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STABILITY OF LERAY WEAK SOLUTIONS TO 3D NAVIER-STOKES
EQUATIONS

ZUJIN ZHANG, WEIJUN YUAN, ZHENGAN YAO

ABSTRACT. In this article, we show that if the Leray weak solution u of the three-dimensional
Navier-Stokes system satisfies

3
=2, —=<g<oo,

Vu € L7(0, 00 B oo (), -

+

SERN
QW

or
Vu e LT7 (0,00 B oo (RY), 0<r<1,

then u is uniformly stable, under small perturbation of initial data and external force, is asymp-

totically stable in the L2 sense, is unique amongst all the Leray weak solutions, and satisfies

some energy type equalities. Also under spectral condition on the initial perturbation, we obtain

optimal upper and lower bounds of convergence rates. Our results extend the results in [6}, [11].

1. INTRODUCTION
In this article, we study the incompressible Navier-Stokes equations (NSE) in R? |
dpu+ (u-Vyju— Au+ VI, =1,
V-u=0, (1.1)

u|t:() = o,

where u = (u1,us,us) is fluid velocity field, IT,, presents the pressure, f is an external force, and
ug is the prescribed initial data satisfying the compatibility condition V - uy = 0 . Hereafter, we
use the following notation:

P ) 3 ) 3 3
=g =gy V=(0100,0), A_;ai, (u~V)—;ui8i, V-u—;&-ui.

For finite energy initial data ug, the existence of a global weak solution satisfying the basic
energy estimate

t
la®)z- + 2/0 IVu(s)[172ds < [luollz> (vt >0) (1.2)

of (1.1) has been established in the pioneer works of Leray [14] and Hopf [10] (for the case of
bounded domains). However, the problem of regularity and uniqueness of such a weak solution
remains open. To understand the above problem, Leray [I4] posed the following time decay
problem: whether or not the weak solution u of (1.1) with f = 0 satisfies lim;_,  |Ju(t)||zz = 0
. This was confirmed in [I8] (and references therein). Notice that the time decay problem can
be renamed as the asymptotically stable problem of the trivial solution u = 0 . It is natural to
investigate the stability issue of nontrivial solution of (1.1) with f not small for large ¢ . Precisely,
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we consider the following 3D perturbed Navier-Stokes equations
Ov+(v-V)v—Av+ VI, =f+g,
V.v=0, (1.3)
Vl|t=0 = ug + wo,

where g(z,t) is a perturbed force and wo(x) is a perturbed initial velocity field. The study of
stability behaviors (uniform stability and asymptotic stability) is beneficial to the understanding
of regularity and uniqueness of Leray weak solutions of (1.1).

For the uniform stability, Ponce-Racke-Sideris-Titi [I7] showed that if the Leray weak solution
u of (1.3) with f = 0 satisfies

Vu € L*(0,00; L*(R?)), (1.4)
then condition -
([ woll g1 +/0 (le®llze + lg®)l7=) dt <o

for sufficiently small 6 > 0 implies that (1.3) has a unique global solution v(¢) with the property

sup ||u(t) = v(t)||gr < M(0), lim M(6)=0.
>0 50

Gui-Zhang [9] made an important improvement in the sense that they studied the uniform
stability of weak solution of horizontal viscous Navier-Stokes equations in the anisotropic Sobolev
spaces C(0, 00; H%*(R?)) . Gallagher-Planchon [8] considered the n-dimensional perturbed Navier-
Stokes equations, and showed the uniform stability under the assumption

.24 n_ 2
we LP(0,T; BEr* (R™)), §+g:1, 2 < q,p < oo. (1.5)

2 n

Here, B;ﬂ » *  (R™) is the homogenous Besov space, see Section 2 for details. Recently, Dong-Jia
[6] covered the limiting case p = oo in (1.5), and their assumption ensuring the uniform stability
of Leray weak solution is

. 2 3
Vue LP(0,T;B) (R*), =+-=2, 1<p<oo, 2<q<oo. (1.6)
’ P q
On the other hand, it is also interesting and important to investigate the asymptotic stability.
In the case f = g = 0 and wo € LY (R?) N L"(R3) (r > 3) with ||wq| - sufficiently small,
Beirao da Veiga-Secchi [2] derived that there exists a unique global solution v of (1.3) converging
asymptotically to a weak solution u of (1.1) with f = 0 in the sense that

V() —u(®)]er < CO+)75,
under the subcritical assumption that
u € L>=(0,00; L"T2(R?)). (1.7)
Later, Kozono [I3] removed the smallness assumption on wq and g . Precisely, he showed that
the weak solution v of (1.3) with £ € L2 _(0,00; L*(R?)) and g € L'(0,00; L*(R?)) converges

asymptotically to the solution u of (1.1), provided that
2 3

u € LP(0, 00; LI(R?)), S+o=l 3<gs<oeo (1.8)
Then Zhou [2]] extended (1.8) as
2 3 3
Vu € LP(0,00; L1(R?)), =+ = =2, 3 < g < 0. (1.9)
p q

Recently, Dong-Jia [6] refined (1.9) to be (1.6).

The purpose of this article is to explore the uniform stability and asymptotic stability for weak
solutions of 3D Navier-Stokes equations in the critical Besov spaces under large perturbation of
initial data and external force. Roughly, we shall extend the range of ¢ in (1.6) to be of full range
3

5 < g < oo; and we can even take the regularity index to be negative. Moreover, under some
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spectral condition on the initial perturbation, the optimal upper and lower bounds of convergence
rates are derived.

Before stating the main results, let us first recall the definition of Leray weak solution of the
Navier-Stokes system (1.1) (see [I9] for instance).

Definition 1.1. Let up € L*(R3) and f € L _(0,00; L>(R?)) . A measurable function u(z,t)
is called a Leray weak solution of the Navier-Stokes system (1.1) if the following four conditions
hold:

(1) u € L{5, (0,00 L*(R®)) N L, o (0, 00; H' (R?)):

1
(2) u is weakly continuous from [0, c0) to L?(R3) ; .
(3) u satisfies (1.1) in the weak sense, that is, for all ¢ € C*([s,t]; H}(R?)) ,

[ o) ¢<>dx+// [Vu: Yo+ [(u-V)u] - 6} dudr

//Rsu5‘¢da:d7'+/Rdu(s)¢(s)dx+/:/Rsf.¢dxd7_ 35 0);

(4) u satisfies the energy inequality:

t t
|u(t)|2d:r+2/ / |Vu|?dedr g/ |u(s)|2dx+2/ / f udzdr (0<s<t<oo). (1.11)
R3 s JR3 R3 s JR3

Our main results now read as follows.

