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ALMOST AUTOMORPHIC SOLUTIONS TO NON-AUTONOMOUS

DYNAMIC EQUATIONS WITH STEPANOV-LIKE ALMOST AUTOMORPHIC

FORCING TERMS ON TIME SCALES

FENG-XIA ZHENG, HONG-XU LI

Abstract. In this article, we generalize the concept of Stepanov-like almost automorphic func-
tions on time scales and present some properties including the composition theorem. Based

on it, some results on the existence and uniqueness of almost automorphic solution to non-

autonomous dynamic equations with Stepanov-like almost automorphic forcing terms on time
scales are established. In our results, we do not need to assume the uniform Lipschitz con-

dition of the nonlinear forcing term and do not need to assume that the Green’s function is

Bi-automorphic directly. Finally, an application to Lasota-Wazewska model on time scales is
provided.

1. Introduction

The theory of time scales was introduced by Stefan Hilger in his PhD thesis [14]. This theory
unifies continuous and discrete analysis, which is a powerful tool for applications in population
models, economics, quantum physics among others [2, 7, 9, 16, 17, 29]. The study of dynamic
equations on time scales can avoid proving results twice. It can also be applied to investigate
continuous-discrete hybrid process.

Li and Wang [19, 20] introduced the concept of almost periodicity on time scales and after
that, the concept of almost automorphy on time scales was introduced by Lizama et al. in [24].
Furthermore, many generalized types of almost periodicity and almost automorphy have been
introduced on time scales, such as pseudo almost periodic function and pseudo almost automorphic
function. The almost automorphic and almost periodic type solutions to dynamic equations on
time scales have been widely investigated (see, e.g., [1, 15, 21, 23, 25, 26, 30, 31, 32] and the
references therein).

In 2015, Wang and Zhu [22] introduced Stepanov-like almost periodic functions on time scales
avoiding Bochner transform. Then Tang and Li [27] introduced Stepanov-like almost periodicity
on time scales by using Bochner-like transform and based on it, some results on the almost periodic
solutions to the following non-autonomous semilinear dynamic equation

u∆(t) = A(t)u(t) + f(t, u(t)), t ∈ T, (1.1)

were presented, where T is a time scale and the nonlinear term is Stepanov-like almost periodic.
Furthermore, Tang and Li [28] studied the Stepanov-like pseudo almost periodic functions on time
scales, with applications to dynamic equations with delay. Subsequently, Es-saiydy and Zitane
[13] extended this to weighted Stepanov-like pseudo almost periodicity on time scales, applying
it to some classes of nonautonomous dynamic equations involving weighted Stepanov-like pseudo
almost periodic forcing terms on time scales. On the other hand, [24] established the results on
the almost automorphic solutions to dynamic equation (1.1), where the nonlinear term is almost
automorphic. Es-saiydy and Zitane [11] introduced Stepanov-like (pseudo) almost automorphic
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functions on time scales by using Bochner-like transform and based on it, some results on the
pseudo almost automorphic solutions to the semilinear dynamic equation

u∆(t) = Au(t) + f(t, u(t)), t ∈ T,

were obtained, where A is the generator of a C0-semigroup and the nonlinear term is Stepanov-
like pseudo almost automorphic and continuous. However, we note that the convergence in the
definition of Stepanov-like almost automorphy on time scales is uniform, which does not include the
case of T = R. Lots of papers using this definition, such as [10, 12]. In addition, the composition
theorems are established under uniform Lipschitz condition.

Motivated by the above works, in this paper, we investigate the existence and uniqueness of
almost automorphic solution to dynamic equation (1.1), where the nonlinear term is Stepanov-like
almost automorphic. We generalize the concept of Stepanov-like almost automorphic functions on
time scales including the case of T = R by using pointwise convergence, and present some basic
properties for Stepanov-like almost automorphic functions on time scales. Especially, we construct
the composition theorem of Stepanov-like almost automorphic functions. Then combining the
composition theorem and the Banach fixed point theorem, some results on the existence and
uniqueness of almost automorphic solution to dynamic equation (1.1) with Stepanov-like almost
automorphic nonlinear term are established without assuming the uniform Lipschitz condition
for the nonlinear forcing term. In addition, we do not assume that the Green’s function is Bi-
automorphic directly.

The paper is organized as follows. In Section 2, we present the concepts and properties of
almost automorphic and Stepanov-like almost automorphic functions on time scales. In Section 3,
we prove the composition theorem of Stepanov-like almost automorphic functions. Some sufficient
conditions on the existence and uniqueness of almost automorphic solution to dynamic equation
(1.1) with Stepanov-like almost automorphic nonlinear term are given in Section 4. Finally, we
provide an application in Section 5.

2. Preliminaries

Let T be a time scale. The forward and backward jump operators σ, ρ : T → T are defined by
σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}, respectively. The graininess µ : T → [0,∞)
is defined by µ(t) := σ(t) − t. Points that are called right-scattered, left-scattered and isolated
if σ(t) > t, ρ(t) < t and σ(t) > t > ρ(t), respectively. Points that are called right-dense, left-
dense and dense if σ(t) = t, ρ(t) = t and σ(t) = t = ρ(t), respectively. For a, b ∈ T, we define
[a, b]T := {t ∈ T, a ≤ t ≤ b}, [a, b)T := {t ∈ T, a ≤ t < b}. Denote Tk = T − m if T has a
left-scattered maximum m. Otherwise, Tk = T. Moreover, we assume that (X, ∥ · ∥), (Y, ∥ · ∥) are
two Banach spaces.

Definition 2.1 ([5, 6]). (i) A function f : T → X is said to be rd-continuous if it is right
continuous at each right-dense point, and there exists a finite left limit at all left-dense points.
Denote by Crd(T, X) the space of all such functions.
(ii) A function f : T → X is said to be continuous if it is continuous at each right-dense point and
each left-dense point. Denote by C(T, X) the space of all such functions.

Definition 2.2 ([5, 6]). (i) A function p : T → R is said to be regressive if

1 + µ(t)p(t) ̸= 0, t ∈ Tk.

We denote by R = R(T) = R(T, R) the space of regressive and rd-continuous functions.
(ii) A matrix-valued function A : T → Rn×n is said to be regressive if

I + µ(t)A(t) is invertible, t ∈ Tk.

