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MILD SOLUTIONS TO LOVE-TYPE EQUATIONS ON R2

BUI DUC NAM, BUI DAI NGHIA, NGUYEN ANH TUAN

ABSTRACT. In this article, we study a non-local Love problem on unbounded domains where
the non-locality in the main equation is interpreted as a fractional Laplacian operator. With
various assumptions on the initial conditions, we derive several estimates for mild solutions
for the homogeneous source scenario. For the nonlinear problem, we show the existence and
uniqueness of a global mild solution. In two cases, we obtain convergence results. The first one
states that the solution to the fractional Love equation converges to the mild solution of the
fractional wave equation according to a cross-section radius parameter. The second result shows
that solutions of the fractional Love equation incorporating the fractional Laplacian operator
converge to those of the classical problem, involving the usual Laplacian, as the fractional orders
approach 1. This work is the first that we are aware of that deals with mild solutions of Love
equations on unbounded domains.

1. INTRODUCTION

In this article, we study the solution u(z,y,t) : R x R x [0,00) — R to the equation
wgr (I + k(=A%) 4+ (—=A)u = G(u), (1.1)
associated with conditions

u(z,y,0) = a(z,y), ur(2,y,0) = b(z,y). (1.2)
Here k is a positive constant. a, b are initial state functions, and G is the source term that describes
the external forces. For 5,60 € (0,1), (—A)*, and (—A)? are the nonlocal (or fractional) Laplace
operators which are defined in [, Theorem 1.1a].

1.1. State of the art and main contributions. When 6 = s = 1, Equation becomes the
classical Love’s equation

Ut — Au — kAutt = 0, (13)
which was derived by Love in [§]. This equation models how solid bodies deform under stress,
which is essential to the theory of elasticity. It clarifies how elastic materials respond to outside
forces, particularly with regard to stress and strain analysis. Equation seems to be similar
to the wave models considered in [3] [4], but requires a different approach because the presence of
the fractional Laplacian operator of different orders.

In this work, we investigate the properties of solution to a different version of Equation ,
obtained by additional considering of external forces (via G(u)) and nonlocal effects (via fractional
Laplacians). In the literature, there are many works on modified forms of . However, it
appears that no study has taken the same approach as our study. Let us briefly review some of
the top general references to clarify the motivation behind this work. The forms of tension and
variational motion (used to construct (L.3)) were adjusted by Radochové [15] in 1978 to obtain
the equation

Uty — ;uLJ, - 2,u2k2ua:wtt = 07
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where p, E, and p represent, respectively, the displacement, Young’s modulus of the material, and
the mass density. This model describes rod vibrations caused by extension. In [12], Ngoc et al.
studied a nonlinear Love equation in the one dimensional domain

Ut (X, 1) — Uz (2, 1) — Ugerr = G2, tu,up), O0<z<1l, 0<t<T,
u(0,t) =u(l,t) =0, 0<t<T, (1.4)
u(z,0) = wp(x), u(z,0)=1u1(z), O0<z<l,

where ug and u; are functions that represents the initial state and G is a nonlinear source term.
They applied the Faedo-Galerkin method to show the existence of a local weak solution to Problem
(1.4). Ngoc, Duy and Long [I0] focused on the one-dimensional nonlinear Love equation

Upt — Ugy — EUppit + A |ut|‘r2 ug + K|u\p*2u =G(z,t), 0<z<l,0<t<T,
EUgit(0,t) + uy(0,t) = hu(0,t) + g(t),u(1,t) =0 0<t<T,
u(z,0) = to(z), u(z,0) = (z), 0<z<l,

where p > 1, ¢ > 1,¢ >0, A >0, K > 0, h > 0 are real numbers and g, @1, G, g are given
functions, which satisfy some appropriate assumptions. The aforementioned problem has primarily
been studied using the Faedo-Galerkin approach, the compactness method, and the monotone
method. The authors obtained the existence, uniqueness, regularity and asymptotic behavior
of the weak solution. Following the work [I0], Ngoc and Long [1I] investigated the solution
u(z,t) : (0,1) x [0,7) — R to the nonlinear Love equation

Utt — Ugy — Ugxtt — Aluxxt + Aut =F (I‘,t, u7ux7ut7uxt) - 5 [G (x7t7u7u:c7ut7uxt)] + G(.’,E,t),

ox

u(z,0) = up(x), wu(x,0) =u(x),

where A\, A\; > 0 are constants and 7y, u; € H' and F,G have been supposed satisfying some
necessary requirements. In their study, the authors proved the existence of a weak solution by
using the Faedo-Galerkin method. They also obtained the results of blow-up and decay of the
weak solutions. Zennir et al. [16, 2 [I7] studied the nonlinear Love-equation associated with
infinite memory. They proved the local existence and uniqueness of weak solutions by combining
the linearization method, the Faedo-Galerkin approximation, and the theory of weak compactness.
They also obtained the existence of a global weak solution under some appropriate assumptions
on the initial datum and the kernel function. Furthermore, in certain instances, the finite time
blow up of weak solutions was also investigated. Another version with biharmonic and polynomial
nonlinearities was considered in [9]. Precisely, Xu and Liu have studied the multidimensional
double dispersion equations

g — Au — Auy + A%u = AG(u), z €R™,

where G(u) = alulP. Using potential well method, they showed the existence and nonexistence
of global weak solutions without establishing the local existence theory. They also provided some
sharp c onditions for global wellposedness using the Galerkin method.

While numerous intriguing articles have explored the Love type equation, as previously men-
tioned, the analysis of Equation in an unbounded domain has not yet been studied extensively.
Our paper appears to be the first to study mild solutions to the Love equation on R?. The funda-
mental difference between our work and many previous studies on the Love type equation is that
we do not focus on weak solutions. Instead, we delve into the topic of mild solutions in unbounded
domains. One of the most challenging problems we encounter is the presence of singular compo-
nents in R? integrals. From a technical standpoint, this makes the situation more difficult than
problems in bounded domains. We refer the reader to and the interesting papers [I}, [6] for
problems on R™. These authors studied the initial-value problem for a general class of nonlinear
nonlocal wave equations arising in one-dimensional nonlocal elasticity. They established the global
existence of solutions and also investigated the conditions for finite-time blow-up.

Our principal contributions in this paper are described in the following.
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e Firstly, we focus on the regularity of mild solutions to Problem — when G = 0.
To accomplish this, we introduce specific techniques to handle integrals in R2.

e Secondly, we examine the global well-posedness of Problem —. We establish an
upper bound on the solution in various function spaces, assuming certain conditions on
the initial data. The main challenge arises when addressing the existence of solutions to
the nonlinear problem. To obtain global results, we employ a delicate norm in a weighted
space, using methods distinct from those in [I], [6].

e Thirdly, we explore the convergence of the mild solution as #,s — 1~. This interest
is inspired by a recent article by Oscar and Loachaman [I3], where they demonstrate
that solutions to the fractional Navier-Stokes equations, involving the fractional Laplacian
operator (—A)® with % < s < 1, converge to a solution of the classical case with —A as
s — 17. This motivates us to investigate whether a similar phenomenon occurs in Problem
@D-2.

e Lastly, we show that the solution to the fractional Love equation converges to the solution
of the fractional wave equation as k — 0. A recent paper by Nam et al. [14] analyzed this
convergence for the homogeneous Love equation as k — 0. Motivated by their work, we
demonstrate the convergence of the mild solution for the nonlinear Love Problem —
as k — 0, and we also provide an error estimate for this convergence.

1.2. Notation and outline. In our estimations we will denote the implied positive constant by
C, whose value may vary from line to line. When the dependence of C' on some parameters [
need to be specified, we write Cz. The symbol T always stands for a positive finite constant. We

also use the notation
// (-)d¢ dn instead of / / (-)d¢ dn.
AxXB AJB

The Fourier transform of a function G(z,y) is defined by
Fem = [[ e mGte,y) doay
R2
We recall the notion of non-homogeneous and homogeneous Sobolev spaces H™(R?), H™(R?) of
order m > 0 as follows
H™(R?) := {tempered distribution f such that f € L2 (R?) and || f]|%m < oo}, r

H™(R?) := {tempered distribution f such that f € L (R?) and || f||%,. < oo},

where

llnieey = ([ 0+ 4 aPymiREmP dan) ™
llimizey = ([ €+ I Fie.mP dean)

Remark 1.1. The family of H™(R?) is decreasing with respect to m > 0. The space H™(R?) is
a Hilbert space if and only if m < 1.

This article is organized as follows. In section 2, we give some preliminaries. Section 3 provides
the regularity of the mild solution. Theorem [2.1] shows an upper bound on the mild solution.
Theorem considers the convergence of solutions to the fractional Love equation when k — 0.
In Theorem [2.3] we show that the solution of the fractional Love equation converges to the solution
of the classical Love equation.