(1.10)

Theorem 1.2 (Uniform Stability). Let 0 < T < oo , and u(z,t) be a Leray weak solution of (1.1)
with ug € L2(R3) and f € L?(0,T; L*(R3)) . If
. 2 3 3
Vue LP(0,T; B) (R%)), =+==2, 5 <4<oo, (1.12)
’ p g
then any Leray weak solution v of (1.3) with wo € L*(R3) and g € L'(0,T; L*(R®)) satisfies the
estimate

t
Iv(t) - u®)|3: + / IV (v = w)|3:dr
T T
< (||w 22—1—/ gl|p2dr 1+C/ gllze + [[Vul?, )dr (1.13)
(hwollza+ [ liglzzar) {1+C | (lglles + Ivulp, )

X exp [C’/OT <||g||L2 + ”qu%gw)dT} }

T
Iwolls + | llglzedr <<
0
for sufficiently small € > 0 , then we have the uniform stability
[Iv(t) —u(t)||z < Ce, VO<t<T. (1.14)

In particular, if

Dong-Jia’ (1.6) considered only 2 < ¢ < oo, while our Theorem 1.2 can treat all the possible g.
Moreover, we could even improve (1.12) to be Besov spaces of negative regular index.

Theorem 1.3. Under the conditions of Theorem 1.2, if (1.12) is replaced by
Vue L77(0,T; B o (R%), 0<r<1, (1.15)
then

t
(O~ uo)lF + [ IV = war
< (Iwolis + [ glsar) {1+ [ (lgles + 19wIESar (1.16)

<expc | (lglas + I E7 Jar] ).
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and the uniform stability (1.14) still holds.

3
From the embedding B(q)’oo(ﬂ@) C Bo's(R?), we see that Theorem 1.3 is an refinement of
Theorem 1.2 for the case 3 < ¢ < ¢ .
The uniform estimate (1.13)/ (1.16) allows us to derive a weak-strong uniqueness of Leray weak
solutions of the 3D Navier-Stokes system. Indeed, if wo = g = 0 in (1.13)/(1.16), then v = u .
Precisely, we have

Theorem 1.4. (Weak-Strong Uniqueness). Assume u € L*(R3) and £ € L?(0,T; L?(R3)). Let u
be a Leray weak solution of (1.1) and satisfy (1.12) or (1.15). Then u is unique amongst all the
Leray weak solutions associated to the same initial data uy and external force f .

Remark 1.5. It is worth mentioning that Chen-Miao-Zhang [4] showed the weak-strong unique-
ness under the assumption that
2 3 3
ue LP(0,T;B) (R%), =+4==1+r, oy <4 <oo, 0<r<1, (gr)#(c0,1). (1.17)
' p q r

From the equivalence relation Vf € B3 (R3) (0 <r < 1) & f € B3, (R?) (0 < s < 1) and the
continuous embedding Bj  (R?) C B; ,(R?) for s > 0, we see our weak-strong uniqueness criterion
(1.15) can be reformulated as

ue LT (0,T; B, o(R%), 0<s<1, (1.18)
and is better than (1.17) in many cases. For readers interested in weak- strong uniqueness results,
please refer to [3| [7] and references therein.

Now, our asymptotic stability result reads as follows.

Theorem 1.6 (Asymptotic Stability). Assume that ug, wo € L?(R3), f € L2 (0,00; L?(R?)) and

loc

g € LY(0,00; L2(R3)). Assume that u(t) is a Leray weak solution of (1.1) and v(t) is a weak
solution of (1.3). If

) . 2 3 3
Vu € LP(0,00; By (R?)), =+4==2, 3 <4<, (1.19)
' p q
or , _
Vu e L77(0,00; B/ (R?), 0<r<1, (1.20)
holds, then v(t) converges asymptotically to u(t) in the sense that
tli}m |[v(t) —u(t)||rz = 0. (1.21)

Remark 1.7. Because of the continuous inclusion L(R?) C BS,OO(R?’) for 1 < ¢ < o0, we see that
Theorem 1.6 extends Zhou’s result (1.9) to homogeneous Besov spaces in a full range (without
the limiting case ¢ = 00). Moreover, we extend Dong-Jia [6] in the range of regularity index and
integrability index.

If the initial perturbation wq satisfies some further spectral property (see (1.22)) and there is
no perturbation of external force, then we can rewrite (1.21) with an explicit convergence rate.
For this purpose, we recall the following optimal upper and lower bounds of heat flow (See [10]).

Lemma 1.8 (Decay rate of the heat flow). Assume that wo € L*(R3) and for some v > 0,

/|§| |Wo(rw)Pdw = Cr*7™3 £ o(r?™3), asr — 0. (1.22)
=1
Then the solution W (z,t) = et®wyq of the heat equation
KW — AW =0,
Wieo — w0 (1.23)
obeys the following upper and lower bounds
C1+0)7F < [W(D)g < Co(1+0)77F, (1.24)

where s > 0, Cq, and Cy are positive constants depending only on s .
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From this lemma we can develop a Fourier splitting technique (see [I8,[12]) to show the following
result.

Theorem 1.9 (Decay rate). Under the hypotheses of Theorem 1.6. If in addition, the perturbed
initial data wo satisfies (1.22) with 2 < v < g, then the perturbed external force g = 0. Then
there exists two positive constants C; and Co such that

Ci(1+ )72 < |lv(t) —u(t)||g2 < Co(A+8)77/2, vt >0. (1.25)

Remark 1.10. (1) An example of wy satisfying (1.22) is

o Jeerz jel <,
Wo(€) = {0, b1

(2) In the framework of Morrey spaces, Jia-Xie-Wang [11] showed (1.25). While our result is
built upon the homogeneous Besov spaces (even with negative regularity index).

(3) The upper and lower bound estimates (1.25) are optimal since they coincide with those of
the linear heat flow (see (1.24).

(4) The upper bound of the decay rates in (1.25) can be improved if we assume v > 5/2. In
this circumstance, we can show that

[v(t) —u(t)| 2 < Ca(141)7%/4, Vvt >o0. (1.26)

This will be proved at the end of Section 6.
(5) At this moment, it seems not so easy to consider non-zero perturbed external force g. We
hope we can investigate this issue later.

Remark 1.11. At this moment, we do not know whether the margin case r = 0 and r = 1 is valid
in Theorem 1.3, Theorem 1.4, Theorem 1.6 and Theorem 1.9. However, by using the following
bilinear estimate in Hardy spaces (see [20, Lemma 2.1])

1 1
IV Dl < CIIVFlizellgllize + Cllf el VgllLe, 1 <p,q < o0, P L, (1.27)

we have the trilinear estimate which could be viewed as the margin case r = 1 in Theorem 2.7,

T
/ Fg0;hdxdt
0 R3

T
= —/ 9i(fg)hdxdt
0o Jrs

T 1.98
<c / 10:(9) s 1l st (1.28)

T
< C/O IV flle2llglice + 1122 IVgliz2) [|Pl Barodt

< Cligllge ) IV fllez. 2y lhll 2. saroy + Cllfl s 22) [Vl 2.2y 1Bl 2. (a0

where 1 < ¢ < 3. Hence the assumption on the velocity gradient in Theorem 1.3, Theorem 1.4,
Theorem 1.6 and Theorem 1.9 can be replaced by

u € L?(0,T; BMO(R?)) or u € L*(0,00; BMO(R?)). (1.29)

The rest of this article is organized as follows. In Section 2, we establish the continuity of
the trilinear form fOT fRS fghdzdt by the Fourier localization technique. In Section 3 we study
the energy equality of Leray weak solutions of (1.1). In Sections 4 and 5 we discuss the uni-
form stability under small perturbation and the asymptotic stability under large perturbation.
Finally, in Sections 6 and 7 we study the upper and lower bounds of the asymptotic convergence.
Throughout this paper, we denote by C' a generic positive constant which may vary from line to
line, by LP(R3) with 1 < p < oo the classical Lebesgue space endowed with the norm || - || z», and
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by LP(0,7T; L9(R?)) the anisotropic (in time and space) Lebesgue space endowed with the norm
| [lz2 (La). The Fourier transform of f is

1

Ff(€) = f(f) = W /]Rs JC(CE)e—iz.gdx7

The inverse Fourier transform of g is
1

—1 _ ix-&
2. CONTINUITY OF THE TRILINEAR FORM

In this section, we establish the continuity of the trilinear form fOT ng fghdzdt using the Fourier
localization technique.

