This proves that infPc,µ∩Sr
c
Eµ = infPc,µ Eµ. By the

above claim, (3.33), and lemma 3.6, we obtain that

m(c, µ) = σ(c, µ). (3.34)

We also obtain that

m(c, µ) = σ(c, µ) > sup
(Āk∪E0

µ)∩Sr
c

Eµ = sup
((0,Āk)∪(0,E0

µ))∩(R×Sr
c )

Ẽµ. (3.35)

The rest of the proof is the same as in Soave [24], existence of a second critical point of mountain
pass type for Eµ|Sc

, thus we omit it here (namely, we use lemma 2.5 to obtain a PS sequence {un}
for Eµ|Sr

c
at level σ(c, µ) > 0 and dist(un,Pc,µ) → 0, i.e., Pµ(un) → 0).

To verify that u is a ground state, we show that u achieves infPc,µ Eµ = m(c, µ). From the

above proof, we know that σ(c, µ) = infγ∈τ̃ max(τ,u)∈γ([0,1]) Ẽµ(τ, u) = Eµ(u) = infPc,µ∩Sr
c
Eµ,

hence we have to show that infPc,µ
Eµ = infPc,µ∩Sr

c
Eµ. By claim (3.33), this equality holds, hence

u is a ground state. Therefore, Theorem 2.9 is proved. □
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Proof of Theorem 2.10. We start by describing the structure of Zc,µ of ground states. If u ∈ Zc,µ,
then u ∈ Pc,µ and Eµ(u) = m(c, µ) = infPc,µ Eµ. We claim that

u ∈ Zc,µ ⇒ |u| ∈ Zc,µ, |(−∆)s/2|u||2 = |(−∆)s/2u|2. (3.36)

To prove the claim, we observe that Eµ(|u|) ≤ Eµ(u) and Pµ(|u|) ≤ Pµ(u) = 0. Then by lemma
3.5, there exists t|u| ≤ 0 with t|u| ∗ |u| ∈ Pc,µ and by definition of t|u|, one has

m(c, µ) ≤ Eµ(t|u| ∗ |u|) = a
(1
2

1

pδs,p

)
e2st|u| |(−∆)s/2|u||22

+ b

(
1

4
− 1

pδs,p

)
e4st|u| |(−∆)s/2|u||42 −

µ

q

(
1− qδs,q

pδs,p

)
eqδs,qst|u| |u|qq

≤ a
(1
2
− 1

pδs,p

)
e2st|u| |(−∆)s/2u|22 + b

(1
4
− 1

pδs,p

)
e4st|u| |(−∆)s/2u|42

− µ

q

(
1− qδs,q

pδs,p

)
eqδs,qst|u| |u|qq

≤
[
a
(1
2
− 1

pδs,p

)
|(−∆)s/2u|22 + b

(1
4
− 1

pδs,p

)
|(−∆)s/2u|42 −

µ

q

(
1− qδs,q

pδs,p

)
|u|qq

]
ekst|u|

= ekst|u|Eµ(u)

= ekst|u|m(c, µ),

where k = min
{
2, qδs,q

}
, and we used the fact that u, t|u| ∗ |u| ∈ Pc,µ, and Eµ(u) = m(c, µ). By

t|u| ≤ 0, we deduce that necessarily t|u| = 0, that is Pµ(|u|) = 0, and since also Pµ(u) = 0, it holds
that

|u| ∈ Pc,µ, |(−∆)s/2|u||2 = |(−∆)s/2u|2 and Eµ(|u|) = m(c, µ).

This proves claim (3.36). After proving that |u| minimizes Eµ on Pc,µ, we obtain that |u| is a non-
negative solution to (1.1) for some λ ∈ R, by lemma 3.4. By regularity and the strong maximum
principle, it is a C2 positive solution. Using also that |(−∆)s/2|u||2 = |(−∆)s/2u|2, and u ∈ Zc,µ

(then we obtain |u| ∈ Zc,µ, namely, Eµ(|u|) = m(c, µ)), we will prove that eiθ|u| ∈ Zc,µ for any
θ ∈ R.