2. HOMOGENEOUS CASE

We devote this section to studying Equation (1.1]) in the homogeneous case, i.e., G = 0. We
first introduce the definition of mild solutions to Problem (|1.1)). Obviously, if u(x,y,t) is a smooth
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solution to Problem (1.1)-(1.2) with G = 0, its Fourier representation u(&,n,t) in the frequency
space will satisfy
2

& 8) + (€ +0*) A€, 8) + k(€ + )" dtg u(,n,t) =0,
~ d
u(&,n,0) =a(&n), i (€, m,0) = b(E, ).
From this equation, we obtain
_ o (E2+n2)7  N.
u(§,m,t) = cos ( Wt)a(ﬁa 1)

Lek@ o[ @l
+\/ GET O (\/1+k(§2+nz)st)b(§,n)~

The inverse Fourier transform yields the following relation

u(z,y,t) = P(t)a(z,y) + Q(t)b(z,y), (2.1)

where

P(t)v = ]-'—1<cos ( %t)ﬁ(f,n)),

i [LHRE 47?0 (€ +n7*)" N\~

_ 1

Qo =F d @ Trre e )7en)

We then define the mild solution to Problem (L.1)-(1.2) with G = 0 as a function u(zx,y,t) :
R x R x [0,00) — R, satisfying Equation ([2.1)).

2.1. Regularity of mild solution.

Theorem 2.1. Let p > 0. We have the following results.

(1) Suppose that v = maz{p, (0 — s)B+ p} for s,0 >0, and 8 > 0 such that (§ —s)5+p > 0.
Let a € HY(R?),and b € HP(R?). Then, there exist a positive constant Cg, which only
depends on 3, such that

1 B/2
||u(t)||Hp(]R2) < ||a/HHp(R2) + CBTB (m> HaHH(G—s)Ber(Rz) + THb||Hp(R2)-

(2) Suppose that a € L*(R?) N L*(R?) and b € L*(R?) N H*(R?) with 0 < s <6 and 0 < p <
s—0. Then,

l[u(®)2@2) < C<||aHL1(R2) + llall2rz) + 16l m2) + 16l L2 m2) + ||bHHu(R2))-
Proof. (1) We begin by estimating P(¢)a. Thank to the inequality
| cos(y)] < 1+ Cpy”,

we can find the mentioned constant Cg such that

26 2 %)?
oo ([ o) <1 e (St )

B
P,

Thus, it holds

ol = [[ 1+ 42 oos (|35 Tate. ) dean

< [ axe eyl (22

2728 2 ovw( (€407 N\ e
+C5T //]RQ(H& +n°) (1+k(§2+n2)s) [a(g, n)|” dé dn.
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The first term on the right-hand side (RHS) is bounded by

J[La+enylaenl ddn =l
We treat the second term on the RHS of as follows. Using the inequality (1 + d)® <1+ d*,
we find that
min(L, £)(1+ €2 +7%)° < min(1, k) (1+ (€2 +7)°)
< min(1, k) + min(1, k) (€2 + n*)*
S 1+ K(E +17)°
Accordingly, one has
& +7n)°
L+ k(&2 +n?

Thus, we obtain immediately that

CQTQB// 1+€+ p(lfzj(;n) E ) jace, )| de dy

// (1 +€2 + 772)(9_‘9)ﬁ+p|a(§),'7)’2 dé— d77
R2

(1+¢&2 +n2)p( >S>ﬂ < (min(lLk))ﬁ(l L Jrnz)(efs)[ﬂp'

;

min(1, k)
1

ZT%(mm( )) ||a||§1(9,s>5+p(R2).

< 3T (

From the assumption a € HP(R?), we obtain
)
min(1, k)
We turn to estimate the quantity Q(¢)b. In view of the basic inequality
|sin(y)| <y, y=>0

B/2

||P(t)a||Hp(R2) < HaHHp(Rz) + CgTB( HCLHH(Q*SWHJ(RZ)' (2.3)

we find that

1+ k(& +n?)° n( (€2 +n%)’ t)‘Q
(&2 +n?)’ L+ k(& +7?)°
L+ k(€ +0°)° o (E+n°)°

=T@ e (1+k(£2+n2)5)§T

This implies that
1+ k(€2 +n?)°
(& +n?)?
~ 2
<7 [[ e eylic )l aan
Therefore, by the assumption b € HP(R?), we obtain
1Q)bllrr(r2) < T10]] 110 (R2)- (2.4)
Combining (2.3) and (2.4), we have

[Ju(t )”HP(]R2) < P()all e g2y + 1QE)b v 22

1 B2
8
< llall s g2y + CsT (min(L k)) lall o540 g2y + Tlbll o (e2)-

(€2 4n?)°
sn( 14+ k(€2 4+ n?)s

Qe = [ 1+ €02y )| Tote )| de an

(2) Based on the simple fact

2 2\6 B
() = e
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we can find that

(€2 + N _ 8|~
//R 1+k£2”+n)) @, m|* dgdn < B/R2(£2+n2)(0 Plate [ dgdn.  (25)

To derive the upper bound for the RHS, we make the decomposition

[ €+t an

s —s ~ 2
=// (€ + 1298 [a(e, )| dEdn+// (€ + ) 8Ja(e, m)|* de di
£2+4n>>1 £2+4n2<1
= J1+J2.

On the one hand, the term J; can be easily bounded as

I = 2 2(9—S)B’\7 Qdd
o= [t a e

_lagn*
//§2+n2>1 (€2 +n2) (=98 & dn

<[], lacnlam

< llallZ2g2)-

On the other hand, it is easy to see that

-~ 1 —ix&—1
|a(§,77)| = ’%//Rze 3 Ya(z,y) dxdy‘ < HCLHLl(R?)-

This estimate implies that

1
Jy = (9 s)p dédn < // —d dn.
2 //£2+n2§1<§ +77 ’a &n ‘ §dn < ||aHL1(R2) 2 2<1 € +n )(sfo),g §dn

Let us set £ = rcosy and n = rsing. Then

1 rdrde
- dédn = // 7
//£2+n2<1 (€2 + 772)(5—9)/3 (0,27) % (0,1) r2(s—0)B
— // T172(579)Bd,’,d§0
(0,27) % (0,1)

1-(s—0)8’

where we choose § > 0 such that (s — 0)8 < 1. From all the above observations, we obtain
_9)8|~ 2 ™
L€ vt dean < (14 1= =55) (laliagen + lalse). 20
Combining ([2.5) and , we obtain

&+ . 2 T 5 )
< T /. M\ 2 2 1 2 . .
LGS e P dean < (14 1) (lolfse + lalfes). @7
Combining (2.2)) and (2.7)) yields

283 (&2 4 n?) ~ 2
Bl < [[ ot dean+cir [ (E LY ae ) dean s

< Ck,B,s,H,T(”aHL?(R?) + ||a||L1(1R2)>~
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Next, we derive the estimate for Q()b with the assumption that b € L'(R?) N H*(R?). The
similar techniques as in the first part help us to deduce

1+k€2+77) (2 +n?
125 gy = // S (—HWH7

Q+kE+n)) " o
<CT25// b(&,n)|” de dn,
@ e P& dedn
for some € € (0,1). Using (1+d)® <1+ d°, one has
(1+k(§2+77 ) )1 € < 1+k1_€(52+772)8(1_8)-

As a consequence, we derive

)|/ Tote.n)[* de an
(2.9)

g

(1+ k(&2 + l—e
//R §2in "9)93 (b, m)|? dé dn

2 1—e 1 N 2
< //R2 WW@U” d¢dn+k //11@2 @+ )@ 909 |b(¢,m)|” dé dn
=Ji + Js.
Using again that

(2.10)

~ 1 o
| =[5z [[ ety do dy) < bl e,

one has

1 ™ 2 1 -~ 2
J = —— 1) dé d ——1b dé d
! //wm Creo=dLCUIRE n+//§2+n2<1 e el dcan
// (B¢, m)|? de dn + [bl12 g //2+n2<1 e (2.11)

< bl + 101 ey | / o e

We use the change of variables & = rcosp and n = rsing. Then

rdrdp
d€dn = //
//£2+n2<1 (€2 +n2)0-02 0,27) % (0,1) r20-20¢
_ // T1_20+296d7"d(‘0
(0,27) % (0,1)

B ™
C1-0+0s
It follows from (2.11)) that

ﬂ'
B< (14 1gn) (bl + 16 e))- (2.12)

Let us now consider the term J}. Since p < (s — ), we can choose € > 0 such that

1
s—0°

/ e 1 R
L=k //Rz (€2 4 2)(6=9)(1<) }b(&??)|2 dé dn
—e // (52 -|—’I72)(S—9)(1—€) ’/6(5777)|2d€d17 (213)
R2

= K bl ze)-

Combining (2.9), (2.10)), (2.12) and (|2 13)), we deduce that
IQIE 2 ey < CT(1+ 1 + 5172 (0ol ey + 1003 oy + bl ey ) (2:14)

e=1-

Then, we obtain

0+0
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Combining ([2.8) and - 2.14)) yields
(@)l 22y < C(HCLHLI(R?) + llallze) + (|6l 21 (®2) + (bl 2 (r2) + ||b\|Hu(R2))-
The proof is complete. O

2.2. Convergence of the mild solution. Through the remainder of this section, we assume
that G and b are identically zero. This part includes two main results. Firstly, we show that
the mild solution to Problem converges to a solution of the homogeneous fractional wave
equation with the same initial data. More precisely, suppose that u is the mild solution to Problem
— and w is the mild solution to the wave equation

wy + (=A)Pw =0, in R%x(0,7], (2.15)
with initial data
w(xay70) = a(xay)7wt(xay’0) =0. (216)
We show that u converges to w as k — 0F.