Let x(£) and ¢(£) be radial smooth functions defined on R?, supported in {¢ € R3;[¢| < 3}
and {¢ € R%; 3 < |¢] < 8} respectively. Assume that

XEO+D 02778 =1, YEeR® Y ¢(277¢) =1, V¥¢eR\{0} (2.1)
§>0 JEL
(see [1l Proposition 2_.10] for the construction of such x and ¢). Then we can define the homoge-
neous dyadic blocks A; as
Ajf=¢@7D)f =2 | Fl'o@y)f(z —y)dy, VieLZ,
]R3

and the homogeneous low-frequency cut-off operator Sj as
88 =D =27 [ F @S- y)dy. Ve
R3
In view of the spectral support, we have
AjAf=0if |5 — k| >2 Aj(Sk_1fArf) = 0if |j — k| > 5;
Aj( 3 Akak/f) —0, ifj—k>4 (2:2)
|k —k|<1
Also, the Bernstein inequality
14 fllzs < C29GTD A flln, VI<p<g<oo (2:3)
holds. Moreover, by (2.1), we have the homogeneous Littlewood-Paley decomposition
F=S A 2
JEL
With the homogeneous dyadic blocks Aj in hand, we may define the seminorm

. . 1/r
b, = (X 2IAIL) T seR 1<pas< o
1 JEZ

/]

Then the homogeneous Besov space Bf, ,(R?) is the space of distributions f satisfy [|f 5. < oo
’ P,q

and
lim ||0(AD)f||L~ =0,
A— 00

for any smooth function 6 with compactly support. It should be pointed out that 3‘572(R3) =
H $(R3?), the homogeneous Sobolev space.

Now, we recall some often-used lemmas. The first one is the characterization of homogeneous
Besov space with negative regularity index by the homogeneous low-frequency cut-off operator,
see [1, Proposition 2.33].
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Lemma 2.1. Let s <0 and 1 <p,q < oo. Then f € B;,q(]RS) if and only if
(2js||5jf\|Lp) e
J
Moreover, there exists an absolute constant C' such that
o 1
—|s|+1 ) s - .
CE f g5, S 1185 0ee) e < (14 )Ml
The second lemma concerns the continuous embedding properties of homogeneous Besov spaces,

see [1, Proposition 2.20].

Lemma 2.2. Let 1 <p; <py < oo andl <ry <re < oo, Then for any real number s | B (R3)

pP1,m1
s cont o )
is continuously embedded in Bp, r, (R?).

The third lemma discusses the interpolation properties of homogeneous Besov spaces, see [T}
Proposition 2.22].

Lemma 2.3. There exists a constant C' that satisfies the following properties. If s1 and sy are
real numbers such that s; < s and € (0,1), then we have, for any pair (p,r) € [1,00]? ,

6 —0
b Il

T pr——

and

c 1 1 0 1-6
(5+ 7g) Il 2.
And the fourth lemma is the duality properties of homogeneous Besov spaces, see [Il, Proposition
2.29].

HUHBETJr(lf@)Sz < P

Lemma 2.4. For all1 < p,r < oo and s € R, the mapping

li—ig'1<1

) - ) . L
defines a continuous bilinear functional from By, X B, toR.

A fine tool in Fourier frequency technique is the following Bony decomposition
ww = Tyv 4 Tou + R(u,v), (2.5)

where
Ty = Z Si_1ulju,  R(u,v) = Z Aju-Ajo.
J lj'—41<1
With the Bony decomposition, we have the Holder type inequality for homogeneous Besov spaces,
see [I, Corollary 2.54] for a special case.

Lemma 2.5. Let (s,p,q,p1,p2,p3,p4) € (0,00) x [1,00]%. Then there exists a constant C, depend-
ing on s such that

luvllg, < Clullns [0, .+ lulls, Ilollrs) (2.6)
with
1 1 1 1 1

p p P2 Pz ma
Proof. We provide the proof in full detail for convenience of the readers. By (2.5), we have the
the Bony decomposition _ . )
wv = Tyv + Tyu + R(u,v),
and we need to estimate these three terms.
Estimates for 7,v and T),u. By (2.2),
Aj(Tw)= Y Aj(Sy-1udyv),

3/ —il<4
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and thus
Tl , = 11(27° 125 (Euv)ler ) s
=121 > Ai(S 1l e
. X J
3" —jl<4
<c (2“ LN
<C| S —1uljollL j,”fq (2.7)
< Ol (2" Syr-rullzrs [ Ajrolzre ) e
J
< Cllullzon | (2718501202 ) s
J
= Clluflzelvlg, -
Similarly,
[Toullgs , < Cliolleeslullg, - (2.8)
Estimation of R(u,v). By (2.2) again,
Aj/R(u,v) = Z Aj/(Aj_VuAjv).
325 =3, [v|<1
Consequently,
2| Ay R(u,v)|e <275 > |IAy (Aj—uuAjv) e <C2* 3" A ud |
i>j'=3, |v|<1 7>j'=3, Jv|<1
S CZj/S Z ||Aj—yu||LP1 ||Aj’UHLP2
7>j'=3,|v|<1
<Clluflpen > 2970 27| A
5253
= Cllul|Ln 22“ U A e (51— =)
i<3
= Cllullzn (@) * (21 As]02)) .
J
where

9is. i< 3
a; = ;
0, i>3

and ((a;)*(b;));- denotes the j'-th term of the convolution of these two sequence, namely >, a;b;r—;
. Invoking Young’s inequality for series, we find that

1R (u, o)1, = (2714 R(w,0)llz0 ) s
P,q J,

< Cllullzn [ (@) = (2122 ) ) s

(2.9)
< Cllullzes Il @i); e | (2 1Aiv] 292 ) e
< Cllu|| e ||v]] gs (since s > 0).
P2,9
Combining (2.7)-(2.9), we complete the proof of Lemma 2.5. O

Now we are ready to state our trilinear estimate.