Denote by R = R(T) = R(T, Rn×n) the space of regressive and rd-continuous matrix-valued
functions.

Let p, q ∈ R(T, R). p⊕ q and ⊖p are defined as follows:

(p⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t), t ∈ Tk,
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(⊖p)(t) :=
−p(t)

1 + µ(t)p(t)
, t ∈ Tk.

Clearly, (R(T, R),⊕) is an Abelian group. For more details, see [5, 6].

Definition 2.3 ([5, 6]). Let f : T → X and t ∈ Tk. f∆(t) (provided it exists) is said to be the
delta derivative of f at t if for any ε > 0, there is a neighborhood U of t such that

∥[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]∥ ≤ |σ(t)− s|, s ∈ U.

If u is delta differentiable, then u(σ(t)) = u(t) + µ(t)u∆(t).
We remark that the definition of ∆-integrable functions on T is similar to normal Lebesgue

integration, and all the theorems of normal Lebesgue integration theory are also true for ∆-
integrals on T. For more details, see [3, 4, 5, 6, 8]. We denote by Lp

loc(T, X) the space of all locally
Lp ∆- integrable functions.

Definition 2.4 ([19, 24]). A time scale T is said to be invariant under translations if

Π := {α ∈ R : s± α ∈ T, s ∈ T} ≠ {0}.

Lemma 2.5 ([27]). Let T be a time scale invariant under translation and K := inf{|α| : α ∈
Π, α ̸= 0}. Then

K = 0 ⇔ T = R,

K > 0 ⇔ T ̸= R,

Π =

{
R, T = R,

KZ, T ̸= R.

In the following, we always let T be a time scale invariant under translation.

Definition 2.6 ([24]). An rd-continuous function f : T → X is said to be almost automorphic
(abbrev. as a.a.) if for any sequence {ξ′n}∞n=1 ⊂ Π, there exist a subsequence {ξn}∞n=1 of {ξ′n}∞n=1

and a function f̃ such that
lim
n→∞

f(t+ ξn) = f̃(t)

is well defined for all t ∈ T, and
lim
n→∞

f̃(t− ξn) = f(t)

for all t ∈ T. We denote by AA(T, X) the space of all such functions.

Definition 2.7 ([22]). Let 1 ≤ p < ∞. A function f ∈ Lp
loc(T, X) is said to be Stepanov-like

bounded (abbrev. as Sp-bounded) if

sup
t∈T

( 1

K

∫
[t,t+K)T

∥f(s)∥p∆s
)1/p

< ∞,

where

K :=

{
1, T = R,

K, T ̸= R,

with K defined in Lemma 2.5. We denote by BSp(T, X) the space of all such functions, equipped
with the norm

∥f∥Sp := sup
t∈T

( 1

K

∫
[t,t+K)T

∥f(s)∥p∆s
)1/p

.

Definition 2.8. A function f ∈ BSp(T, X) is said to be Stepanov-like almost automorphic (ab-
breviated as Sp-a.a.) if for any sequence {ξ′n}∞n=1 ⊂ Π, there exist a subsequence {ξn}∞n=1 of

{ξ′n}∞n=1 and a function f̃ ∈ Lp
loc(T, X) such that

lim
n→∞

( 1

K

∫
[t,t+K)T

∥f(s+ ξn)− f̃(s)∥p∆s
)1/p

= 0,

lim
n→∞

( 1

K

∫
[t,t+K)T

∥f̃(s− ξn)− f(s)∥p∆s
)1/p

= 0
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for all t ∈ T. We denote by SpAA(T, X) the space of all such functions.

Remark 2.9. (i) Definition 2.8 is different from [10, 11, 12]. In fact, the convergence in the
definition of Stepanov-like almost automorphy on R is pointwise (not uniform). So our Definition
2.8 includes the case of T = R.
(ii) f ∈ BSp(hZ) if and only if f ∈ l∞(hZ). Indeed, we note that K = h if T = hZ. Then

sup
t∈hZ

( 1

h

∫
[t,t+h)T

∥f(s)∥p∆s
)1/p

= sup
t∈hZ

∥f(t)∥ < ∞.

(iii) f ∈ SpAA(hZ,X) if and only if f ∈ AA(hZ,X). Indeed, if f ∈ SpAA (hZ,X), for any se-

quence {ξ′n}∞n=1 ⊂ Π, there exist a subsequence {ξn}∞n=1 of {ξ′n}∞n=1 and a function f̃ ∈ Lp
loc(hZ,X)

such that ( 1

h

∫
[t,t+h)T

∥f(s+ ξn)− f̃(s)∥p∆s
)1/p

→ 0

as n → ∞. Then ∥f(t+ ξn)− f̃(t)∥ → 0 as n → ∞ since( 1

h

∫
[t,t+h)T

∥f(s+ ξn)− f̃(s)∥p∆s
)1/p

= ∥f(t+ ξn)− f̃(t)∥. (2.1)

Similarly, we deduce that ∥f̃(t− ξn)− f(t)∥ → 0 as n → ∞ if( 1

h

∫
[t,t+h)T

∥f̃(s− ξn)− f(s)∥p∆s
)1/p

→ 0

as n → ∞ for each t ∈ hZ. Conversely, if f ∈ AA(hZ,X), we can deduce that f ∈ SpAA(hZ,X)
in view of (2.1).

Definition 2.10. A function f : T × X → Y is said to be Sp-almost automorphic in t ∈ T for
each x ∈ X if for any sequence {ξ′n}∞n=1 ⊂ Π, there exist a subsequence {ξn}∞n=1 of {ξ′n}∞n=1 and a

function f̃(·, x) ∈ Lp
loc(T, X) such that

lim
n→∞

( 1

K

∫
[t,t+K)T

∥f(s+ ξn, x)− f̃(s, x)∥p∆s
)1/p

= 0 for (t, x) ∈ T×X,

lim
n→∞

( 1

K

∫
[t,t+K)T

∥f̃(s− ξn, x)− f(s, x)∥p∆s
)1/p

= 0 for (t, x) ∈ T×X.

We denote by SpAA(T×X,Y ) the space of all such functions.