The second goal is to prove that the mild solution v to Problem . behaves like the
solution v of the homogeneous classical Love equation

Ut (I — kA) —Av = 0, (217)
with initial conditions
v(z,y,0) = a(z,y), v¢(2,y,0) =0, (2.18)

as s,0 reach 1~
The first result reads as follows.

Theorem 2.2. Let a € H?(R?) such that 0 < 0 < p < 0+ 2s. Then

||u_w||L°°(OTL2(R2)) (2.19)
Proof. Note that the mild solution to Problem (L.I)-(L.2), with G,b = 0, satisfies
52 +n ) )A iz§+iyn
t ,n)ei eI ge dn. 2.20
and the mild solution to Problem — is given by
wlept) =5 [ / cos (/1€ + w2 (e, m)] =<7 de ay (221)
2’/T R2

In view of the inequality |cos(cy) — cos(a2)| < |ag — agl for any aq, a2 € R, we find that

(& +n%)° €2+ 2)0 (& +n%)° ez
‘cos( 1+k(§2+772)5t) —cos( (&2 +n?) t)’ _t‘ TThE e (&2 4% ‘
0
Tty — €+’
- 2 2)6
Ve +VE P o)
2 2\0+s
<7 k(& +n°)
(1+ k(& +n?)) (€2 + )72
R(E2 +1?) 3
L+ k(€2 +17)°
Using the inequality 1 4+ z > 27 for 0 < v < 1, we obtain
L+ k(€% +0)" 2 k(€% +0). (2:23)

Combining ([2.22)) and ( gives us
52 +n2 0 B gt @
!COS( 1+(k‘(§2+)772)st) —cos (@ )| < TR 4 appE (224)
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From and -, we obtain

||U(I7y7t) - UJ(l‘,y, )H%Z(Rz)

2 2
- [ (i e (e ) [t s
< T / / (€2 + )22+ (e, ) de dn,
R2

Let v = %, and note that 0 < v < 1. The estimate (2.25)) with the choice v = 23'27?_” implies
the desired result (2.19)). O

The next theorem states the second goal of this subsection.

Theorem 2.3. Suppose that a € L'(R?) N H2(R2?) for all 0 < & < % Then
[u(t) = v(t)lI72 o)
< Cetteguno (1= 0) + (1= 02 + (1= )40 4 (1= )% (JJall2pa. o) + 03 a) )
Here 1 is a positive constant satisfying 0 < p < 1.
We momentarily postpone the proof of the theorem to consider the following auxiliary lemma.

Lemma 2.4. The following inequalities are satisfied.
(1) Let z>1 and 0 < 8 < 1. Then for 0 < 8 < 1 we obtain

|20 — 2| < Cp2TP(1 - 0)P.
(2) Let 0 < 2 <1 and 0 < @ < 1. Then for 0 <9 <1 we obtain
|20 — 2] < Cy2%~Y(1—6)".
Proof. If z > 1 then using the inequality 1 —e™¥ < Cﬁyﬁ for all 0 < 8 < 1, we obtain
|20 — 2| =2—2% = z(l - z_(l_‘g))
_ z(l _e—(1-0) log(z))
< Cpz(1 - 0)Plog’(2) < CpzTP(1 - 0)°.
If 0 < z < 1, then
|20 — 2| =2% -2
_ ze(l _ 2(1—0)) _ ze(l _ e—(l—@)log(%))
< Cy2?(1—0)"1og”(1/2)
< 02’771 - 0)".
]

Proof of Theorem[2.3 In view of the inequality | cos(a;)—cos(as)| < Ccla; —asl® for any a;, ag >
0 and 0 < £ < 1, we find that

2 2\60 2 2
‘cos( Mt) —cos( mtﬂ

(SR (& +n?)
14 k(2 +n?)s 1+ k(&2 +n?)

@+ [ @+
THR@ P\ THRE + )

€

< C.tf

€

< C.T* + C.T*

e+ 2+
14 k(&2 4+ n?)° L4+ k(24021



10 B. D. NAM, B. D. NGHIA, N. A. TUAN EJDE-2025/76

Bear in mind that v is the solution to (2.17))-(2.18)). Then we have

@) = 5[] cos (|1t ale me= < ds dn
" 21 J e T+ k(E+77)
From this representation and ([2.20) we have

l[u(t) - v(t)lliz(mz

(€2 +n?)° (62 +n?)
//]R2 Cos 1+k(§2+77)t)_cos( —1+k(§2+n )“ 5n|2d§dn
52 \/(52"‘77”26 2

@+m @) pe
+CET//R? \/1+k €@+ ) \/1+k(§2+n2)‘ [a(€, mI* dg dn
=t (&, t) + Mo (€, ).

Step 1. Estimate of .#;. By similar techniques as in the previous proof, we have

(€ +72)" = (& + )" o
H=Ce a(e,n)|* ded
e T//]RQ|\/52+77 o+ /(& +nm?) ‘ (1+k(§2+n2)s>5| (&m)["de dn

(@ +) — (€ + )" o
= U, — _ a& dé’d
T//2+172>1 ’\/(§2+T72)0+\/(52+772)| (1+k(52+772)5) | ( 77)| n

(&2 +72)° = (& + 7)) T
+Ce , d¢d
. vt @ TP+ @ TP (L r@ sy
=M1 1(&n,t) + A1 208, 1).

(2.26)
In view of the first inequality of Lemma the term . ; is controlled in the following manner
2e
(€2 +n?)? — (&2 +772) .
M1t <C€T// - | (@&, m)? de dn
en221 |\ /(E +n2)| 7 (k(¢ 2)%)
(&2 + 7?0 — (52 +1 )\ =
=k—°C // a(&,n)|? dédn
o L e e

< 4 Copir (1~ 0 JIL @yt i dean,
2+,,72>1
for some 0 < 8 < 1. We also note that
[ @eimeaenP s s [[ (@4 a )P d in
£24n2>1 R2
S ||a’||§'{(2ﬂ+2—s)s(]R2)‘
Hence, choosing 3 = 5 € (0,1) yields
///1,1(53 7, t) S kiSCE,Q,T(l - 0)2ﬂ€||aHH(2[‘3+2—s)s(R2)

=k° 6,3,T(1 - 9) ¢

. (2.27)
-

For .# 2, we use the second inequality of Lemma [2.4] to obtain

i@y - @R < oole? vy

(1-0)”
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for all 0 < ¥ < 1. This implies that

_ VETP? - @+
%12 5 77, - ET//2+77 2o 1+k(€2+172)5)6 \a(f777)| d£d77

g veE 1
<09, TH(1 -0 //2+n2<1 (€2 +n?) s 9)E|a(£ middn

< k7C(e,9,T)(1 — )¢ // dé dn.
= (e ) ) ||a||L1(R2) 2y (£2+772)(79+s—0)5 &dn

Let us keep discussing the integral in the latter inequality. Set & = rcos and 1 = rsing. Then,
since (9 + s — 0)e < 1, we obtain

// 1 de d // rdrde
’]’7 = -
2 4n2<1 (§2 4 7]2)(794-8—9)6 (0,27)%(0,1) r2(0+s—0)e

— // T1—2(19+s—0)5d,rd<p
(0,27) % (0,1)

™

1—(W+s—0)

We choose ¥ = 6. It holds
A 2(€1,1) <k C o (1= 0)%% a1 2. (2.28)

By collecting ([2.26)), (2.27)) and (2.28]), we obtain
'/%1(&77715) < %1,1(£7nat) + %1,2(£7nat)