Theorem 2.6. Let0 < T < oo ande > 0. Assume that f, g € L>(0,T; L*(R*))NL?(0, T; H' (R?))
and h verifies (1.12), that is,

: [ 2 3 3
h € LP(0,T; B)  (R?)), §+§:2’ l<p<oo, 5<g<oc (2.10)
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Then we have the following estimates

T
23 31
| [ anaat < Um0 IVl oo Wl
2_3
# OVl o ol 1vall2; mnmu B ) (2.11)
+C||f||Loo L2)||Vf|| (L2)||g||LOO(L2 ||v9||L2 (LZ)”h”L (B0 )’

if 2 <q<3;

T
1—3 3
< - q q »
[ anaat] < C1lle ool 19015 ooy Wl o o)

1—3 3
Ol et IVl 2 12y 9l e o) 1Pl o 0 )

if 3 < q < o0o. Moreover, if f =g, then

T T T
| [ anasae<c [ bl altarte [ 9glEaar (2.13)
0 R3 0 4,00 0

Proof. By the Bony decomposition (2.5), the Littlewood-Paley decomposition (2.4), and the van-
ishing property (2.2), it follows that

T
/ fghdxdt
0 JR3

T
:/0 /RB[ng+Tgf+R(f7g)]ZAjhdxdt

= Z / / Sk_1fArgA hdzdt + Z / AkfskﬂgAjhdxdt (2.14)

[k—j|<4 [k—j|<4

+ Y Y / / ApfApgAjhdxdt

k' —k|<1k>j—3
=01 +1s+ 1.

If 2 < ¢ <3, from the Holder inequality it follows that

n< Y / 1$k-1 711 2 1Akl za 18] coct

|k—7|<4
< X ISl g VAl sl = k)
Jo|l<4
<cC Z/ Z? GHDOED S0 1 20 29O T A gl 2a [ Ash ] Ladt
[1]<4
<C). / (270 DO S s £l 2 ) el (294002 NA gl 2, ) e
1]<4

<1 (14hls0) flewdt:

Thanks to Lemma 2.1 and the definition of homogeneous Besov spaces, we have

n<c / 70 v lal gy Al gy
2 2

‘12 ‘12
q— a—
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Invoking Lemma 2.2 yields

T
nec| 151,59l Il

2,

From the interpolation inequality and the Minkowski inequality, we obtain
T
b= C [ 181 lalle Il _a
Tt i1 (2.15)
<C ; Il "IV Al IVallzelpl g dt

2-3 31
< C”fHL;}oq(LZ)HVszzT(Lz)||VQHL2T(L2)”h”L’}(Bg,OO)'
Interchanging f and g in (2.15) gives the estimate

2-3 31
I < C”g”qu;(Lz)Hv9||z2T(L2)||vf||L§(L2)||h||L1%(Bgyoo)' (2.16)
Now, we treat I3 as follows,

T
L= > /O /Rg ApfArgAjhdzdt (K —k =1)

|<1k>5-3

T
S / IAf el Arsrgl e 1A bl e d

l|<1k>j-3

T
<CY > / [Akfll2 | Aksigllize - 279 |Ajh| Ladt (by (2.3))
0

l[|<1k>5-3

T
<Cy > / 2825 | A f g2 - 25405 | Appagl g2 - 237257055 || A | odt
0

li|<1j—k<3

T
3 m3 3 004 3004
<C2 ) Y 2mq/ > 28| Ay f]| 2255 | Ay g 2
0

l1]<1m<3

(2.17)
| Aksmhl adt(i — k = m)

T
m3 3 0 3 A
<CY Yt [ (2F A1), el (250 WAl ) e
[1]<1m<3 0
< (1 Akembllze ) Jleedt
s T
<Y [l ol Il gy

[1]<1m<3 0
<o [ s v A s T gl il e d
< 1Al " IV FIIZE gl " 1Vl 22 1Al o dt
o ,

1—3 3 1—3 3
< CHfHL%f(qL?)”anz%@z)HQHLg;(qm)HVQHE%(Lz)HhHLg(Bgﬁoo)'

Plugging (2.15)-(2.17) into (2.14), we obtain eqrefthm:trilinear:resultl. To show (2.13), we deduce
from (2.15)-(2.17) that

T 9_3 3_1
n<c / [l e T PR P

T 9_3 3
<C [ Willgg 157191 Vo)l

3

T
= [ Ivs o),
0

T
<C [l I3+
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T T
S
L<C [ IhE, lol3adt+ = [ 1095 V)t
0 By 3 Jo
CAESE AR o vl
B< 0 [ U A ol 1ol - sy
T 9_3 3
< [ Whllsg 1957171 Vo)

T T
&
<c [ i, Nl [ IOVl

Setting f = ¢g , summing these above three inequalities, and putting them into (2.14), we obtain
(2.13) as desired.
._3
q

If the other case 3 < ¢ < oo holds, we resort to the fact that Bgm(R?’) C Boo's(R3) and
Theorem 2.7 below to deduce (2.12) and (2.13). O

Theorem 2.7. Let0 < T < oo ande > 0. Assume that f, g € L>(0,T; L*(R*))NL3(0, T; H'(R?))
and h verifies (1.15), that is,

he LT (0,T; By (R%), 0<r<1, (2.18)
Then we have the estimate
T
/0 / Fohdudt < c||f||L?<L2>||g||2;:(L2)||Vg||zzT<Lz)||h|| P

(B o) (2.19)
+ I oy IV £ I

(B

Moreover, if f =g, then

T
// 2hdxdt<C/ T HgHLngJrs/ IV g|l2dr. (2.20)
]R3
Proof.

T
/ fghdzdt
0 JR3

T
< [ 7gllsg, Il st (by Lemma 24
T
< [ (170 lolog, + 17l lolzz) Wil dt (b Lemma 23
/ (|f||Lz||g||gg;||g||gém+||f||gg;||f||;;;m||g||Lz) [hll st (by Lemma 2.3)

IIfHL2||g||1LzTIIV9HL2 I IV AL lglee) Rl g dt (Hl By C B%,oo)

\

[||fHLoo<Lz>||gnLo:(L2)||Vg||zzT<L2> R e 7 PR [

To show (2.20), it suffices to let f = g in the above inequality, and modify the last line as

[ [ naz < [ Qlllslol 19815 + Lol ol lolss) lce_at
<of thB;m||g||izr||v9|\%2dt

T
<c / IRIET_lgl3adr + 2 / IVgl2.dr. 0
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3. ENERGY-TYPE EQUALITY

A Leray weak solution satisfies the energy inequality. As we will show, under condition (1.12)
or (1.15), the energy inequality becomes energy equality.