By the definition of Eµ(u) and that the modulus of eiθ = 1 for any θ ∈ R, we obtain that

Eµ(e
iθ|u|) = a

2
|(−∆)s/2eiθ|u||22 +

b

4
|(−∆)s/2eiθ|u||42 −

µ

q
|eiθ|u||qq −

1

p
|eiθ|u||pp

=
a

2
|(−∆)s/2|u||22 +

b

4
|(−∆)s/2|u||42 −

µ

q
|u|qq −

1

p
|u|pp

= Eµ(|u|)
= m(c, µ).

In the remaining of this proof, we prove that if u ∈ Zc,µ, then the associated Lagrange multiplier
λ is negative. Recalling that u ∈ Pc,µ, then Pµ(u) = 0, and we have that

a|(−∆)s/2u|22 + b|(−∆)s/2u|42 = µδs,q|u|qq + δs,p|u|pp ≤ δs,p|u|pp.

Then, by the fractional Gagliardo-Nirenberg inequality, we derive that

a|(−∆)s/2u|22 ≤ a|(−∆)s/2u|22 + b|(−∆)s/2u|42
≤ δs,p|u|pp
≤ δs,pC(s, p)

p|(−∆)s/2u|pδs,p2 |u|p(1−δs,p)
2 .

Next, we prove the claim that u ̸≡ 0. Since otherwise Eµ(u) = 0 = m(c, µ), in contradiction with
lemma 3.6. By the definition of Pc,µ, we obtain |u|2 = c, then we can deduce that

|(−∆)s/2u|2 ≥
( a

δs,pC(s, p)pcp(1−δs,p)

) 1
pδs,p−2

. (3.37)
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Now, since u is a weak radial and positive solution to

(a+ b

∫
R3

|(−∆)s/2u|2dx)(−∆)su = λu+ µ|u|q−2u+ |u|p−2u in R3. (3.38)

By the Pohožaev identity, we infer that Pµ(u) = 0, i.e.,

δs,p|u|pp = a|(−∆)s/2u|22 + b|(−∆)s/2u|42 − µδs,q|u|qq. (3.39)

Testing (3.38) with u and using (3.39), we obtain that

λ|u|22 = a
(
1− 1

δs,p

)
|(−∆)s/2u|22 + b

(
1− 1

δs,p

)
|(−∆)s/2u|42 + µ

(δs,q
δs,p

− 1
)
|u|qq,

where 1− 1
δs,p

< 0 since 0 < δs,p < 1, while µ
(

δs,q
δs,p

−1
)
> 0 since µ < 0. Using again the fractional

Gagliardo-Nirenberg inequality and estimate (3.37), we infer that

λ|u|22 ≤ a
(
1− 1

δs,p

)
|(−∆)s/2u|22 + b

(
1− 1

δs,p

)
|(−∆)s/2u|42

+ µ
(δs,q
δs,p

− 1
)
C(s, q)q|(−∆)s/2u|qδs,q2 |u|q(1−δs,q)

2

≤ |(−∆)s/2u|qδs,q2

[
a
(
1− 1

δs,p

)
|(−∆)s/2u|2−qδs,q

2 + b
(
1− 1

δs,p

)
|(−∆)s/2u|4−qδs,q

2

+ µ
(δs,q
δs,p

− 1
)
C(s, q)qcq(1−δs,q)

]
≤ |(−∆)s/2u|qδs,q2

[
a
(
1− 1

δs,p

)( a

δs,pC(s, p)pcp(1−δs,p)

) 2−qδs,q
pδs,p−2

+ b
(
1− a

δs,p

)( 1

δs,pC(s, p)pcp(1−δs,p)

) 4−qδs,q
pδs,p−2

+ |µ|
(
1− δs,q

δs,p

)
C(s, q)qcq(1−δs,q)

]
.

It is not difficult to check that the right hand side is strictly negative when (2.9) holds, finally
implying that λ < 0, as desired, hence the proof is complete. □
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