—€ SE —€ € (2'29)
<k €,S’T(1 - 9) ”a”?'{ze(Rz) +k E,G,S,T(l - 9)29 Ha”%}(R?)'
Step 2. Estimate of .#5. Again, we decompose .#5(&,7,t) as follows
2¢e
et = o [ EHTIVIHELTI AR ) e g

T e (14 K€+ %) (1+ k(€2 +1)%) ’

2e

_ T// (€ + ) (VIHRE +17) = VITRE+7)) " oo e
© 2y 251 (L+E(E2+72)" (1 + k(€2 +n2)*)° ’

2e

[a(&,m)|? d€ dn

+CET// (€2 + 02 (VI +E(E +n2) — /T + k(€ +1%))
TS erpa (1+ k(€ +12) (1 + k(€ + %))

= M1, t) + Ma2(€,m,1).
Note that

(€2 +m2) — (€2 + )|
(VI RE+72) + 1+ KE + %))

(2.30)

2e

2e
(VITRE@ )~ VITRE T ) =4
If €2 +n? > 1, then for any 0 < 6 < 1, we have
€+ ) - (€ + )"
This allows us to obtain

(VIFRET ) - VIFRETRT) < Cs(1— se( 4 2014952

Furthermore,

2
e S 06(1 _ 5)255(52 + n2)2(1+5)6'

(1 5(E +) (14 K€ +17)°) 2 B + ).
Hence, when &2 +n? > 1 it holds
(2 + 07 (VI+E(E +n?) — 1+ k(€ +1n?)?)
(14K +72) (1 +kE +92)°)°

2e

< k7€(1 _ 5)255(62 +n2)(26+175)s.
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Thus, we have
Maa(€1.0) < Coras(U=9 [ (@42 B (6 ) de
§2+4n?>1
< CE,T,k,é(l - 8)26‘5”0/“?_'[(25+1—5)5(R2)‘
By setting 20 = s + 1, we know that § € (0, 1), then we obtain
Mo (6:1:1) < Cerps(L = 5) 0TV a3 2. (2:31)
On the other hand, when &2 4+ 72 < 1, for any 0 < u < 1 we find that
(€ + %) = (& + )"
And by (2.30) we have
2e
(\/1 + k(EZ + 772) _ \/1 + k(é‘Q +7]2)s) < k6(§2 4 772)2(87#)8786 — k€(£2 + 772)(572;1,)6.
Therefore, if £2 +n? < 1, then

(52 i 772)5(\/1 * k(§2 + 772) — \/1 + k(£2 + 772)8)26 C. k7 %(1 —s 2ue (¢2 2\ —2pue
(L k(& + ) (1 + ke + 7)) < Gk (1= )P (€2 ) 20,

Consequently, we obtain the estimate

My n(E,1,1) < Cop (1 — )21 / / (€2 + n2) 2= [a(e, )|2 dé dn
£2+4n2<1

2e
< Gl = 55(€7 4 P20

< Corpllall2 o (1 — )% / / (€2 +1P) 2 de diy
24n2<1

Let us set & = rcosp and 1 = rsiny. Then since 2pue < 1, we obtain

drd
AT/
£24n2<1 (0,2m)x(0,1) T (0,27) x(0,1) 1— e

Thus, we deduce that

Mr2(€,1,1) < Cerpulallgs ge) (1 — 5)*e. (2.32)
Combining (2.31)) and (2.32)), we deduce that
%2(5, UB t) < %2,1(57 n, t) + '//2,2(57 n, t)

< oo (1= )00 4 (1= 9)%9) (Jlal%a. o+l z2))-
By combining (2.29)) and (2.33)), we find that for 0 < p < 1,
() = vl ge) < C((1=0)=+(1=0)2 + (1 =)D 4+ (1= )2 ) ([lal L. o + 0l ey ).

This inequality completes the proof of the Theorem O

(2.33)

3. NONLINEAR PROBLEM

In this section, we focus on the semi-linear case of the Problem (L.1)-(1.2)), i.e., G = G(u). Tt
is necessary to introduce the mild formula of solutions for this case. Having found the formula for
the homogeneous case, the mild representation for this case is easily derived. In fact, applying the
Fourier transform to both sides of the Equation (1.1 yields

d’ & +n)° 1

@a@’n’tH 1+k(§2+n2)s"7(5’”vt) SG(&,n, 1)

T R(E )
with p
(&, 1.0) = (&, ). quad (€, 7,0) = b(&, m).
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This implies that

N §2+29 N 1+k§2+25. §2+29 R
6 m1t) = cos (|| e et At + \/ i sin M eI
n 1+k(§2+n2)s tSin (§2+n2)9
L+ k(& +n?)° &E+n*)°  Jo L+ k(& +n°)°
From this equation, one can find that
u(t) = P(t)a + Q(t)b + / Tt - 7)G(r)dr.

Here, we recall from the previous section that

P(t)v := Fﬁl(cos ( %t)ﬁ(f,n))

o1 [ LHREE 0P (E+n»)?% N
L =7 (\/ @+ " (\/1 + k(&% + n2)st>v(£’ n))

(t— T))é(f, n,7)dT

and define

by = ]_-71< 1 L+ RE+n?)° ( wt)g(gm)),

TRE R\ @y T+ A(E + P
To prove the existence and uniqueness of the global mild solution to Problem (1.1})-(1.2)), it is

useful to consider smoothing effects of the solution operators P(t), Q(¢) and Q(t).

Lemma 3.1. Let p > 0. The following results hold.

o If f € H'(R?) for v = max{p, (0 —s)B+p} for s,0,3 > 0 such that (0§ —s)B+p > 0, then
we obtain

s 1 B/2
IP() fll e g2y < (1 flae ey + CsT (m) I £l ro-or84p @2)- (3.1)
o If f e HPT* 9 (R?) fors <0 < p+s, then for M= Q or M = Q we obtain
IMCE) £l o rey < VT220=5 + 2175 + 2K f || groso—o m2).- (32)

Proof. Estimate (3.1]) can be easily obtained by using Part 1 of the proof of Theorem Thus,
we consider only (3.2). By the Plancherel theorem, we find that

IMI(E) £ (| 0 (2

o1+ k(§2 +n?)*
1 2
//Rz T GETH
— 2 2 pﬂ
/A2+n2<1(1 +£ + 77 ) (52 + 772)0 S

2 ol HRE 7)) (€2 +n?
+/~/52+n221(1+€ —H?)Z)W sm( m)‘ |G§17{ dé dn

(S et e

( @i
1+ k(&2 +n?)s

N[ 16 dedn

For the term S, we use the fact that

. E+n?)?  NE_ (€40
‘Sm ( 1+ k(&2 +1n?) t)‘ = 14 k(&2 +n2)st2

to deduce that
s [ areryiaen) dean
£2+4n2<1
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= // (1+ &+ 7)) (1 + & + )P0 G, )| de dn
£24m2<1

s 0| A 2
< 297 /A (L+€2 4?00 |Ge, )| de
24921

< T2 Fl om0 g2y

We now find the estimate for S;. Since ¢ +7n? > 1 and # > s we can use the inequality
(1+z)9 <1+ 2% for 0 < 6 < 1 to obtain

1 2 2
< <
(€402 7 1+ (E+n)? ~ 1+ +77)"
2 2)\s
K€+ _ k _ % 2%

E@+n?)? (40?7 1+ (£ +n?) (L+& +n2)f=s
Hence, we have immediately that
1+ k(&2 +n?)* 2 2k 2175 4+ 2k
R L () U N e (RN R

Thus, we obtain

—s s—0|A 2 —s
Sz < (21 ‘+2k)// R (L4 +n?)PH=01GE )| dedn < (2'7° + 2k) || f 1 Frpromo g2y -
240221

From two above inequalities, we confirm that

IM(8) £l o (r2y < V/T220=5 + 21— 4 2k f|| o+ (m2)-
The proof is complete. O

3.1. Existence and uniqueness of global mild solution. In this subsection, we show the
unique existence of the global mild solution to the Problem —. To this end, we first
introduce a weighted solution space. For m,l > 0 and d > 0, we denote by X, (((0,T]; H*(R?))
the space of functions f : R? x [0,T] — R such that ||G(t)|| gage) is a.e. bounded and

Hw”Xvn,l((O,T];Hd(Rz)) = Sup tmeiltHw(t)HHd(Rz) < .

)

Theorem 3.2. Let s < 6 and n,d > 0 such that 0 < d+s—60 <n <d. Suppose that G(0) =0
and

G (w1) — G(wa) || gn(rzy < Cllwy — w2 gae), for all wy,ws € HY(R?). (3.3)

In addition, we presume that a € HO~9)8+4(R2) for some B > 0 and b € H¥*=9(R?). Then,
Problem (LI)-(T.2) has a unique global solution in X, e, ((0,T]; HY(R?)) for some sufficiently
large lg and m € (0,1). Furthermore, we have

()l sy < Cnrams,st™ (lallmaceay + ol ma-meaqzey + [Blror-oges) ).