Theorem 3.1. Let 0 < T < co. Assume that u and v are Leray weak solutions to (1.1) and (1.3)
with ug, wo € L2(R3) and f,g € L?(0,T; L*(R?)) respectively. If u satisfies (1.12) or (1.15), then
we have the following energy-type equality

/' v(t) - u(t)dx +/ A{2Vv:Vu+[(u-V)u] - v+ [(v- V)v]-u}dzdr
R3 o Jrs

¢ t
:/ Vo-uodx—i—// f-vdxdT—l—/ / (f+g) udedr, 0<¢t<T.
R3 0 Jr3 o Jrs

Proof. Let n(t) > 0 be a smooth radial function on R supported in the unit ball, and satisfies

1= /_11 n(t)dt = /01 n(t)dt = =

mt) =n-n(nt) (0> 1), () = / (I — ol)u(o)do,

(3.1)

Set

v (7) = /O m(lr — o))v(e)do (0 < 7 < #).

then w,,v, € C'((0,t); H'(R?)), and we may test (1.1), and (1.3), by v,, and u,, respectively,
and obtain

/ u(t) - vt dx+//R3{Vu Vv + (- V)u] - v} dadr

// u- 8vndxd7'+/ ug - v, (0 dx—l—// f-v,dxdr,
R3 R3 R3

/ v(t) - u,(¢t)dz +/ {Vv:Vu, +[(v-V)v] - u,}dadr
R3 0 JR3

t t
= / / v - 0 u,dzdr +/ vo - u,(0)dx +/ / (f+g) - u,dzdr.
0o Jrs R3 0o JRrs

Summing these above two equalities, and noticing the following cancellation property

t
/ / (v:0ru, +u-9;vy,)dedr
o JRs

_ /t /R [vir)- /t d,mn(7 — o) u(o)do + u(r) - /Ot Orn(|7 — o)v(o)do | dadr

/0 /RB/O Oz (|7 — o)v(7) - u(0) = o (|7 — of)u(7) - v(0)] dodzdr

(by interchanging 7 and o),

as well as

we deduce

/ [u(t) - v (t) + v(¢) - up(t)]dz + /t (Vu-Vv, + Vv :Vu,)dedr

R3 R3

[ Al Dyl v 4 9w dads (32)
0 JR3

= /R3 [vo - u,(0) + ug - v, (0)]dx +/0 /}R3 [f-v,+ (f+g)-u,]dzdr.
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We now pass to limit n — oo in (3.2). For the first integral in the left-hand side of (3.2), we
compute directly as

| [ v +v0) (oo = [ u) vt
= \/R/O malloDu(t) - v(t = o) + v(t) -u(t - 0)ldoda

_2/& /Ot mn(lo])u(t) -v(t)dadx‘ (if n > %) (33)
o /Ot il /R [u(t) - v(t = o) + V(t) - ult — 7) = 2u(t) - v(£))dz fdo|
1

= 2 OSEE% /Rg[u(t) vt — o)+ v(t)-u(t — o) —2u(t) 'V(t)]dx‘ 50 (n— o).
Similarly,
Tim [ [vo - ua(0) + g - va(0))de = / w0 - vode. -
R3 s

Using the regularities of weak solutions u, v and that of f, g, we have

t t
lim / (Vu: Vv, +Vv:Vu,)dzdt = 2/ Vu : Vvdzdr, (3.5)
R3 o JRr3

n—oQ 0

as well as

t t t
lim / / [f-v,+ (f+g) u,]dadr = / / f-vdedr + / / (f +g) - udzdr. (3.6)
n—eeJo Jrs 0 JR3 0 JR3

For the convection terms, we employ Theorem 2.6 or Theorem 2.7 to deduce that
‘/ -Vl - vndx—/ (- V)u] - vdx‘—‘ V)l (v~ V)
R3 R3
can be dominated by
2-3 3_1
CHuHL%oq(jﬂ) HVUHE%(L2) ”V(Vn - V)”L%(LQ)HVUHLPT(BSW)
23 31
+ Cllvn — VIILooq(Lz IV (vn =)l (Lz)llquL2 (£2) ”VuHLp (B0

Ol V02 o e = Vil [V (v = )12 (m)nwnL;(Bgm),
if (1.12) with 2 < ¢ < 3 holds, by

1-3 3
Cllull g 22)1vn = Vil IV v = V)2 (o IV 0

1—-3 3
+ C”u”L%oq(L?) ”vu”z%(]ﬂ) an - VHL%C(L2) HVUHLIJ{(BS’OO),
if (1.12) with 3 < ¢ < oo holds, and by

Cllalag w2 vn = VIE 0oy IV =Vl V0,

1—r T
+||UHL;9(L2)HVU||L§(L2)||Vn V||L°° L2)||VU-HL2 R (B

if (1.15) holds.
Notice that each term in the above three formulas has a factor ||v,, — vl|Ls(r2) or [[V(vy —
V)|l L2.(12) whose powers have at least one greater than 0; and hence we deduce that

nh_)H;Q ’ /}R3[(u -V)u] - v, dz — /RS[(u -V)u] - vdz| = 0. (3.7)
Similarly,
nlLII;O [(v-V)V]-u,dadr = / [(v-V)v]-udzdr. (3.8)
R3 R3
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Collecting (3.3)-(3.8), we find that (3.2) becomes (3.1) as n — oo. O

Taking v = u and wgp =g = 0 in (3.1), we have the following result.

Theorem 3.2 (Energy equality). . Let T' > 0, and assume that u is a Leray weak solution to
(1.1) with up € L?>(R3) and f € L*(0,T; L*(R?)). If u satisfies (2.10) or (2.18), then we have the
enerqgy equality

t t
/|u(t)|2dx+2// \vu(T)dede/ |u0\2dx+2// foudzdr.  (3.9)
R3 0 R3 R3 0 R3

4. UNIFORM STABILITY UNDER SMALL INITIAL PERTURBATION

In this section, we study the uniform stability of Leray weak solutions u to the Navier-Stokes
system (1.1) under small perturbation of initial data and external force, and provide the proof of
Theorem 1.2 and Theorem 1.3.

By Theorem 3.2,

t t
/3 |u(t)|2dx+2/ / \Vu(7)|2dxd7=/3 |u0\2dx+2/ /Rgf~udxd7-. (4.1)

From the definition of weak solution v of (1.3), we have

/|v |dx—|—2// [Vv(r |dde</ |ug + wo| dx+2// (f+g) vdedr. (4.2)
R3

It then follows from (4.1) + (4.2) — 2 x (3.1) that

/Rg V(t)—u(t)|2dx+2/ot /RSW(V_“)dedT

. . (4.3)
< 2/0 . {[{(w-V)u]-v+[(v-V)v] -u}dzdr + /R3 |wo|2dz + 2/0 /]RS g (v —u)dzdr.
Denoting w(z,t) = v(z,t) — u(x,t), and noticing the fact that
. {[(u-V)u] - v+[(v-V)v] -u}ldz = . {=[(u-V)v]-u+[(v-V)v] -u}dx
= / [(v—u)-V)V] udzx
R3
= / [(v—=u) - V)(v—u)] udz
R3
_ _/ (v =u)- V) - (v — u)daz,
RB
we derive from (4.3) that
|w(t)|?dz + 2 |Vw|?dzdr
Lrovaaf

t
< 2/ [(w-V)u] - wdadr + / \W0|2dx + 2/ gLz ||w|| L2dT.
R3 R3 0

By (2.13),
t t t
Wbl +2 [ [9wliadr <€ [ |Valg, [wisdr+ [ [9wliadr
0 0 q,00 0

t t
+lwollZ- +/ HgIIdeT+0/ gl 2 [wlZ-dr,
0 0
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which is equivalent to
t
2 2
w2 + / IVwl2adr

t t
< [Iwalis + [ tllizar] + [ (glos + 19y, ) i

Applying the Gronwall inequality yields
t t t
w(o)lzs + [ 19wlitadr < (wolls + [ lglliadr) {1+C [ (lglze +17uly, )ar
0 0 0 4,0

<o [0 [ (lglos + 1vul, Jar] )

This shows (1.13), and (1.14) follows immediately. The proof of Theorem 1.2 is complete.
For the proof of Theorem 1.3, it suffices to estimate the first integral on the right-hand side of
(4.4) by (2.20), and proceed as above.