Definition 2.11. For each compact subset K ⊂ X, a function f : T × X → Y is said to be
Sp-almost automorphic in t ∈ T uniformly in x ∈ K if for any sequence {ξ′n}∞n=1 ⊂ Π, there exist

a subsequence {ξn}∞n=1 of {ξ′n}∞n=1 and a function f̃(·, x) ∈ Lp
loc(T, X) such that

lim
n→∞

( 1

K

∫
[t,t+K)T

sup
x∈K

∥f(s+ ξn, x)− f̃(s, x)∥p∆s
)1/p

= 0 for t ∈ T,

lim
n→∞

( 1

K

∫
[t,t+K)T

sup
x∈K

∥f̃(s− ξn, x)− f(s, x)∥p∆s
)1/p

= 0 for t ∈ T.

We denote by SpAAK(T×X,Y ) the space of all such functions.

Lemma 2.12. The following statements hold:

(i) Let f : T → X be a.a. Then f is bounded.
(ii) Let {fn} be a sequence of a.a. functions such that limn→∞ fn(t) = f(t) converges uniformly

for t ∈ T. Then f is a.a.
(iii) Let f : T → X be a.a. and ϕ : X → Y be a continuous function. Then the composition

function ϕ ◦ f : T → Y is a.a.
(iv) Let f, g : T → X be a.a. Then fg defined by (fg)(t) = f(t)g(t) is a.a.
(v) Let f : T → R be a.a. and f ̸= 0 on T. If 1

f is bounded, then 1
f is a.a.

(vi) Let f : T → X be a.a. and g : T → X is Sp-a.a. Then fg is Sp-a.a.



EJDE-2025/87 ALMOST AUTOMORPHIC SOLUTIONS TO NON-AUTONOMOUS DYNAMIC EQUATIONS 5

Proof. (i)-(v) have been established in [24]. It remains to prove (vi). Since f is a.a. and g is
Sp-a.a., for any sequence {ξ′n}∞n=1 ⊂ Π, there exist a subsequence {ξn}∞n=1 of {ξ′n}∞n=1 and two

functions f̃ , g̃ such that

lim
n→∞

f(t+ ξn) = f̃(t) for t ∈ T,

lim
n→∞

f̃(t− ξn) = f(t) for t ∈ T,
(2.2)

lim
n→∞

( 1

K

∫
[t,t+K)T

∥g(s+ ξn)− g̃(s)∥p∆s
)1/p

= 0 for t ∈ T,

lim
n→∞

( 1

K

∫
[t,t+K)T

∥g̃(s− ξn)− g(s)∥p∆s
)1/p

= 0 for t ∈ T.
(2.3)

Using Minkowski’s inequality, we have( 1

K

∫
[t,t+K)T

∥f(s+ ξn)g(s+ ξn)− f̃(s)g̃(s)∥p∆s
)1/p

≤
( 1

K

∫
[t,t+K)T

∥(f(s+ ξn)− f̃(s))g̃(s)∥p∆s
)1/p

+
( 1

K

∫
[t,t+K)T

∥f(s+ ξn)(g(s+ ξn)− g̃(s))∥p∆s
)1/p

:= In + Jn.

Notice that In ≤ 2∥f∥∞∥g̃∥Sp . By Lebesgue’s dominated convergence theorem and (2.2), we
obtain

lim
n→∞

In ≤
( 1

K

∫
[t,t+K)T

lim
n→∞

∥(f(s+ ξn)− f̃(s))g̃(s)∥p∆s
)1/p

= 0 for t ∈ T.

Using (2.3) and the boundedness of f , we obtain

lim
n→∞

Jn ≤ lim
n→∞

( 1

K

∫
[t,t+K)T

∥g(s+ ξn)− g̃(s)∥p∆s
)1/p

∥f∥∞ = 0 for t ∈ T.

Thus,

lim
n→∞

( 1

K

∫
[t,t+K)T

∥f(s+ ξn)g(s+ ξn)− f̃(s)g̃(s)∥p∆s
)1/p

= 0 for t ∈ T.

Similarly, we can show that

lim
n→∞

( 1

K

∫
[t,t+K)T

∥f̃(s− ξn)g̃(s− ξn)− f(s)g(s)∥p∆s
)1/p

= 0 for t ∈ T.

That is, fg is Sp-a.a. □

3. Composition theorem

Lemma 3.1. Let K ⊂ X be compact and f ∈ SpAA(T × X,Y ) with f̃ the limit function in
Definition 2.10. Assume that f satisfies the hypothesis

(A1) There exists a nonnegative scalar function L ∈ SpAA(T, R) with L̃ the limit function in
Definition 2.8 such that

∥f(t, x)− f(t, y)∥ ≤ L(t)∥x− y∥, x, y ∈ X, t ∈ T. (3.1)

Then for x, y ∈ K, t ∈ T and a.e. s ∈ [t, t+K)T,

∥f̃(s, x)− f̃(s, y)∥ ≤ L̃(s)∥x− y∥,

where L̃ ∈ BSp(T, R).
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Proof. Since f ∈ SpAA(T×X,Y ) with f̃ the limit function in Definition 2.10, and L ∈ SpAA(T)
with L̃ the limit function in Definition 2.8, it follows that for any sequence {ξ′n}∞n=1 ⊂ Π, there

exists a subsequence {ξn}∞n=1 of {ξ′n}∞n=1 and two functions f̃ , L̃ such that

lim
n→∞

( 1

K

∫
[t,t+K)T

∥f(s+ ξn, x)− f̃(s, x)∥p∆s
)1/p

= 0 for (t, x) ∈ T×X,

lim
n→∞

( 1

K

∫
[t,t+K)T

∥L(s+ ξn)− L̃(s)∥p∆s
)1/p

= 0 for t ∈ T.

Thus

lim
n→∞

f(s+ ξn, x) = f̃(s, x) for (t, x) ∈ T×X and a.e. s ∈ [t, t+K)T, (3.2)

lim
n→∞

L(s+ ξn) = L̃(s) for t ∈ T and a.e. s ∈ [t, t+K)T. (3.3)

Then for x, y ∈ K, t ∈ T and a.e. s ∈ [t, t+K)T, we have

∥f̃(s, x)− f̃(s, y)∥ ≤ ∥f̃(s, x)−f(s+ξn, x)∥+∥f(s+ξn, x)−f(s+ξn, y)∥+∥f̃(s, y)−f(s+ξn, y)∥.