Proof. We define the operator Z as follows
¢
Zw(t) = P(t)a + Q)b + / Q(t — 7)G(w(T))dr. (3.4)
0
Let wy,wy be two arbitrary functions in X, ¢((0, 7]; H%(R?)). From (3.4) and (3.3, we find that

201 (6) = Zaoa ) ey < [ 1= 7) (Glwr(7) = Glaoa(r))) s

< \/T220-5 4 21-5 4 Zk/o 1G(wi(r)) = G(wa(7)) | ga+e-o(mz)  (3:5)

t
< VT2 4 2+ 2 / |G (wn () — Gluwn()) vz
0
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where we note that the embedding H"(R?) — H%+5~%(R?) holds, by the assumption d+s—6 < 1.
Thanks to the Lipschitz property (3.3)) of F', Estimate (3.5 becomes

t
|1Zawy (£) — Zawa (8)|] gra(re) < CV/T220-5 4 215 + 2kﬁ/ lwi () — wa (T rage)
0

t
= C\/T?20-s + 215 + 2k/ T T e |wy (1) — wa(T) || ra ey dT
0

t
< C\/T2219—S 4+ 21=s 4 Zkle — UJQHXM,Z((O’T];Hd(Rz))(/ Timez‘rdT)'
0

Multiplying both sides of the above equation by t™e~*, we obtain
tme_etHZwl(t) — ng (t) ||Hd(R2)

t
< C\/T229_S 4+ 21=s L 2k t™ (/ Tmez(T_t)dT> ||w1 — w2||xm7£((0,T];Hd(R2)) (3 6)
0 .

1
— O\/T?20—5 4215 4 2k<t/ V_me_“(l_”)dl/) w1 —w2llx,. ,(0,1);H4®))-
0

The next step is to control the integral quantity. This can be attained by using the following
lemma from [5, Lemma 8].

Lemma 3.3. Let ¢ > =1, d > —1 such that c+d > —1, h > 0 and t € [0,T]. For h > 0, the
following limit holds

1
lim ( sup th/ rc(l—r)de_“’t(l_r)dr> =0.
T N tel0,T] 0

Applying the above lemma yields
1
lim  sup (t/ u_me_“(l_”)du) =0.
L—~+o0 0<t<T 0

Thus, there exists a constant £y such that

1
1
su t V_me_éot(l_”)du) < . 3.7
0sror ( /0 T 20VT?20-5 + 2175 4+ 2k 3.7
Combining (3.6)) and (3.7), we deduce that
1
|1Zwy = ZuwsIx,, o (0.7 Ha(E2)) S G llwr = wellx,, . (071 E2)) - (3.8)

We also need to deal with the term
Zin(t) :=P(t)a + Q(¢)0.
Since a € HO=*)F+4(R?) and b € H¥*~%(R?), we apply Lemma [3.1{to obtain
1Zin ()| rarey < [[P(t)all mrage) + 1Q#)b]| rare)
1 )5/2
min(1, k)
+ \/T229_S +21-s 4 2k||b||Hd+s—0(]R2).

Combining all the above estimates allows us to conclude that Z is a contraction mapping from
the space X, ¢, ((0,T]; HY(R?)) to the space X4, ((0,T]; H4(R?)). Thus, applying the Banach
fixed point theory, we deduce that Z has a fixed point u € X, ¢, ((0,T]; H*(R?)) which satisfies
the integral equation

< llall zrecezy + CsT?( lall zro-s6+a(mz) (3.9)

t
u(t) =Pt)a+ Q)b+ / Q(t — 7)G(u(r))dr.
0
Next, using (3.8]), (3.9, and the triangle inequality, we derive that

1 m _—Lot
[ullx,, o (077 (R2)) < 5”uHXm,go((O,T];Hd(RQ)) +O;1;£Tt e N Zin ()] fra w2y
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1 m
< Sllullx,, o (0,73 Ha®2) + T |l a2

m(__ L \B/2
+ CpTP* (m) lall reo—ss+amr2)

+ \/T229_5 4 21-s 4 QkTm||bHHd+s—6(R2).

Hence, we arrive at the bound
[ull%, 0 (0.1 HAR2)) < ChiTym 8,5 (HaHHd(R?) + llall greo-op+amz) + ||b||Hd+S*9(R2)>~

From the definition of the space X,y s, ((0,7]; H4(R?)), it follows from the above estimate that

lu()l| e r2y < Ck,T,mﬁ78t_m(Ha’”Hd(]R2) + llall greo-op+amz) + ||b||Hd+S*9(]R2)>- (3.10)

O

3.2. Convergence of mild solutions. Let us consider the nonlinear wave equation
ug + (—A)%u = G(u) (3.11)
and the classical Love equation
uge — Au — kAuy = G(u(z, y, 1)), (3.12)

associated with the initial data (L.2]).
In this subsection, we examine the convergence of the mild solution to Problem (1.1])-(1.2) to

the mild solution to Problem (3.11)-(1.2) as & — 0 and to Problem (|1.1))-(1.2)) to the mild solution
to Problem (3.12))-(1.2]) as #, s — 1. The first convergence result is stated in the following theorem.

Theorem 3.4. Let s < 0, p € (0,25 + 0) and n,d > 0 satisfy the assumption of Theorem .
For 8 > 0, a > max(d + p,(0 — s)B8 + d). Furthermore, suppose that a,d is large enough that
Problem ([3.11)-(T.2) possesses a unique global mild solution. Then, if u* and u* are the mild

solution, respectively, to Problem (1.1)-(1.2) and Problem (3.11)-(1.2) under the assumption that
(a,b) € H*(R?) x H¥*$(R?) and G satisfies (3.3)), G(0) =0, for k € (0,1) we obtain

[ (£) = u* ()| sragge) < Cexp (C\/T229—5 Tols 4 th) (ki iy kW)
X (||(L||Hd+p(R2) + ||aHHd(R2) + ||a||H(e—s)/3+d(]R2) + ||bHHd+s(]R2)).

Remark 3.5. By Theorem the conditions a € H*(R?) and b € H%**(R?) as introduced in
Theorem ensure the global existence and uniqueness of the mild solution of Problem (|1.1))-
(L.2). Also, we note that the global existence and uniqueness of the mild solution to (3.11)-(1.2)
can be obtained by similar arguments as in Theorem [3.2] Therefore, we omit the proof here and
restrict our attention to the convergence problem.

Proof. In this proof, we define the mild solution to Problem (3.11)-(1.2]) as a function u* satisfying

u*(t) = P(t)a + Q(t)b + /O Qt — 7)G(u*(7))dr, (3.13)
where
P(tyo = F*(cos (\/ (€2 + 12t )lg. )

e (Ve rrrien).
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Using ([2.24), we obtain that for any d > 0 and v > 0,
[P(t)a — P(t)alFrape)

= [ s apyfeos (S EEE ) - cos (i) [latc P agan (5

<7 [ (1€ e R () P g

Let v = % where 0 < p < 2s + 6. We follows from (3.14) that

IP(t)a — P(t)alrages) < Tck\/ JLasesiaenpan

p—6
=Tk > |lall gra+o(re).-

Next, we deal with the difference between Q(t)b and Q(t)b. To this end, we introduce the following
functions

Ji1(&,n,t) == W(sin( %O_Sln( (£2+77)9t))

1 14+ k(£2 2)sy
et (i e ) on (/)

We first consider J; (€, 7,t). Using the inequality |sin(aq) —sin(az)| < o — ag] for any g, ae > 0,
one can derive

L+ k(€2 +1%)°
‘Jl(gvn7t)‘ < \/ (52 +772)9

e+n)7
L+ k(&2 +n?)*
1 — /14 k(&2 +1n?)*
L+ k(E2 4172
(€2 +n%)°
L+ k(2 +n2)* + 1+ k(&2 +n?)

(&2 + 772)925’

1+ k(€ + 2

= kt\/1+ k(& +n?)

This immediately yields
I, )] < CtR2(€ 4 7).
At this point, we can deduce that
2~ 2 S|z 2
L& yneno| el dean < o [[ ety ofie ) dn

We proceed to estimate the term J3. It can be handled by some basic calculations. In fact, we
first see that

’ 1 L+ k(R4 n?)s
(&2 +n?)? (& +n?)?

I—1+k(E+n?)s

= (€2 +1?) %

R(E2 +n?)"
1+ k(2 +n?)