5. ASYMPTOTIC STABILITY UNDER LARGE PERTURBATION OF INITIAL DATA AND EXTERNAL
FORCE

In this section, we prove Theorem 1.6, namely, we show that under large perturbation of initial
data and external force, the Leray weak solution v of (1.3) converges asymptotically to the solution
u of (1.1), under the assumption that (1.12). For this purpose, we need the following time-space
decay estimate.

Lemma 5.1. Under the assumptions of Theorem 1.6, we have
t
lim |w(7)||22dr = 0. (5.1)

t—o0 t—1

Proof. Tt suffices to consider the case where (1.19) holds. Indeed, if (1.20) holds, we could follow
=2 2—r
the arguments below, replacing (fst [V, dr) VP by (fst [Vull ;7 dr) 2

Subtracting (1.1) from (1.3) shows that w = v — u satisfies
ow—Aw+ (u-V)w+ (w-V)u+ (w-V)W+ VI, =g, W|—o=Wwp (5.2)

in the weak sense.
Motivated by [6l [I5], we choose the test function

t
On(T) = / (|7 — o)1 — A)TTelt=Re(=D A (g)do, 0<s<t< o0,

where 7, is defined in Section 3 and + is an arbitrary constant satisfying % <v<1l
Testing (5.2) by ¢,, gives

R3 W(t) ’ ¢"(t)dx - RS W(S) : ¢7l(5)d5 + /5 /]R{B (7W : 6T¢n + Vw: Van) dzdr (53)

:_/st/R3[(u-V)w+(W~V)u+(w-V)w}-qﬁndx—i—/st/Rgg-andxdT.

We now study the convergence of each term in (5.3) as n — co. For the first integral in the
left-hand side of (5.3), we invoke the Plancherel theorem and the Lebesgue dominated convergence
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theorem to conclude that

¢
:/R/ (It = o)L+ [€%) e (o) - w(t)dode
:/Ra /Ot s DT+ €2 e T W (t — 1) - w(t)drde (t—o=71) (5:4)
:% R3I T Pw(t)Pda.

Similarly,

[ w(s)- én(s)da

/ /77” (Js =o)X =A)" Tell=9)Relt=)A w(o) - w(s)dodx
/ / (Js = o) (1 + |g]2)"re~ =P e (=il g (g) - Vo(5)dode

(5.5)
— / / W7D+ 1€12) ’Ye—(t—s)lflze_(t—s-‘ﬂ')‘E‘Q\fv(s —7)-W(s)dodé (s—o=1)
R3
1 2
5 a1 e I ) (g (2 <0 o)
= =21 — A)772w(s)|?d.
2 Jgs

For the third integral in the left-hand side of (5.3), we just need to integrate by parts,

/t /RJ(—W <0y 6y + Vw : Vo, )dadr
/ / / —0n(|7 — o)(1 = A) Tt DA g (5) . w(r)dodzdr
- / L/ el — o)1 - A) el (LAY (o) - w(r)sdodedr]  (56)
’ / L. / (|7 = o)1 = A) eI A=AV w(o) : Vw(r)dodadr
_ /: /R /: B (17 — o) (1 — A) Vet PAeB 4 (o) . w(r)dodadr = 0.

interchanging 7 and o in the last integral J gives J = —J
For the convergence of remaining terms in (5.3), we need some estimate of ¢, (7). By the
Plancherel theorem and (1.13)/(1.16),
t
sup [|¢n(7)[z2 = sup ||/ Ma(7 = o) (1 +[¢[) eI e (= (0)do] | 2
s<T<t s<T<1 s
t

< sw I nn(lm = aD)w(o)|do]| 2

- s | T*snnau\)nvv(r—u>||mdu<r—a=u>

s<t<tJr—t

S/nn(\vl)dv' sup [[W(o)[[L2 < sup [w(o)llz> < Eo,
R

s<o<t s<o<t
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where EZ is the right-hand side of (1.13) with T = oo, that is,

£ = (Iwoll + | llgladr)
0

oo oo (5.7)
<{rec [ (Il + Ivaly, Jares[c [ (lele +[Val, Jor]}.
0 0,00 0 4,00
By the Sobolev inequality and the Plancherel theorem, we obtain
sup [[¢n(7)[22 < C sup |[|én(7)] 172
s<T<t s<T<t
t
<C sup || [ a7 = oDIEl 1+ [g?) e ¢ el (o) do | o
s<T< s
K 1
<C sup || | nu(|7—0])|W(o)|do]|rz (since v > Z)
s<T<t s
<C sup, [w(r)l- <C sup, [w(r)llz2 < CEo,

and
t t t
/ |V (7) 227 = / v / (I — o) (1 — A)7elt=3=2 y(5)do |2 dr

t t

- / I / (|7 — o) (1 + [¢[2) Ve~ DI o= (= Tw () do|| 2 2dr
e -

< / || / ([T — o) [ (E)|do|2dr
t o t

< [ 19w Eadr = [ [ow(nlidr < B,

With the above estimates, we are ready to bound the right-hand side of (5.3),

// ¢ndxdr</ all o [ VW] 2 [ b o dr
R
2
<cf / IVuladr)’ / [VwlEadr) " sup fonls (53)

< CE? /HVUHLng) ,

/ /R 3 |- pndadr

(5.9)
1/
< C’Eg / HVuH%goodT) : (by Theorems 2.6 and 1.2),

t t t
[l Vo < [ Il Fwlaalonllodr < Bo [ [9wlEadr, (510

¢ ¢ ¢
—/ /Bg-qbndmdf S/ llgllrzlgnllL2dr < CEO/ llgll r2dT. (5.11)
s JR s s
It then follows from (5.4)-(5.11) that (5.3) converges, as n — oo, to
1 /2 2
= [(1—A)""“w(t)|*dx
2 Jgs
1 t 1/2
<3/, =8 (1 = A) /2w (s)|2dz + CEg(/ ||Vu||2deT) (5.12)

¢ 1/p t t
+CE§(/ IVull, ar) +E0/ \\Vw||isz+CEo/ lg|l z2dr.
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Employing the Plancherel theorem, the Lebesgue dominated convergence theorem, the first integral
in the right-hand side of (5.12) converges to zero as t — oo,

t—o00 R3 t— 00

lim [ [e®2(1 — A" ?w(s)|?dz = lim / le™ 9P (1 4 1€12) /2% (5)2dé = 0.
3

Consequently, taking limit ¢ — oo in (5.12) gives

oo 1/2 oo 1/p
limsup | |(1—A)""2w(t)]%dz < CEg(/ HVuH?Lm) +CE3(/ IVul, dT)

t—o0 R3 s

B / IVwlZadr + CEy / lgllzodr.

