Electron. J. Differential Equations, Vol. 2025 (2025), No. 80, pp. 1-16.

Local and global solvability of fractional porous medium equations in critical Besov-Morrey spaces

Ahmed El Idrissi, Halima Srhiri, Brahim El Boukari, Jalila El Ghordaf

Abstract:
In this article we study fractional porous medium equations in Besov-Morrey spaces. Using the Littlewood-Paley theory and the smoothing effect of the heat semi-group, we obtain local well-posedness of this model. Also, we obtain global well-posedness for small initial data in the critical Besov-Morrey spaces \( \dot{\mathcal{N}}_{p,h,\infty}^{-2m+\frac{n}{p}}(\mathbb{R}^n)\) with \(1/2< m< 1\), \(\max\{ 1,\frac{n}{2m}\} < p<\infty\) and \(1\leq h\leq p\).

Submitted April 13, 2025. Published August 4, 2025.
Math Subject Classifications: 35K55, 35K15, 30H25.
Key Words: Nonlinear diffusion; fractional porous medium equation; local and global well-posedness; Besov-Morrey spaces; fractional Laplacians.
DOI: 10.58997/ejde.2025.80

Show me the PDF file (443 KB), TEX file for this article.

Ahmed El Idrissi
LMACS Laboratory, Faculty of Science and Technology
Sultan Moulay Slimane University
Beni Mellal, 23000, Morocco
email: ahmed.elidrissi@usms.ma
Halima Srhiri
LMACS Laboratory, Faculty of Science and Technology
Sultan Moulay Slimane University
Beni Mellal, 23000, Morocco
email: halima.srhiri.1998@gmail.com
Brahim El Boukari
LMACS Laboratory, Faculty of Science and Technology
Sultan Moulay Slimane University
Beni Mellal, 23000, Morocco
email: elboukaribrahim@yahoo.fr
Jalila El Ghordaf
LMACS Laboratory, Faculty of Science and Technology
Sultan Moulay Slimane University
Beni Mellal, 23000, Morocco
email: elg_jalila@yahoo.fr

Return to the EJDE web page