S k1/2(£2 + ,}72)%
Then, if €2 + n? > 1, the RHS of the above inequality is obviously bounded. If £2 +n? < 1, we

use the basic inequality
sin (y/(€2 +12)°t) < \J(€2 + )%t

|T2(&,m,8)| < KY2(€2 + n?)*/2.

to find that
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Based on this result, we obtain
//Rz(l +& ) nale )| il ] dedn < tQk//W(l + €8P b )| dg di
Combining estimates for J; and Js yields
1Q(t)a — Q(t)al e < CTE bl srave o) (3.16)

Let us estimate the term [|Q(¢)f — Q(t)f| srare). This can be achieved by using again the
Plancherel theorem. Indeed, we have

1 L+ R(E+n?)° . (€ +7?)° 1 :
k@@ )\ @+ Sm(¢l+me+n%ﬁ)_¢@?+ﬁw$“((8+“”%)

2 4 2)0
m{sin( lfk(;%t)sm( (&2 +n? )otﬂ

1+ k(& +1%)° 1 , (€ +n%)°
() ()

L+ k(€2 +07)° (€2 +1°)°
+ H%8+n 9¢@4ww“4¢uww+ww0

(3.17)
Let us first to treat the term J3(£, 7). In view of the inequality |sin(ay) —sin(ag)| < Celay — az|®
for any aq,as > 0 and 0 < ¢ < 1, we arrive at

(& +n°) c
T (€. n><c\/(£2+77 WHWM) (&2 + )|
562—9( - 1+k(€2+772)s>5 (3.18)
L+ k(€% +1%)°
2 2\es
:CEE 2 250276]68 (f +77) )
HE ) (1+ k(€ +n2) + V1+ k(€ +n?)%)°

= Oats(£2 + 772)

Using the inequality
(14K +n2)" + VIHRE T1P)7) > k(@ 40 F

it follows from ([3.18)) that

Ts3(&,m)| < Ctk3 (2 +72) 5, 0<e<l. (3.19)
Let us choose € = 1 then since (3.19)), we obtain
[Ta (& m] < THY(2 4+ 9%)7, (3.20)

where we note that C. =1 if ¢ = 1. Let us choose ¢ = € (0,1) and if €2 + n? > 1, then since

9+.s
(3-19), we have immediately that

s s s— 20 T9+b k20+2s
|J5(6,1)| < CooT7H kmim (€2 4 ?) 7" < T2 - (3.21)
T+ e+)T

where we have used that
1 2 2
< <

@+ T 1R @R T T e )T

—s
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By combining ((3.20) and (3.21)), one obtains the bound
= 2
JLLa+ ey nr|Ge nf dsdn
< // (1€ +0?) =" (1+ € + ) 0kT(% 4 12)*|G (&, m)|” dé dn
£24n2<1
+4Cs,9T92%5k9%5 // (1+ &2 +n2)d+s_9‘@(§,n)}2d£dn (3.22)
24n2>1
S(f”T%HJK&ﬂ%iMi>//(L+§+n%“*ﬂ@@mﬂaﬁﬁ
RZ

g(fﬂﬂk+%@ﬁﬁwﬁﬁmm@ﬂﬁwy

Let us consider the term J4(&, 7). Using the inequality sin(z) < z, we know that

2 260 2
Sin( (€ +7)" N < (& +n?)
L+ k(E2 +n?)* 1+k§2+77

(&2 +n?)
From the above it follows that

Ba(&,m)l < t(VIHRE TP 1)

B(E +n°)° (3.23)
1+ k(&2 +n?)s +1
< TVR(E +17).

Using the inequality |sin(z)| < 1, we obtain

1+ E(E2+n?)s—1

‘J4(£a77)| S (52 +772)9
_ k(&% +n*)° (3.24)
(VI+R(E + 0?2 + 1)/ (€ +n?)°
<VRE +) T
If €2 +7? > 1, then we obtain
L) < VEE@ +) 7 = Vi< k| (3.25)

(E@+)F T (e e
Hence, using and -, we obtain
//Ra(l e +n2)d|J4<f,n>\2|@(£,n>|2d£dn
= // (14402075 (1+ € + ) OkTE2 +12)° |G, )| de dn
e24n2<1
e[k Gt dgdy (3.26)
£2+4n2>1
< (27T + 4)k// (1+ €2 +2)H=0|G(e, )| de diy
R2

= (2T 4 ARGy

We now consider the term J5(7,&). Indeed, using the inequality |sin(z)| < 1, we obtain

_ k@ +n?) (& +n?)° a0
[351.6)] = = @] (| )| € VRE )
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This term can be treated by the same arguments as in (3.24). Thus, we also deduce that
J[ s & sy nPIGen dedn < @ T 4 QMG w320
R

Combining (3.17), (3.22), (3.26)), and (3.27)), we obtain

Q)G - Qe Gan(Rz)_// R ‘\/1+£lczi2;-77 Sm(\/%’f)
et (yfie o) [l P acan

33//ﬂ{2(1+£2+n2)d(IJ3(5m)|2+|J4( n)|? + 1 T5(&, )] )\ngy dé dn

< (9.2‘9‘5T2k + 24k + 120, T 755 k7 ) G300 (g2

Thus, we find that
IQW)f = QE)fllan(z) < Cogir (b + k75 ) Gl save-oas)- (3.28)
We recall that
uF(t) = P(t)a + Q(t)b + /O t Q(t — )G (7))dr. (3.29)
By and (3.29), we infer that
ut(t) — u*(t) = P(t)a — P(t)a+ Q)b — Q(1)b

/@H u(r) ~ G(u* () ) dr
+/0 (@t -7 - Q- )G ()dr.

The inequality implies that

Il (8) = w* (Ol raee) < IP(H)a = P(t)allmage) + 1Q)b — Q()b]| racee)

oy / Qe - 1) (G (7)) = G (7)) | ya g

(3.30)
+ H/ Qt —7) = Qlt = 7)) G ()7 o oy
= + Ao + 3 + Ay
First, in order to bound the term %7, we use the inequality to obtain
1 = [B(t)a = P(t)allyae) < TS all oo ea), (3.31)

for all 6 < p < 2s + 6. Second, using Estimate (3.16]), we control the term %5 as follows
= |Q()b — Q(1)b]| grarzy < CTE?||b]| pras (ga).- (3.32)
Let us treat the term .#5. By applying Estimate (3.2)) of Lemma we find that

t
Hy < \/T220-5 £ 915 1 Qk/ Gk (7)) = G(u* (7)) grase—so oy dr
0

t
< VT 2k [ GGH() - Gl (7)) i (3.3
0

t
< O\/T2205 4 215 ¢ Qk/ ¥ (7) = w* (7) || rarey dr,
0
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where we used the global Lipschitz of F' and the assumption d + s — 0 < b. Now we study the
term J#3. In view of the inequality (3.28]), we obtain

t
A0 = Copir (k675 ) [ 16" () lgavo- o
0
. t
< Coar (k575 ) [ 16 D lrcaordr (3.34)
0

t
< Cs,e,T(mkﬁ)/ () o ey i
0

Here in the last estimate, we have used the globally Lipschitz property (3.3)). By a similar tech-
niques as the proof of (3.10), we obtain that

lu* ()] framey < CT,m,B,st_m(HaHHd(R?) + [lall greo—sp+amey + ||b||Hd+S*9(]R2)>'
Hence, we have

t
/ () gy dr
0

t
< CT7m,B,S(||a||Hd(R2) + Ha||H(e—s)B+d(Rz) + ||b||Hd+s—9(R2)) (/0 T_de) (3.35)

< CT,m,B,s(”a”Hd(R% + HQHH“’*S)B*d(Rz) + ”b”Hd“*"(HV))'
It follows from ([3.34)) that
H1 < Crsiam,a (k4 k757 (Jlal gages) + lallmo-nssaqge) + bl rave-oges))-

In view of (3.30)), (3.31), (3.32), and ([3.33)), we derive that

[ut(t) — u* ()| ramey < Tk

|all oo g2y + CTR|1b]| gros )

+Cr1.5,0,m,8 (k‘ + kﬁ) (HG,HHd(RZ’) + ||a||H(9—s)B+d(R2) + ||b||Hd+s—6(R2))

t
+C\/T229_5 +21_S +2k/ Huk(T) _U*(T)||Hd(R2)~
0
By simplifying the above expression we have
[u*(t) = u* (1) ra )

<C(®T + k82 + 575 ) (lallgaroqwe) + lallmge) + loll go-nsrage) + [blmers) )

t
+C\/T?20-5 4+ 21-5 4 Qk/ |k (r) — (7)) a2y dT.
0
By applying Gronwall’s inequality, we deduce that
() = (#)llmaguey < Cexp (CVT?2= + 2172 4 2kt ) (K5 + ki + K2 4 k75

X <||aHHd+p(R2) + Ha||Hd(R2) + ||CLHH(9—S)[3+{1(R2) + Hb||Hd+s(]R2)).
The proof of Theorem is complete. O

We now focus on the second main result of the subsection. Suppose that G(0) = 0 and
1G(w1) = G(wa) |l rare) < Cllwy — wal|rae).- (3.36)

Since for n < d, H¥(R2?) — H"(R?), it is obvious that (3.36) implies (3.3). Therefore, with
sufficiently smooth initial data, one can still apply the argument of Theorem and to derive the
unique global mild solution to Problem (1.1])-(1.2)) with the above Lipschitz property for G. By a

very similar argument, one can also prove the existence and uniqueness of the global mild solution
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to Problem (3.12)-(1.2). And again, since the main goal of this subsection is the convergence
behavior of the mild solution to Problem (1.1})-(1.2)), we omit the proof here.

