Ahmed El Idrissi, Halima Srhiri, Brahim El Boukari, Jalila El Ghordaf
Abstract:
In this article we study fractional porous medium equations in
Besov-Morrey spaces. Using the Littlewood-Paley theory and the smoothing effect of
the heat semi-group, we obtain local well-posedness of this model.
Also, we obtain global well-posedness for small initial data in the critical
Besov-Morrey spaces \( \dot{\mathcal{N}}_{p,h,\infty}^{-2m+\frac{n}{p}}(\mathbb{R}^n)\)
with \(1/2< m< 1\), \(\max\{ 1,\frac{n}{2m}\} < p<\infty\) and \(1\leq h\leq p\).
Submitted April 13, 2025. Published August 4, 2025.
Math Subject Classifications: 35K55, 35K15, 30H25.
Key Words: Nonlinear diffusion; fractional porous medium equation; local and global
well-posedness; Besov-Morrey spaces; fractional Laplacians.
DOI: 10.58997/ejde.2025.80
Show me the PDF file (443 KB), TEX file for this article.
![]() |
Ahmed El Idrissi LMACS Laboratory, Faculty of Science and Technology Sultan Moulay Slimane University Beni Mellal, 23000, Morocco email: ahmed.elidrissi@usms.ma |
---|---|
Halima Srhiri LMACS Laboratory, Faculty of Science and Technology Sultan Moulay Slimane University Beni Mellal, 23000, Morocco email: halima.srhiri.1998@gmail.com | |
Brahim El Boukari LMACS Laboratory, Faculty of Science and Technology Sultan Moulay Slimane University Beni Mellal, 23000, Morocco email: elboukaribrahim@yahoo.fr | |
Jalila El Ghordaf LMACS Laboratory, Faculty of Science and Technology Sultan Moulay Slimane University Beni Mellal, 23000, Morocco email: elg_jalila@yahoo.fr |
Return to the EJDE web page