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REMARK ON ISOLATED REMOVABLE SINGULARITIES OF HARMONIC
MAPS IN TWO DIMENSIONS

CHANGYOU WANG

ABSTRACT. For a ball Br(0) C R2, we provide sufficient conditions such that a harmonic map
u € C*°(Bg(0)\{0}, N), with a self-similar bound on its gradient, belong to C°°(Br(0)). These
conditions also guarantee the triviality of such harmonic maps when R = oo.

1. INTRODUCTION

In this short note, we address a question arising from the recent study [I] on the rigidity for
the steady (simplified) Ericksen-Leslie system in R™, which seeks to answer the question:

If (u,d) € C°(R"™\ {0},R™ x S"71), n > 2, solves
—Au+u-Vu+Vp=-V-(Vdo Vd),
V.u=0, (1.1)
Ad + |Vd|*d = u - Vd,
in R™ \ {0}, and satisfies a self-similar bound

u(e)] < S 9a(a) < S0
|z |z
for some constants C;(n), Ca(n) > 0, does it follow that (u, Vd) = (0,0) in R™?

In [I], we obtained some partial results towards this question. In particular, we proved that when
n > 3, there exists €, > 0 such that if Ci(n),Cy(n) < e, then Vd = 0; while v = 0 when
n > 4, or a Landau solution of the steady Navier-Stokes equation when n = 3. When n = 2,
we constructed infinitely many nontrivial solutions of and , that resemble the so-called
Hamel’s solutions of steady Navier-Stokes equation in R?.

A Liouville theorem on harmonic maps plays an important role in [I], that is, for n > 3 if
d € C*(R™\ {0}, N) solves the equation of harmonic maps:

Ad+ A(d)(Vd,Vd) =0 in R\ {0}, (1.3)

and there exists an £¢9(n) > 0 such that

. VzeR"\ {0}, (1.2)

£o(n)
|z
then d must be a constant map. Here N C R” is a compact smooth Riemann manifold without
boundary, and A denotes the second fundamental form of V.
A natural question to ask is whether this Liouville property remains true when n = 2. More
precisely,

Question 1.1. Suppose d € C®(R? \ {0}, N) solves (L.3) and satisfies (L.4) for some small
constant £9(2). Does it follow that d must be constant?

IVd(z)| < vz € R™\ {0}, (1.4)
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To the best of the author’s knowledge, this question has not been addressed in the literature.
In contrast with n > 3, alone does not guarantee d has locally finite Dirichlet energy in
dimension two: E(d, B1(0 fB © |Vd|? < oo for the unit ball B;(0) C R?. Thus, neither the
celebrated theorem by Sacks Uhlenbeck [3] on the removability of isolated singularity of harmonic
maps in dimension two, nor the regularity theorem by Hélein [2] on weakly harmonic maps can be
applied in two dimensions. Observe that d(z) = Ty R2\ {0} — S! is a harmonic map, satisfying
Vd(@)| = &
example indicates that €¢(2) in Question must be chosen sufficiently small.

In this note, we will give a partial answer to Question More precisely, let Br(0) C R? be
the ball in R? with center 0 and radius R, we will prove the following.

for  # 0 and E(d, B1(0)) = oo, while 2 = 0 is a non-removable singular point. This

Theorem 1.2. There exists an €9 > 0 such that if u : Br(0) \ {0} — N is a smooth harmonic
map, satisfying

Vu(z)| < m Va € Br(0)\ {0}, (1.5)

and if, in addition, there exists r; — 0 such that

lim ri/ (| |2 1|‘9“) —0, (1.6)

71— 00 an-i (0
then uw € C*°(Bg(0), N).
As a direct consequence of Theorem (|1.2)), we establish the following.

Corollary 1.3. There ezists an g9 > 0 such that if u € C®(R?\ {0}, N) is a harmonic map,
satisfying

Vu(z)| < m vx € R2\ {0}, (1.7)
and if, in addition, there exists r; — 0 such that
1
lim r; / (| | - Iau %) do =0, (1.8)
71— 00 33”(0

then u must be a constant map.

2. PROOFS OF MAIN RESULTS
To prove of Theorem [[.2] and Corollary we need the following lemma.

Lemma 2.1. If u € C*(Bgr(0)\ {0}, N) is a harmonic map, then
1 ,0u 4

b(r) =1 /33(0 (19472 ~ 5195 P) do (2.1)

is constant for r € (0, R).

Proof. Since u € C*°(Bg(0) \ {0}, N) solves the harmonic map equation (1.3), for any 0 < r1 <
ro < R, we can multiply (1.3) by - Vu and integrate the resulting equation over B,,(0) \ By, (0)

to obtain
0= / Au - (x- Vu)
By, (0)\Br, (0)

1
-/ (i), = [Vaf = 5, (Val?)
Bry (0\Br (0)

1
:/ (:r~Vu)~(1/~Vu)—f/ |Vul?z - v,
8(Byy (0)\Br, (0)) 2 Jo 75 (0)\Br; (0))

where v denotes the outward unit normal of 9(B,,(0) \ By, (0 )) This implies that

7«2/ (| i |Vu|2)d0:r1/ (| 42 |Vu|2)d0
0B,,(0) 2B, (0)
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Since 5
1
Vul? = |—|2 1551

it follows that

1 0 1.0
/ (| Y- P )da:rl/ (| U IS do (22)
9B, (0) 9B, (0)

This implies (2.1)). O
Remark 2.2. It is easy to check that if d(z) = Tay : R2\ {0} — S!, then ¢(r) = —27 for all r > 0.