Theorem 3.6. Let a € H™2%(R?) for some § = s € (3,1) and for some d > 1. Let b= 0. Let
us assume that some conditions of Theorem [3.4 holds. Suppose that u® and u** are, respectively,

the global mild solutions to Problem (1.1)-(1.2) and Problem (3.12)-(1.2). Then we obtain the

estimate
(&) = Ollrogee) < Cosirie (lallmraesscay + 10l o 1oy ) Els,2,7). (3.37)

where

2s5—1

E(s,2,7) = \/(1 = 8)* + (1 )25 + (1 — )57 + (1 — 51 + (1 — 5) 5,
for some ¢ € ({5,1) and v € (0,1).

By similar arguments of (3.35)), we can find the upper bound of the term ||w** |11, 1, (r2))
on RHS of (3.37).

Proof. To make our representation clear, we emphasize the dependence of u® on the parameter s
by denoting

u®(t) = Ps(t)a + /0 Q,(t — 7)G(u*(7))dr.
where

2 4 20
Py (t)v := .7-'_1(005 ( MOW&W)

i [LHR(EE 7). 24n?) N
Qs(t)v:=F 1<\/(§2(i772)2) sin (\/Mt)v(&n))
! L RE R [ @
e @ o e s )6
Also, it is useful to rewrite
mn _ —1 1 in (§2+772)S 7
o= rmEr ey T ) Em) 6

By an obvious modification of Theorem we also obtain the existence and uniqueness of the
mild solution «** to Problem (3.12)-(1.2)). This solution satisfies the integral equation

Qb= F(

W () = Py(H)a + /0 0,(t — )G (7))dr, (3.39)
where

(& +n*)
L+ k(& +7%)

Qb = fl(\/1+’“(52+”2) sin(\/ (€% + 1) to(em),

Py (t)v := f_l(cos ( t>a(£a 77))

(&2 4+n?) L+ k(€2 +n?)

and

0t = F-! ! an (| —EE7) N5
Q)= F (\/1+k(§2+n2)\/(§2+n2)5 ( 1+k(§2+n2)t) (&m). (3.40)

Subtracting into (3.39), we obtain
w(t) — ' (0) = [Patla— Prlt)a] + [ (e =) (6w (7)) - Glu™ (7)) dr
. 0 (3.41)
+ [ (@ -n =@ )6
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Considering the second term on RHS, we obtain the equality

= sin ( (€2 + )" t)
VIFRE + @+ | T kE + )
- ! sin ( Mt)
VIHEE +7?)\ /(€ +17) L+ k(& +n?)

1 . (& +n?) : (& +n?)
- e (et (e eY) o)

1 1
e e eV
: (€& +n?)
X sin ( mt)

= 21(&,m,t) + 2o(E, 1, 1).

In view of the inequality |sin(ay) — sin(as)| < Celas — azl® for any 0 < ¢ < 1, we find that

)

c (& +9%)° (& +n?)
= \/1+k<52+n2)s \/1+k(§2+n2)
(3.43)
c (& +n%)s E+n?)
=T \/1+k(€2+n2)5 \/1+k(£2+n2)s
c &e+n*) &+n*) |°
e \/1+k(52+n2)8 \/1+k(52+n2) '
This implies that
2
JLave | aennfmenr
(1+&2+ 7?1 V@) - V@A L
<cr [, CTHE T (ke ) el e
(& +n?) (3.44)

(14&2 4 %)
+C€T//RQ (L+ k(€2 +n2)%) (2 +n?)°

(&2 +n? R )
m‘ [0(&, m)|” d€ dn

= D3(&,m,t) + 24(E, 1, 1).

L+ k(& +7?)°
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The term 25(&,n,t) is rewritten as follows

23(&,m:1)

) Grerpy V@ -VETP

e //E2+772>1 (1+re+me)(e+n)  (1rrEe+m)r) el
(1+ € 4 p2)? ﬂ\/@? T - VE@ TP

+Cer //2+n2<1 (1+k(§2 +772)5) (£2+n2>8 (1+k(€2+n2)5)6 e

= 23,1 (57 m, t) + 93,2(57 m, t)
(3.45)
In 231, we note that /&2 +n2 > 1. In view of this observation and Lemma we obtain

V@) - V@) < (/@) -

Let us choose 0 < € < 1, we obtain immediately that (1 + s)e < se + 2s since 2s > 1. Thus, we
obtain

Z31(&,m,t)
2 2\ (1+s)e—se—2s
< Ce,s,T(l _ 5)258 // (1 + 52 + n2)d (5 +n LE+1 |i)\(§777)|2 df d77 (346)
24n2>1

< Ci(e,s,T,k)(1 — S)QSEHUH%_IC{(RQ), 0<e<l
In 235(&,7n,t), we note that /&2 +n? < 1. Another application of Lemma yields
VIE TP = V@ +1P)| < C(VE+ R (15, forsome 0<p< 1.

g
This together with the observation (1 + k(€2 +n?)% > 1 and (1 + k(€2 + 772)s> > 1 yields

Dy a(E0,8) < Cepar(l— 5)2 / / (14 1+ )€ + ) P=5[a(e, m)[2 de di
2+772<1

(3.47)
< Copea-9 [[ (@) e m P de
£24n2<1
Here we choose 0 < p < s — % < 1. In view of the inequality
[0(&,m)| < (vl Lo (r2), (3.48)

for v € L*°(R?), we find that
(& + )P0 [0 )P dE dn < o] o g (& + )P dedn (3.49)
(R?)
£24n2<1 £2+n2<1

Since s < l,e<land 0 < p < sf% < 1, we know that s — (s — p)e < 1. Thus, the proper integral

equation ff52+n2<1(62 + 12)(5=P)==5 d¢ dn is convergent. It follows from (3.47) and (3.49) that
232(6,1,1) < Ceyps 12%(1 = 5)*[[0]| T ).

It is noteworthy that if d > 1, we have the embedding

HYR?) — L*>(R?). (3.50)
Thus, we obtain immediately that
232(6,1,1) < Cepspar(l = 8)*|[v]Fape)- (3.51)
Combining (3:45), (3.46), (3.51)) and choosing p = 221, we deduce that

Q3(§a m, t) S c@3,1(57 m, t) + 33,2(57 m, t)

, (3.52)
< Ceoran (L= 92+ (1= )T ) [0l uze)
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where 0 < € < 1,
For the term 324 (&m,t) on RHS of -7 we have

Qe - ’\/1 é““gn \/ (& +n?)
+ k(&2 +n?) 1+ k(&2 +n?)
_ (@) VI RE +P) - VI RE 0P|
(1+R(E2+02)*) (1 + (€2 +12))°
(& + )k (2 +n?) — (2 + 17|
(14 k(€2 +n2)*) (1 + k(€2 +n?)° (\/1 +EE+ 17" + V1 +E(E +7?))°
If €2 + n? > 1 then using Lemma we find that
(€2 +1%) = (E+n*)°| <Cye(@+n) It (1—s)", 0<y<L

It is obvious to see that

(1 k@ +n2)) (@) (14 ME ) (VITRE TP + VT RE D)

> k1+35(§2 +772)25+55+%.