Taking limits as n → ∞ on the above inequality, by (3.1), (3.2) and (3.3), we obtain that

∥f̃(s, x)− f̃(s, y)∥ ≤ lim
n→∞

L(s+ ξn)∥x− y∥ = L̃(s)∥x− y∥.

Moreover, by (3.3) and Fatou’s Lemma, we obtain for t ∈ T,

1

K

∫
[t,t+K)T

∥L̃(s)∥p∆s =
1

K

∫
[t,t+K)T

∥ lim
n→∞

L(s+ ξn)∥p∆s

=
1

K

∫
[t,t+K)T

lim inf
n→∞

∥L(s+ ξn)∥p∆s

≤ lim inf
n→∞

1

K

∫
[t,t+K)T

∥L(s+ ξn)∥p∆s

≤ ∥L∥pSp ,

which means that L̃ ∈ BSp(T, R). □

Lemma 3.2. Let K ⊂ X be compact and f ∈ SpAA(T ×X,Y ). Assume that condition (A1) in
Lemma 3.1 holds. Then f ∈ SpAAK(T×X,Y ).

Proof. Since f ∈ SpAA(T × X,Y ), for any sequence {ξ′n}∞n=1 ⊂ Π, there exist a subsequence

{ξn}∞n=1 of {ξ′n}∞n=1 and a function f̃ : T×X → Y such that

lim
n→∞

( 1

K

∫
[t,t+K)T

∥f(s+ ξn, x)− f̃(s, x)∥p∆s Big)1/p = 0 for (t, x) ∈ T×X. (3.4)

Thus

lim
n→∞

f(s+ ξn, x) = f̃(s, x) for (t, x) ∈ T×X and a.e. s ∈ [t, t+K)T,

Moreover, by Lemma 3.1, there exists a nonnegative scalar function L̃ ∈ BSp(T, R) such that for
all x, y ∈ K, t ∈ T and a.e. s ∈ [t, t+K)T,

∥f̃(s, x)− f̃(s, y)∥ ≤ L̃(s)∥x− y∥. (3.5)

For ε > 0, there exists a finite subset {xi, i = 1, 2, . . . , k} such that K ⊂
⋃k

i=1 B(xi, ε), where
B(xi, ε) denotes a neighborhood with xi ∈ K as the center and ε as the radius. Let t ∈ T, by
(3.4), there exists an integer N = N(t, ε) such that( 1

K

∫
[t,t+K]T

∥f(s+ ξn, xi)− f̃(s, xi)∥p∆s
)1/p

< ε/k (3.6)
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for n > N , i = 1, 2, . . . , k. Let x ∈ K, there exists i ∈ {1, 2, . . . , k} such that x ∈ B(xi, ε).
Combining (3.5) and (3.6), under condition (A1) in Lemma 3.1, we obtain that for n > N and
a.e. s ∈ [t, t+K)T,

sup
x∈K

∥f(s+ ξn, x)− f̃(s, x)∥

≤ sup
x∈K

∥f(s+ ξn, x)− f(s+ ξn, xi)∥+ sup
x∈K

∥f̃(s, xi)− f̃(s, x)∥+ max
1≤i≤k

∥f(s+ ξn, xi)− f̃(s, xi)∥

≤ L(s+ ξn)ε+ L̃(s)ε+

k∑
i=1

∥f(s+ ξn, xi)− f̃(s, xi)∥.

(3.7)
Since ( 1

K

∫
[t,t+K)T

∥L(s+ ξn)ε∥p∆s
)1/p

≤ ∥L∥Spε for n ∈ N,( 1

K

∫
[t,t+K)T

∥L̃(s)ε∥p∆s
)1/p

≤ ∥L̃∥Spε,

( 1

K

∫
[t,t+K)T

k∑
i=1

∥f(s+ ξn, xi)− f̃(s, xi)∥p∆s
)1/p

≤
k∑

i=1

ε/k = ε for n > N,

we deduce from (3.7) that for n > N ,( 1

K

∫
[t,t+K)T

sup
x∈K

∥f(s+ ξn, x)− f̃(s, x)∥p∆s
)1/p

≤ (∥L∥Sp + ∥L̃∥Sp + 1)ε,

which implies

lim
n→∞

( 1

K

∫
[t,t+K)T

sup
x∈K

∥f(s+ ξn, x)− f̃(s, x)∥p∆s
)1/p

= 0 for t ∈ T.

Similarly, we obtain

lim
n→∞

( 1

K

∫
[t,t+K)T

sup
x∈K

∥f̃(s− ξn, x)− f(s, x)∥p∆s
)1/p

= 0 for t ∈ T.

That is f ∈ SpAAK(T×X,Y ). □

Theorem 3.3. Let f ∈ SpAA(T×X,Y ) and condition (A1) in Lemma 3.1 holds. If x ∈ AA(T, X),
then f(·, x(·)) ∈ SpAA(T, Y ).

Proof. From condition (A1) in Lemma 3.1, it follows that

∥f(·, x(·))∥Sp ≤ ∥f(·, x(·))− f(·, 0)∥Sp + ∥f(·, 0)∥Sp

≤ ∥L∥Sp∥x∥∞ + ∥f(·, 0)∥Sp < ∞.