Proof of Theorem[I.4 From (L.6)) and (2.1]), we have that
1
1o do | |2 (2.3)
/é)BT(o T2 8B,.(0)
forall 0 <r < R.

We will modify the original argument by Sacks-Uhlenbeck [3] to show that 2 = 0 is a removable
singularity for w.
First, we show that u has finite Dirichlet energy, i.e., u € H'(Bg(0)). For this, let 0 < 7, <
n( B
R, < R be two given radius. Set K = [1 l(nrg )] € N and define the annulus

Am = Bgmr* (O) \ BQm—lT* (0), 1 S m S K.

We denote the radial harmonic function Ay, (r) := @y, +by Inr @ A, — R%, where a,, and b,,, € RF
are chosen according to the condition

hm (27r,) :][ wdo, hy, (2™, :][ udo,
aBQ'mT* aBQm—lT*

1
][ fdo= fdo
9B, (0) 2mr JaB, (o)

denotes the average of f over 0B,.(0).
Note that condition (1.5)) implies

osca,, u < Cep, V1 <m < K.

where

Now, multiplying (L.3)) by uw — h,, and integrating the resulting equation over A,, we obtain

/. 9 )P

ou ,
:/aAm(ar h ())-(u—hm)-f-/AmA(u)(Vu,Vu).(u_hm)

ou / ou
= — - (u—hm) — — - (u—hpy
/832m or ( ) 8Bym-1,,(0) or ( )

/ A(u)(Vu, Vu) - (u— hy,)

ou ou
< — (u—hpy, _/ — - (u—hpy, —I—C€/ Vul?.
/632%(0) or | ) 6327”7”40) or | )+ A v

m

Since h,, depends only on r, we can apply (2.3) to obtain that

1 ,0u 1
R / Slaglde =3 [ [vu.
Am AT ~ 24,

1 ou ou
— —Ce / Vuzg/ w— hy, —/ — (u—hm 2.4
(2 0) . |Vul S 5 ( ) o ) O ( ) (2.4)

Hence

m
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By summing (2.4) over 1 < m < K, we obtain that

1 ou ou
- —Ce¢ / Vu2§/ u—nh / u—nh 2.5
G 0 By, (0\B.., (0) v 0B, (0) OF o - o8, () O e 29)

By Poincare inequality, (2.3) and (1.5]), the terms in the right-hand side of (2.5)) can be estimated
as

(’LL — hK)|

v /
- C(/832Ku(0) gﬁﬁd ) 2<-/832KM(0) |u_hK|2 da)l 2
1/ / |
< C2KT*(/@132KN( |2 |2 ) 2(/@32KN( 1 |8u|2 >1 2 (2.6)

< C'QKT*/ |Vul|? do
0B,k (0)

< Cej,
and, similarly,
0
| 8“ (u— h1)| < C’r*/ V|2 do < Ce2. (2.7)
NOR r. (0)
Substituting the mequahtles and (| into ylelds
(5 - CEO)/ |Vu|? < Cep. (2.8)
Byk,., (0\Br, (0)

Thus, by choosing g < 40 and observmg B < 9Ky < R,, we obtain that

/ |Vul? < Ced. (2.9)
Br, /2(0)\Br, (0)

Since (2.9)) holds for any two 0 < r, < R, < R, we conclude that
/ |Vu|* < O} < 0. (2.10)
Br/2(0)

Next, with the help of (2.10), we can repeat the above arguments to obtain t he Hélder conti-
nuity of u near z = 0. In fact, after labeling r» = 2Xr, so that r, = 2= %r, , 2.6) and (2.7)
imply that for any 0 < r < R,

/ |Vul|? < Cr/ \Vu|? do + CQ_KT/ |Vu|? do. (2.11)
B (0\B,_x,(0) B,(0) 8B, x(0)

On the other hand, from (2.10) it follows that

lim 2*KT/ |Vu|? do = 0.
K—oo 832,;(1,(0)

Hence, after sending K — oo in (2.11]), we obtain that for any 0 < r < R,

/ |Vul? < C’r/ |Vul? do. (2.12)
B..(0) aB,(0)

This implies the existence of an « € (0,1) such that

[owap g [ v o<
B,(0) R* I

This, combined with w € C*°(Bj \ {0}), yields u € C*(Bxz(0)). By the higher order regularity of
harmonic maps, u € C*°(Bg/2(0)) (see, for example, [3]). O

<R
=2
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Proof of Corollary[1.3 1t follows from Theorem [1.2]and (2.12) that u € C°°(R?), and

/ |Vul|? < CR/ |Vu|*do < Ce3, VR > 0. (2.13)
Br(0) 0BRr(0)

By choosing sufficiently small e in (2.13) and applying the ep-gradient estimate for harmonic
maps, we obtain that

Ce
[Vull Lo (Br(oy) < RO, VR > 0.

Sending R — oo, this yields that u must be constant. O
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