2e

Therefore,

// (1+&+12)%Q5(&,n)
ezt (L+E(E +n2)9) (2 +n2)°

<Oy ep(l—5)° // 1+ &+ )€ +72) " E 27 5(¢, )2 de dn
24n2>1

[5(&,m)|* d€ dn

(3.53)
<Coonl=97 [[ @y day

2+772>1
< Cyen(l— 5)7€||”HH(1(R2),

where we note that ye + § — 2s — se < 0 since the condition 0 <y <1 and s > %
If €2 +7? < 1 then using Lemma[2.4] we find that

(€@ +77) = (E+ 7)< Cs(E + 7)1 —5), 0<6<1,
which allows us to obtain that
Qs(&,m) < C,p k(€2 4+ n?)FTE795(1 — 5)%=.
Then, we find that

(L€)' Q&) oo o
//£2+n2<1 (1+k(§2+772)s)(§2+n2)8|v(§’n)| §dn

<Osbi=af [[ ety e 4 t) T ) dan
n

(3.54)

et+(s—d)e—s
) <

Since ;37 < e <1 < 2s, we can choose ¢ such that § = £2£=% € (0,1). Then (§2+772
1if €2 + 72 < 1 and we follows from (3.54) that

(e ) Qulen) o o
/~/52+n o (L k(€ +72)%) (2 + n2)° e mPdedn = Cls e R =) ' (3.55)

Combining (3.53) and (3.55)), we find that
Q4(£ﬂ , t) < C’y,s,g,k ((1 - S)’YE + (]. — S)

e+se—s
2

Mol g (3.56)
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where we remind that 0 < v < 1. By connecting (3.44)), (3.52) and (3.56), we deduce that

// (14 € 1+ n?)| 20(€.m.0)P[o(€, ) de dn
S 593(5’777 )+Q4(§7na ) (357)

2s—1 e+se—

< e (1= )% 4 (1= )57 + (1= 5)° + (1= )75 ) o) 3ugea).

for ;77 <e<land 0 <y <1

Step 2. Estimation of 2(&,n,t). It is easy to find that
‘\/1+/€ (€2 + ) V(€ +1?) — V1+K(E +1n?)* /(€ + 1)

67 7

s+1

VIHEE+ )T+ EE+72) (2 +12) %

. (& +n?)
X sm( 1+k(§2+772)t)‘
NS SN ERA NN BRI (359)
1_’_]6(52_‘_772)5(52_’_772)% 14+ k(&2 +1?)

| WITHET P - T RE Y|
T+ RE +ipP)(e2+m2)"?
= 27(§,m:t) + Zs(&,m,1).
Let us consider the quantity |27(¢,n,t)|. If €2 +n* > 1, then using Lemma we obtain

V@ + P = V@ 4P| < CVE +ip) i (- )2 (3.59)

n ( (& + 1) t)‘

1+ k(€2 +n?)

This implies that

// (1 + €+ 02)] 256 m, O [0(¢. m)[? de dn
&24n?>1

<c-sf [[ e e - ) F o ds dn (3.60)
£24n22>1
< Co(1 = 8)°l10] 20 ey
If €2 + 7? < 1 then using Lemma[2.4] we obtain
VE@+P)r - V@ +P)| < C(VE )1 - )2, (3.61)

Also, in view of the inequality |sin(z)| < z, we find that

: (& +n?) 2, 2\1/2
. < . .
sm( 1+k(€2+n2)t>‘_T(£ + ) (3.62)
By the above two estimates, we arrive at
2,
JL . asevdienen e ddy
£24n2<1
ccata-s [[ @ vt TP e
24241 (3.63)

<C = ol [[ €@ dedn
£24n2<1
< Cs,d(l — 8)°[[V]| 34 ey

where we have used and - In the above estimate, we also note that the integral
Jer i (€ +07)= df dn is convergence since s < 2. By combining (3.60) and (3.63), we find
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that
// 1+ & 4 12) 2e(En, O P dE dn < Coa(1 = ) [0 3ageny. (3:64)

Let us deal with the term Zg(&,,t). It is obvious that
. 2 2
k(€2 +n2)* = /(€ +1?))| sm( 1_&(%217),2)75)‘

(Jvi= RETE )+ TERE 7 JWiTHE TP (e )

If €2 472 > 1, then (£2 +12)"T < 1, by using (3:59), we find that
25(&,m,t) < OsVE(1 ~ s)s/2<52 +7%) T < VR - 8)*2 (3.65)

If €2 + n? < 1, then using (3.61]) one obtains
s . £24-n2
(€ + )3 sin (/o) | 00
(€2 +n2)"?

1/2
Here we note that the denominator of Zg(&, 1, t) is greater than ({2 +772) . Using the inequality
|sin(z)| < Ce2® with e =1 — 7 € (0,1), we obtain that

sin “2*”2)2)7:)\ < @Tl*i‘(m)ﬁ <CTYHE 40?5 (3.67)

o@8 (5; m, t) =

38(57 77775) S Csk(l - 8)8/2

1+k(E+n 1+ k(& +1n?)
By collecting and , we infer that
Ds(&,m,1) < ChT' 31— 5)*2(€% + 0°)F < ChT' 5 (1~ 5)*/? (3.68)
if €2 +n? < 1.

Combining ([3.65| -, we deduce that
Ly senn e aan

—// (1+ € 42| 2a(&,m, 1) 210G, m) 2 de dn
£24n2>1 (3.69)

2,
[ arepasn o ae )P
£2+n2<1
< Cskr(l— S)SHUHEd(W)-
Combining (3.58)), (3.64) and (3.69), we derive that
2
v e i n ol

<2 [[ vyl dcanrz [[ 0+ v 2ennl dean
< Cspra(l — 5)S||U||§1d(ne2)-
This estimate together with (3.38)), (3.40), (3.42), and (3.57) yields
Qs (t)o = Q1 (1)l Fragay
= [ ar e+ (@nn+ 2uenn) dsin

1 et+se—s

SGWdT“(ﬂ—ﬂf+%1fﬁ%?+ﬂfsf7A+Of5wp+ﬂfs)2 oll3ra ey
<e<land0< vy < 1. Based on this result, we have

1Qu(t)v = Q1 ()0l gagrz)y < Crys,4,7.,k E(s,8,7) 0] gy, (3.70)
for any v € HY(R?), d > 1.

for S+1
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Now, we turn to estimate the error ||[Ps(t)w — Py(t)w| graggz). We modify the proof of (3.43)

and (3.44). We have

1P (t)w — Py (t)wl|Fa gy

< [[ a+e i 2yl V(S JZW ;/f) ;" W e, my de i

(&2 + €2 42 2c
JFCET//WH&?J”7 ‘\/14—]4;52:7-77 \/1Jr(k(§21)772)‘ @ (&, m)|* d& dn.

If we consider a function v such that
[B(&, ) = (1+K(E +17)°) (€ +n?) |@(E, ). (3.71)
By the two latter observations and (3.57)), we derive
[P (t)w — Pr(t)wFare)
< e (1= )2 4 (1= )57+ (1= 9) + (1= )75 ) o) fagae)
From ({3.71), we find that
lolraen = [[ 14+ Pt de

<a+b [[ are vty paenaan (3.73)

< (L4 k) [wl Frasas gey»

(3.72)

where we have used that (1 + k(&2 + 772)5) (52 +n%)* < (14 k)(1 + &% +n?)%. Combining (3.72)),

(3.73), we obtain
IPs(t)w — Pr(t)wl| gaggey < Cryrs.me k B(8, €,7) W] raszs g2y (3.74)

Let us return to the third term on the right- hand side of (3.41). By applying estimate (3.2]) of
Lemma [3.3] we find that

| [ @ute =) (G ) = G (o) el e
<Verria2+ 21@/0 1G (U (7)) — G (™™ (7)) | o ey dr (3.75)
<oV 21 Qk/o 0 (7) — u™* (7| sragay

where we have used the global Lipschitz (3.36) of F'.
Let us now consider the fourth term on RHS of (3.41]). In view of the inequality (3.70)) and the
global Lipschitz property (3.36) of F'; we obtain

[ (@t =) =Bt =) G 0 irlces

t
<O ore 1 E(s, e, G (™ aipoyd
< CureaBlse) [ 160 () mogeoydr 576)

t
< CC, o ro xBls,2,7) / ™ ()| ey dr
0
< CC’y,s,T,e,kE(Sa5’V)|\U**||L1(0,T;Hd(n§2))-
Combining (3.41)), (3.70), (3.74), (3.75), and (3.76)), we verify that
[|lu®(t) — U**(t)HHd(JRZ) < Cv,s,T,s,k,dE(Sa&’Y)HQHHHZS(RZ) + C’v,s,T,e,kE(S,E,W)HbHHd(u@)
+ CC 5,12 k,aE(s,€,7) [[u™ HLl(O,T;Hd(R2))
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By

t
LoV 124 2k:/ 0 (7) — ™ ()| sra o -
0
applying Gronwall’s inequality, we deduce that
[ (t) — u™ (£)[| rra ()

< Cooiremcna(lallmaessge) + 4™ |10 ropra gy ) E(s,2,7) exp (CV/2T7 + 2+ 2kt

< O%s,T,a,k,C,d<||aHHd+2s(R2) + HU**||L1(O,T;Hd(R2)))E(S>67'7)-

The proof of Theorem [3.6]is complete. O
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