That is, f(·, x(·)) is Sp-bounded. Since x ∈ AA(T, X), for any sequence {ξ′′n}∞n=1 ⊂ Π, there exist
a subsequence {ξ′n}∞n=1 of {ξ′′n}∞n=1 and a function x̃ such that

lim
n→∞

x(t+ ξ′n) = x̃(t) for t ∈ T,

lim
n→∞

x̃(t− ξ′n) = x(t) for t ∈ T.
(3.8)

Let K = {x(t) : t ∈ T}, then K is compact and x̃(t) ∈ K for t ∈ T. By Lemma 3.2, we have

f ∈ SpAAK(T×X,Y ), and a subsequence {ξn}∞n=1 of {ξ′n}∞n=1 and a function f̃ such that

lim
n→∞

( 1

K

∫
[t,t+K)T

sup
x∈K

∥f(s+ ξn, x)− f̃(s, x)∥p∆s
)1/p

= 0 for t ∈ T,

lim
n→∞

( 1

K

∫
[t,t+K)T

sup
x∈K

∥f̃(s− ξn, x)− f(s, x)∥p∆s
)1/p

= 0 for t ∈ T.
(3.9)
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Let t ∈ T, by Minkowski’s inequality and Lemma 3.1, we have( 1

K

∫
[t,t+K)T

∥f(s+ ξn, x(s+ ξn))− f̃(s, x̃(s))∥p∆s
)1/p

≤
( 1

K

∫
[t,t+K)T

|f(s+ ξn, x(s+ ξn))− f̃(s, x(s+ ξn))∥p∆s
)1/p

+
( 1

K

∫
[t,t+K)T

∥f̃(s, x(s+ ξn))− f̃(s, x̃(s))∥p∆s
)1/p

≤
( 1

K

∫
[t,t+K)T

sup
x∈K

∥f(s+ ξn, x)− f̃(s, x)∥p∆s
)1/p

+
( 1

K

∫
[t,t+K)T

L̃p(s)∥(x(s+ ξn)− x̃(s))∥p∆s
)1/p

:= Jn + In.

Notice that In ≤ 2∥x∥∞∥L̃∥Sp . By Lebesgue’s dominated convergence theorem and (3.8), we
obtain

lim
n→∞

In ≤
( 1

K

∫
[t,t+K)T

lim
n→∞

L̃p(s)∥(x(s+ ξn)− x̃(s))∥p∆s
)1/p

= 0.

Meanwhile, (3.9) implies limn→∞ Jn = 0. That is,

lim
n→∞

( 1

K

∫
[t,t+K)T

∥f(s+ ξn, x(s+ ξn))− f̃(s, x̃(s))∥p∆s
)1/p

= 0 for t ∈ T.

Similarly, we obtain

lim
n→∞

( 1

K

∫
[t,t+K)T

∥f̃(s− ξn, x̃(s− ξn))− f(s, x(s))∥p∆s
)1/p

= 0 for t ∈ T.

Therefore, f(·, x(·)) ∈ SpAA(T, Y ). □

Remark 3.4. We note that to get the composition theorem 3.3, we do not assume the uniform
Lipschitz condition. Instead, we use condition (A1) with a Lipschitz coefficient function L(t).

4. A.a. solutions

Now we consider the non-autonomous dynamic equation

u∆(t) = A(t)u(t) + f(t, u(t)), t ∈ T. (4.1)

We first recall some concepts which will be used to obtain our main results.

Definition 4.1 ([5, 6]). Let p ∈ R(T, R). The exponential function is defined as

ep(t, s) = exp
(∫ t

s

ξµ(τ)(p(τ))∆τ
)
, s, t ∈ T,

with

ξh(z) =

{
1
h log(1 + zh), h ̸= 0,

z, h = 0,

where Log is the principal logarithm function.

Lemma 4.2 ([5, 6]). If p ∈ R and t, s, r ∈ T, then
(i) ep(t, t) = 1.
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s).
(iii) ep(t, r)ep(r, s) = ep(t, s).
(iv) e⊖p(s, t) = ep(t, s) =

1
ep(s,t)

.

(v) (ep(r, ·))△ = −pep(r, σ(·)) and∫ t

s

p(τ)ep(r, σ(τ))∆τ = ep(r, s)− ep(r, t).
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Lemma 4.3. Let α > 0, q > 1 be two constants and t, s ∈ T. Then

(i) (e⊖α(t, s))
q ≤ e⊖(qα)(t, s), t ≥ s.

(ii) For t ≥ σ(s),
∑

j≥1 Fj(t) is uniformly convergent. Moreover,

∑
j≥1

Fj(t) ≤

{
1

1−e−α

(
1−e−qα

qα

)1/q
, T = R,

1
1−(1+qαK)−1/q

(
eqαK−1

qα

)1/q
, T ̸= R,

where Fj(t) =
(∫

[t−jK,t−(j−1)K)T
(e⊖α(t, σ(s)))

q∆s
)1/q

.

(iii) For t ≤ σ(s),
∑

j≥1 Ej(t) is uniformly convergent. Moreover,

∑
j≥1

Ej(t) ≤


1

1−e−α

(
1−e−qα

qα

)1/q
, T = R,

(1+qαK)−1/q

1−(1+qαK)−1/q

(
eqαK−1

qα

)1/q

, T ̸= R,

where Ej(t) =
( ∫

[t+(j−1)K,t+jK)T
(e⊖α(σ(s), t))

q∆s
)1/q

.

Proof. (i) If µ(τ) = 0, for τ ∈ [s, t]T,

(e⊖α(t, s))
q = exp

(
q

∫ t

s

(−α)∆τ
)
= e⊖(qα)(t, s).

If µ(τ) ̸= 0, for τ ∈ [s, t]T, according to the definition of exponential function, we have

(e⊖α(t, s))
q = exp

(∫ t

s

q

µ(τ)
log(1 + µ(τ)(⊖α))∆τ

)
≤ exp

(∫ t

s

1

µ(τ)
log(1 + µ(τ)(⊖(qα)))∆τ

)
= e⊖(qα)(t, s).

(ii) Let Fj(t) =
(∫

[t−jK,t−(j−1)K)T
(e⊖α(t, σ(s)))

q∆s
)1/q

. If T = R, by a simple computation,

we obtain ∑
j≥1

Fj(t) =
1

1− e−α

(1− e−qα

qα

)1/q

.

If T ̸= R, since σ(t) ≤ t+K, t ∈ T,

exp
(∫ t+K

t

1

µ(τ)
log(1 + µ(τ)qα)∆τ

)
is decreasing in µ(τ) ∈ [0,K], τ ∈ [t, t + K]T, then according to the definition of exponential
function, we have

e⊖qα(t, t+K) = exp
(∫ t

t+K

1

µ(τ)
log(1 + µ(τ)(⊖qα))∆τ

)
≤ exp

(∫ t

t+K
ξµ(τ)=0(⊖qα)∆τ

)
= eqαK.