Passing to limit s — oo, we find that

limsup [ |(1—A)""?w(t)]?dz < 0= Jim. (1 — A) 2w (t)|2dz = 0. (5.13)
t— 00 R3 R3
From
Il = [ s
RS
= [T 1)) [ ] g (since 7 < 1)
<[ [ mwra T [ aviewag T
R3 R3
= \(lfA)*7/2w|2dx}m[/ (wP +[Vw])dz] 7,
R3 R3
we obtain
t
. 2
Jim [ i) e
t _1 Jilie
< Jim | {{ (1= &) w(r) P *”{/ (wP + [Vw(m))dz] ™ Jar
< lim | (1= &) 2w () Pdadr] / / (Iw? + [Vw(r)*)dadr]
t—>°° t—1 JR3 t—1 JR3
< EI lim [ wp [ 10-8)” 2w (7)| dx}T (by (1.13) and (5.7))
t—=oo Ly 1<r<t
=0 (by (5.13)).
This completes the proof of Lemma 5.1. O

Now, we return to show Theorem 1.6. Just as the proof of Lemma 5.1, it suffices to consider

only the case where (1.19) holds. Checking the derivation of (4.5), we see that (4.5) still holds if
we replace the time interval (0,¢) to be (s,t),

t
\w(t)PdH// Vw(r)[2dr
R3 s JR3
t t
< [Iw(@) e + [ lglladr] + € [ (lglhes + IVully, ) Iwaar
2 ‘ ‘ 2
< [Iw)3+ [ lglhsar] +¢ [ (lgles + Ivult, ) Ear

t
< Iz +C [ (gl +IVally, )ar
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Integrating the above inequality with respect to s over (¢t — 1,¢) yields

t t t
wifde < [ ws)lds+ [ [ (gl + IVal, Jards
R3 t—1 t—1Js 1,0

t t t
<[ w@Eedsec [ [ (gl IValy, Jards
t—1 t—1Jt—1 4,00

t t
< [ IwEads € [ (gl + [Vulfy, Jar 0
t—1 t—1 0,00

as t — oo, by Lemma 5.1 and the assumptions of Theorem 1.6. This completes the proof of
Theorem 1.6.

6. UPPER BOUNDS ESTIMATES

In this and latter sections, we shall prove Theorem 1.9. First, let us first treat the upper bound
n (1.25). Without loss of generality, we may assume (1.19). The case where (1.20) can be treated
in a similar way.

As in (5.2), the difference w of the solutions of the perturbed Navier-Stokes system (1.3) and
the original Navier-Stokes system (1.1) satisfies

ow—Aw+ (v-V)w+ (w-V)u+ VI, =g, W= = Wp. (6.1)
To investigate the optimal convergence rates, we need the pointwise bound of w.
Lemma 6.1. Under the assumptions of Theorem 1.9, we have
t
~ . 412
[W(E, )] < [Wo(§)le e + Clﬁ\/ [[w(s)|>ds. (6.2)
0
Proof. Tt suffices to show (6.2) formally, since the rigorous derivation can be obtained as [IT]
Lemma 3.1]. Applying the Fourier transform to both sides of (6.1) gives
W + [€°W = —F[(v - V)W + (w - V)u] — FI[VIL,] = J1 (£, ) + Ta(&,1).
Solving this ordinary differential equation yields

t
W(t) = wo(€)e I 4 / eI (3, 4+ Jy)ds.
0

Consequently,

W (t)] < o (€)]e—11 + / (3] + [3a)ds. (6.3)

For Jq, it follows from the divergence-free condition, the Holder inequality, and the definition of
weak solutions that

[J1(&,5)] =

(6.4)
<cyid / [oiw + wiulde
i=1 R3

< CLEIvilze + lallz2) w2
< Clef[[wl| 2

To estimate Jo, we need a representation of Iy, in terms of u, v, and w. Taking the divergence

of (6.1) gives
3

—AHW = Z 8i8j(viwj + ’UJZ"UJ‘),

ij=1
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and hence
Vi, =V Z )~ to; 0;(viwj + w;v;).
1,j=1
Consequently,
mes <1y [ o+ wilas
=1 (6.5)
< ClEL(Ivlize + [laflz2) Wl 22
< Clélllwl| .
Putting (6.4)-(6.5) into (6.3), we obtain (6.2) as desired. O

We are now ready to show the upper bound in (1.25). Taking the inner product of (6.1) with
w in L?(R?), and invoking Theorem 2.6, we obtain

1d

sl IVl = = [ (v 9)u] o

R3
1
< ClIVul, Wiz + SV wliz
1
< ClIVul, Wiz + IV wliza,
or equivalently,
d
aHWHiz +[|Vwl[7. < CIIVUII’,’;SOOHWII%% (6.6)
Employing the Plancherel theorem, it follows that
d N
G WPt [ ePreoRa < vl fwle (67)
dt R3 RB q,00

Multiplying both sides of (6.7) by (1+¢)* with a > 0 sufficiently large to be determined, we obtain

G a0 [ weora +avor [ gwora

(6.8)
a0t [ (ORI +CIVal, (140wl
R3 q,00
Let
B(t R g2 < —2 .
()= {6 <R JeP < 12} (69
Then we split R? into B(t) and its complement B¢(t). Consequently,
(o [l = @t [ (PP z a0 [ (o
R? Be(t) (1)
— a(l +t)“*1/ W(t)Pde — a(1 + t)“’l/ W ()P
R3 B(t)
Plugging the above inequality into (6.8), we find that
d
10+ 0w
(6.10)

<a(l+6)*! /B(t) [W(t)[*d¢ + CllVulg, 1+ ) wlz> + (1 +6)gllze-

We apply an iterative process to derive the optimal upper bound estimate in (1.25). Suppose now
[w(t)|[z <C(A+8)~", VE>0, (6.11)
with by = 0 by the definition of weak solutions.
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Integrating (6.10) with respect to time over [0,t] gives

1+ ) [w(t)72 < [Iw(0)[|72 +a t(l +5)7! [W(s)|*d¢ds
: - /0 /B(s) (6.12)

¢
+C/O ||Vu||%gw(1 + 5)%|w(s)||32ds.

We denote by K the first integral in the right-hand side of (6.12). We shall estimate K by Lemma
6.1,

t
_ a—1 ~ 2d d
K a/o (1+s) /B(S) |Ww(s)|°déds

t S 2
<o [ [ sl s ol [ wnliear| dgas
0 B(s) 0

t 6.13
< C’/ (1+ 8)“71||.7:(e5AW0)||%2ds ( )
0

t s 2
v [ast [ gep] [ Iwn)liear] das
0 B(s) 0
= Kl + KQ.
By the Plancherel theorem and Lemma 1.8,

t t
K, = C/ (145)* e wol[22ds < C/ (145) 1 (148)77ds < C(14+)77 (ifa > v ). (6.14)
0 0

For Ks, we resort to (6.11),

t s 2
a—1 2 —bn
KQSC/O (1+ ) /B(S) €] UO (147) dT] deds

t
< c/ (1 +s)a—1+2<1—"">/ |€|2déds (if b, < 1)
0 B(s)

(6.15)
t
< C/ (1 + S)a_1+2(1_b"’)%d8
0 (1+1t)=
1
<CA+0)*2"2 (ifa>2b, + ).