(4.2)

Also, since

exp
(
−
∫ t

t−K

1

µ(τ)
log(1 + µ(τ)qα)∆τ

)
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is increasing in µ(τ) ∈ [0,K], τ ∈ [t, t + K]T, according to the definition of exponential function,
we have

e⊖(qα)(t, t−K) = exp
(
(

∫ t

t−K

1

µ(τ)
log(1 + µ(τ)(⊖qα))∆τ

)
≤ exp

(∫ t

t−K
ξµ(τ)=K(⊖qα)∆τ

)
= (1 + qαK)−1.

(4.3)

Using that e⊖(qα)(t− jK, t− (j − 1)K) = e⊖(qα)(t, t+K) ([28, Lemma 4.5]), we deduce from (4.2)
that

e⊖(qα)(t− jK, t− (j − 1)K) ≤ eqαK (4.4)

Moreover, by Lemma 4.2 (iii) and (4.3), we have

e⊖(qα)(t, t− jK) = (e⊖(qα)(t+K, t))j ≤ (1 + qαK)−j . (4.5)

Combining (4.4) and (4.5), by (i) and Lemma 4.2 (iii) and (v), we obtain∑
j≥1

Fj(t) ≤
∑
j≥1

(∫
[t−jK,t−(j−1)K)T

e⊖(qα)(t, σ(s))∆s
)1/q

=
∑
j≥1

(1− eqαK

⊖(qα)
(1 + qαK)−j

)1/q

≤ 1

1− (1 + qαK)−1/q

(eqαK − 1

qα

)1/q

.

The proof of (iii) is similar to that for (ii); we omit it. □

Definition 4.4 ([19, 24]). Let A : T → Rn×n be a rd-continuous matrix-valued function, and
X(t) be a fundamental matrix of the homogeneous equation of (4.1):

u∆(t) = A(t)u(t), t ∈ T. (4.6)

We say that (4.6) has an exponential dichotomy with parameters (α, c, P ) if there exists a projec-
tion P , which is commutable with X(t), and two positive constants c, α such that

∥G(t, σ(s))∥ ≤

{
ce⊖α(t, σ(s)), t ≥ σ(s), t, s ∈ T,
ce⊖α(σ(s), t), t < σ(s), t, s ∈ T,

(4.7)

with

G(t, σ(s)) =

{
X(t)PX−1(σ(s)), t ≥ σ(s),

−X(t)(I − P )X−1(σ(s)), t < σ(s).
(4.8)

The matrix G is called the Green’s function of (4.6).

If P = I, (4.6) is exponential stable with parameters (α, c, I) which means

|Ψ(t, σ(s))| ≤ ce⊖α(t, σ(s)) for all t ≥ σ(s), t, s ∈ T,
where Ψ(t, σ(s)) = X(t)X−1(σ(s)).

Definition 4.5 ([24]). If u : T → Rn satisfies

u(t) =

∫
T
G(t, σ(s))f(s, u(s))∆s, t ∈ T

with G(t, σ(s)) defined as (4.8), then u is called a solution of (4.1).

Definition 4.6. A rd-continuous function G : T×T → Rn×n is said to be Bi-almost automorphic
(abbreviated as Bi-a.a.) if for any sequence {ξ′n}∞n=1 ⊂ Π, there exist a subsequence {ξn}∞n=1 of

{ξ′n}∞n=1 and a function G̃ such that

lim
n→∞

G(t+ ξn, s+ ξn) = G̃(t, s), lim
n→∞

G̃(t− ξn, s− ξn) = G(t, s)

for all (t, s) ∈ T2. Denote by BAA(T× T, Rn×n) the space of all such functions.
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Remark 4.7. Let G(t, s) = g(t − s) for some rd-continuous function g : T × T → Rn×n, then it
is easy to verify that G ∈ BAA(T× T, Rn×n).

Now we present some results on a.a. solutions to (4.1). We use the following assumptions:

(A2) A ∈ R(T, Rn×n) ∩AA(T, Rn×n) such that {(I + µ(t)A(t))−1 : t ∈ T} is bounded.
(A3) (4.6) has an exponential dichotomy with parameters (α, c, P ).
(A4) (4.6) is exponentially stable with parameters (α, c, I).
(A5) f ∈ SpAA(T×Rn, Rn) and satisfies condition (A1) in Lemma 3.1.

Remark 4.8. Assume that (A2) and (A3) hold. Then G(t, σ(s)) is Bi-a.a. Indeed, if A is a
rd-continuous matrix-valued functions, then A is ∆-integrable. By [24, Theorems 4.6,4.7,4.8],
X(t) and X−1(t) are continuous which yields that X(t)X−1(σ(s)) is rd-continuous in t, s, that is,
G(t, σ(s)) is rd-continuous. This together with [24, Lemma 5.5] leads to the conclusion.

Lemma 4.9. If f ∈ SpAA(T, Rn) (1 < p < ∞) and there is a Bi a.a. function G(t, σ(s)) such
that (4.7) holds, then the function

u(t) =

∫
T
G(t, σ(s))f(s)∆s

belongs to AA(T, Rn).

Proof. Let

ϱ(t) =

∫
(−∞,t)T

G(t, σ(s))f(s)∆s, t ∈ T,

χ(t) =

∫
[t,∞)T

G(t, σ(s))f(s)∆s, t ∈ T.

Then u(t) = ϱ(t) + χ(t), t ∈ T. We only prove ϱ(t) ∈ AA(T, Rn), since χ(t) ∈ AA(T, Rn) can be
obtained similarly. Let

ϕj(t) =

∫
[t−jK,t−(j−1)K)T

G(t, σ(s))f(s)∆s,

for each t ∈ T and j = 1, 2, 3, . . . . Then ϱ(t) =
∑

j≥1 ϕj(t). Now we can complete the proof by
the following 3 steps.