2
Collecting (6.14)-(6.15) into (6.13), inequality (6.12) becomes

t
(L+0)%w(t)]2. S CL+ )" +C(1+1)* 23 4 c/ [Valf, (14 5)"|w(s)|72ds.
0 .00
Invoking the Gronwall inquality gives
(1+ ) lw(t)ll7-
_ t t
a— a—20n— %5 P p
<C [0 @] {1+0/0 IVl dresp [o/o IVul, |}
S C(l + t)max{a—ma—ﬂm—%}
= 0(1 + t)a—min{'y,an-}-%};

or equivalently,
[w(B)llz2 < C+ 1)~ RTE) vt >0,
This implies that b, = min{Z,b, + 1},

bp=0, b=
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After four iterations, we should estimate K5 in a different manner,

K, < C/Ot(1+s)a—1/3(s) §|2[/OS(1+T)_I’4dTrdfds

<C tl—i—sa_llnzl—i—s N =ds(by =1
= /0( ) ( ) (1+5)} (ba ) (6.16)
<C/O(1+ ) a 5)%_(%)71 (1+s)d

< C(14 1)+ G)- (ifazg),

where (
we find

_ represents any positive real number less than 2. Gathering (6.14), (6.16) into (6.13),

5
3)
(6.12) reduces to

5

(14 02 w(t)|2: < C(1+ 627 + (146 (3) / Vulf, (1+8)w(s)[ads.
Employing the Gronwall inequality and noticing that ~y < 2. we deduce

Iw(t)lze < o1+ " EOF Zoarne wso (6.17)

With this estimate, we could not iterate further as before to derive finer decay. Indeed, (6.17)

implies that
s s 1-2
/ ||W(T)||L2d7' < C/ (1 +T)—’y/2d7_ _ 2 [1 (1 +t) 2] < 2 7
0 0 =2 v—2
since v > 2. This completes the proof of the upper bound estimate in (1.25).
To end this section, let us show (1.26) under the assumption vy > g In this circumstance, we
could still iterate as before by using (1.25),

Ko [ [ ] [l acas

t
gc/ (1+s)2! /B( |€|déds

< C/ 1+ 5s) . 7ods
(1+s)2
5
Cl+¢)* 2 (ffa> 2)
This and (6.14) imply
L+ w(t)]2. < CA+ )T +CA+1)* 3 +C/ ||vu|| 1 + 5)%|w(s)||22ds.

Arguing as before, we obtain
Wt < CA+8)~ ™35 <o +4)7/4 vt >o0,

as desired. Finally, we can choose a > max{~, %} .

7. LOWER BOUNDS ESTIMATES

Recall that the solution difference w = v — u satisfies (6.1), and W (z,t) = e*wq(x) be the
solution of the heat equation (1.23). We denote V.=w — W. Then

OV —-AV + (v-V)w+ (w-V)u+ VIl =
V|t:() == O
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We shall first examine the decay rates of the solution of (7.1). Taking the inner product of (7.1)
with V in L?(R?), we obtain

1d, ,

5 VI3 + VI,

:—/‘[(V.V)w} .de—/' [(w-V)u]- Vda
R3 R

= —/ [(v-V)(V+W)] - Vdz — / [(V+W)-V)u]-Vdz (7.2)
R3 s

— —/Rs(v.v)W] .de—/R3[(V.v)u] .de—/Rs[(w.v)U] Vi

= L1+ Lz + Ls.

It follows from Holder’s inequality, see [5],
divF =0, curlG=0= ||F-G|u: <C|F|2l|Gl| L2,

and the Sobolev inequality (see [I, Theorem 1.48]) that

L= —/RS[(V~V)W] Ve = /RS[(V~V)V] Wz
3 3
==Y [ty e < O3l Wil -

< CIvliLz VYV Wl g < ZIVVIIZ2 + CIWII

1
6‘ 3/2
1
< I VVIZa+ 1+ 67 (%) (by Lemma 1.8).
For Ly, we utilize Lemma 2.6 as
1
Ly=— /RB[(V V) Vde < (| VV][Z: + Cl[Vullf, (VI (7.4)
The third term can be bounded as
Ls = _/ [(W-V)u] - Vdz :/ [(W-V)V]-udz
R3 R3

1/2 1/2
W e[V V 22 |[ull s < CIVW g [V V2 - a2 Vull}s

IN

IN

1
GIVVIIZ: + CIWIE, [Vl 2

IN

1
6||VVH%2 +CA+t)"O"|Vul 2 (by Lemma 1.8).
Collecting (7.3)-(7.5) into (7.2), we deduce that
d (ya3 _
VI +IVVIE: < 0+ 0 4 Cvuly, (VG +C0+0" 0 [Vl (7.6)

We then apply the developed Fourier splitting methods as in the previous section. Recalling (6.9),
we derive the following analogy of (6.12),

t t
L+ )Vl < a/ (1+s)a‘1/ |V|2d£ds+0/ (1492 (+3)ds
0 B(s) 0
t
+C/ Va2, (1+ ) V(s)l|7ds (7.7)
0 9,90

t
+C/ (1+ )" Ju(s) [2ds.
0
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To estimate the first integral in the right-hand side of (7.7), it suffices to establish a bound of [V
similar to Lemma 6.1,

. t t
V()] < C’|§\/ |lw(s)| L2ds < C’|§\/ (14 s)77/2ds (by (6.17))
0 0
< Clel.
With (7.8) in hand, we obtain

t t
a/ (1+s)a*1/ |\7\2d§ds:a/ (1+s)a*1/ V[2déds
0 B(s) 0 B(s)

t
< C/ (1+s)*? /B( ) |€)2dgds (79)

<C/ 1+ 5)° 7Ods
(1+s)2

(7.8)

<C(1+1)" 3.

Furthermore, we can bound the last integral in the right-hand side of (7.7)

c/ (1+s)a—<v+1>||u(s)||§2dsgc{/ (1+s)2[“_(7+1)]ds / IVu(s)[Zads]
0 0

2la—(v+1)]+1

<O+ <o+l
Putting (7.9) and (7.10) into (7.7) yields
1+ 0 VD)|2, < C(1+1)* 3 +C(1+ )O3+

(7.10)

t
+ C/ HVuH%O (14 8)|V(s)||22ds + C(1 4 t)* 772
0 q.00

t
SC(l—H)“’%—kC/ IVul, (1+s)V(s)|[32ds.
0 @00

Applying the Gronwall inequality, we obtain
V()| < C(1+1t)~%/4 (7.11)

From Lemma 1.8, we have
W (t)[[2 > Cy(141)7772.
This and (7.11) imply

Iw(®)llzz = V() = W(H)llzz = [WB) 2 = V(D)2 = Cr(1+1)7772, (7.12)

which completes the proof of the lower bound estimate in (1.25). The proof of Theorem 1.9 is
complete.
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