Step 1. We prove that ϱ(t) =
∑

j≥1 ϕj(t) is uniformly convergent on T. Let q > 1 be such that
1
p + 1

q = 1, using Hölder inequality, it follows that for t ∈ T, j ∈ {1, 2, 3, . . . },

∥ϕj(t)∥ ≤
∫
[t−jK,t−(j−1)K)T

ce⊖α(t, σ(s)) ∥f(s)∥∆s

≤ c
(∫

[t−jK,t−(j−1)K)T

(e⊖α(t, σ(s)))
q∆s

)1/q(∫
[t−jK,t−(j−1)K)T

∥f(s)∥p∆s
)1/p

≤ c
(∫

[t−jK,t−(j−1)K)T

(e⊖α(t, σ(s)))
q∆s

)1/q

K1/p∥f∥Sp .

By Lemma 4.3 (ii), we know that∑
j≥1

(∫
[t−jK,t−(j−1)K)T

(e⊖α(t, σ(s)))
q∆s

)1/q

is uniformly convergent. Then we deduce that ϱ(t) =
∑

j≥1 ϕj(t) is uniformly convergent.
Step 2. We prove that ϱ is rd-continuous on T. Let t ∈ T be any right-dense point. For any

sequence {t+ hm} ⊂ T such that hm ≥ 0, hm → 0 as m → ∞,

∥ϕj(t+ hm)− ϕj(t)∥ → 0, j = 1, 2, 3, . . . .

Indeed, for j = {1, 2, 3, . . . }, we deduce from (4.7) that

∥ϕj(t+ hm)− ϕj(t)∥
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=
∥∥∥∫

[t−(j−1)K,t+hm−(j−1)K)T

G(t+ hm, σ(s))f(s)∆s

−
∫
[t−jK,t+hm−jK)T

G(t+ hm, σ(s))f(s)∆s

+

∫
[t−jK,t−(j−1)K)T

(G(t+ hm, σ(s))−G(t, σ(s)))f(s)∆s
∥∥∥

≤ c

∫
[t−(j−1)K,t+hm−(j−1)K)T

∥f(s)∥∆s+ c

∫
[t−jK,t+hm−jK)T

∥f(s)∥∆s

+
∥∥∫

[t−jK,t−(j−1)K)T

(G(t+ hm, σ(s))−G(t, σ(s)))f(s)∆s
∥∥

:= I1m + I2m + Jm.

Note that

I1m ≤ ch1/q
m

(∫
[t−(j−1)K,t+hm−(j−1)K)T

∥f(s)∥p∆s
)1/p

≤ ch1/q
m K1/p∥f∥Sp

by using Hölder inequality. So we have I1m → 0 as hm → 0. Similarly, we have I2m → 0 as hm → 0.
Now we show that Jm → 0 as hm → 0. Since G(t, σ(s)) is Bi-a.a., then G(t, σ(s)) is rd-continuous.
Thus

∥G(t+ hm, σ(s))−G(t, σ(s)))∥ → 0

as hm → 0, which yields

∥(G(t+ hm, σ(s))−G(t, σ(s)))f(s)∥ → 0 (4.9)

as hm → 0. From (4.7), it follows that

∥(G(t+ hm, σ(s))−G(t, σ(s)))f(s)∥ ≤ 2c∥f(s)∥, t, s ∈ T.

Then

Jm ≤ 2c

∫
[t−jK,t−(j−1)K)T

∥f(s)∥∆s ≤ 2cK∥f∥Sp .

By Lebesgue’s dominated convergence theorem and (4.9), we obtain Jm → 0 as hm → 0. That
is, ϕj is right continuous for each right dense point t ∈ T. Similarly, we can prove that the left
limit of ϕj exists at each left-dense point t ∈ T. So ϕj is rd-continuous for t ∈ T, j = 1, 2, 3, . . . .
Therefore, the uniform limit ϱ =

∑
j≥1 ϕj is rd-continuous on T.

Step 3. We prove that ϱ ∈ AA(T, Rn). Since f ∈ SpAA(T, Rn) and G ∈ BAA(T× T, Rn), for

any sequence {t′n}∞n=1 ⊂ Π, there exist a subsequence {tn}∞n=1 of {t′n}∞n=1 and two functions f̃ , G̃
such that ( 1

K

∫
[t,t+K)T

∥f(tn + s)− f̃(s)∥pds
)1/p

→ 0 as n → ∞,( 1

K

∫
[t,t+K)T

∥f̃(s− tn)− f(s)∥pds
)1/p

→ 0 as n → ∞,

(4.10)

for each t ∈ T. And

∥G(t+ tn, σ(s) + tn)− G̃(t, σ(s))∥ → 0 as n → ∞,

∥G̃(t− tn, σ(s)− tn)−G(t, σ(s))∥ → 0 as n → ∞,
(4.11)

for each t, s ∈ T. Let j ∈ {1, 2, 3, . . . }. We set

ϕ̃j(t) =

∫
[t−jK,t−(j−1)K)T

G̃(t, σ(s))f̃(s)∆s, t ∈ T.

Then using that σ(s+ tn) = σ(s) + tn ([25, Lemma 3.3]), we deduce from (4.7) that

∥ϕj(t+ tn)− ϕ̃j(t)∥ ≤
∫
[t−jK,t−(j−1)K)T

∥G(t+ tn, σ(s) + tn)(f(s+ tn)− f̃(s))∥∆s
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+

∫
[t−jK,t−(j−1)K)T

∥(G(t+ tn, σ(s) + tn)− G̃(t, σ(s)))f̃(s)∥∆s

≤ c

∫
[t−jK,t−(j−1)K)T

∥f(s+ tn)− f̃(s)∥∆s

+

∫
[t−jK,t−(j−1)K)T

∥(G(t+ tn, σ(s) + tn)− G̃(t, σ(s)))f̃(s)∥∆s

≤ cK
( 1

K

∫
[t−jK,t−(j−1)K)T

∥f(s+ tn)− f̃(s)∥p∆s
)1/p

+

∫
[t−jK,t−(j−1)K)T

∥(G(t+ tn, σ(s) + tn)− G̃(t, σ(s)))f̃(s)∥∆s

:= In + Jn.

Using (4.10), we obtain In → 0 as n → ∞ for t ∈ T. From (4.7) and (4.11), it follows that

∥(G(t+ tn, σ(s) + tn)− G̃(t, σ(s)))f̃(s)∥ ≤ 2c∥f̃(s)∥.
Then

Jn ≤ 2c

∫
[t−jK,t−(j−1)K)T

∥f̃(s)∥∆s ≤ 2cK∥f̃∥Sp .

By Lebesgue’s dominated convergence theorem and (4.11), we obtain Jn → 0 as n → ∞ for t ∈ T.
Thus

∥ϕj(t+ tn)− ϕ̃j(t)∥ → 0

as n → ∞ for t ∈ T. Similarly, we can easily get that

∥ϕ̃j(t− tn)− ϕj(t)∥ → 0

as n → ∞ for t ∈ T. That is, ϕj ∈ AA(T, Rn) for j = 1, 2, 3, . . . . So the uniform limit ϱ =
∑

j≥1 ϕj

is almost automorphic by Lemma 2.12 (ii). □

Theorem 4.10. Assume that (A2)–(A4) hold. If

∥L∥Sp <


(

2c
1−e−α

)−1( 1−e−qα

qα

)−1/q
, T = R,( (1+qαK)−1/q+1

1−(1+qαK)−1/q

c(eqαK−1)
qα

)−1
, T ̸= R,

(4.12)

where 1
p + 1

q = 1, then equation (4.1) has a unique a.a. solution given by

u(t) =

∫
T
G(t, σ(s))f(s, u(s))∆s, t ∈ T (4.13)

with G(t, σ(s)) defined in (4.8).

Proof. Let u ∈ AA(T, Rn). From (A5), it follows that f(·, u(·)) ∈ SpAA(T, Rn) by Theorem 3.3.
From [27, Theorem 3], we know that

u∆(t) = A(t)u(t) + f(t), t ∈ T (4.14)

has a unique solution satisfying (4.13). Consider operator Γ defined on AA (T, Rn) as

(Γu)(t) =

∫
T
G(t, σ(s))f(s, u(s))∆s, t ∈ T.

By Remark 4.8, we know that G(t, σ(s)) is Bi-a.a. under conditions (A2) and (A3). Then we
deduce from Lemma 4.9 that

Γ : AA(T, Rn) → AA(T, Rn).

If T = R, by using Hölder inequality and Lemma 4.3 (ii) and (iii), we obtain that for any u, v ∈
AA(R,Rn),

∥Γu(t)− Γv(t)∥ ≤
∫ t

−∞
ce−α(t−s)∥f(s, u(s))− f(s, v(s))∥ds
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+

∫ ∞

t

ce−α(s−t)∥f(s, u(s))− f(s, v(s))∥ds

≤ c
(∫ t

−∞
e−α(t−s)L(s)ds+

∫ ∞

t

e−α(s−t)L(s)ds
)
∥u− v∥∞

= c
∑
k≥1

∫ t−k+1

t−k

e−α(t−s)L(s)ds∥u− v∥∞

+ c
∑
k≥1

∫ t+k

t+k−1

e−α(s−t)L(s)ds∥u− v∥∞

≤ c
∑
k≥1

(∫ t−k+1

t−k

e−qα(t−s)ds
)
)1/q∥L∥Sp∥u− v∥∞

+ c
∑
k≥1

(∫ t+k

t+k−1

e−qα(s−t)ds
)1/q

∥L∥Sp∥u− v∥∞

≤ 2c

1− e−α

(1− e−qα

qα

)1/q

∥L∥Sp∥u− v∥∞, t ∈ R.

If T ̸= R, by using Hölder inequality and Lemma 4.3 (ii) and (iii), we obtain that for any u, v ∈
AA(T, Rn),

∥Γu(t)− Γv(t)∥

≤
∫
(−∞,t)T

c e⊖α(t, σ(s))∥f(s, u(s))− f(s, v(s))∥∆s

+

∫
[t,∞)T

c e⊖α(σ(s), t)∥f(s, u(s))− f(s, v(s))∥∆s

≤ c
(∫

(−∞,t)T

e⊖α(t, σ(s))L(s)∆s+

∫
[t,∞)T

e⊖α(σ(s), t)L(s)∆s
)
∥u− v∥∞

= c
∑
j≥1

∫
[t−jK,t−(j−1)K)T

e⊖α(t, σ(s))L(s)∆s∥u− v∥∞

+ c
∑
j≥1

∫
[t+(j−1)K,t+jK)T

e⊖α(σ(s), t)L(s)∆s∥u− v∥∞

≤ c
∑
j≥1

(∫
[t−jK,t−(j−1)K)T

(e⊖α(t, σ(s)))
q∆s

)1/q

K1/p∥L∥Sp∥u− v∥∞

+ c
∑
j≥1

(∫
[t+(j−1)K,t+jK)T

(e⊖α(σ(s), t))
q∆s

)1/q

K1/p∥L∥Sp∥u− v∥∞

≤ (1 + qαK)−1/q + 1

1− (1 + qαK)−1/q

c
(
eqαK − 1

)
qα

∥L∥Sp∥u− v∥∞, t ∈ T.

Hence, the mapping Γ is a contraction by assumption (4.12). By Banach fixed point theorem, Γ
has a unique fixed point in AA(T, Rn). Thus equation (4.1) has a unique a.a. solution. □

If (4.6) is exponentially stable, from the proof of Theorem 4.10, we obtain the following result
immediately.

Corollary 4.11. Assume that (A2), (A3), (A5) hold. If

∥L∥Sp <


(

c
1−e−α

)−1( 1−e−qα

qα

)−1/q
, T = R,(

1
1−(1+qαK)−1/q

c(eqαK−1)
qα

)−1
, T ̸= R,
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where 1
p + 1

q = 1, then equation (4.1) has a unique a.a. solution given by

u(t) =

∫
(−∞,t)T

Ψ(t, σ(s))f(s, u(s))∆s, t ∈ T.

Remark 4.12. (i) Theorem 4.10 shows that we extend the result of [24, Theorem 6.3]. With-
out assuming the uniform Lipschitz condition of the nonlinear forcing term, the existence and
uniqueness of almost automorphic solution to dynamic equation (4.1) with Stepanov-like almost
automorphic nonlinear term are established in our results. Moreover, we do not need to assume
that the Green’s function is Bi-a.a. directly in view of Remark 4.8.

(ii) Comparing with [27, Theorem 4] and [28, Theorem 4.10], based on Lemma 4.3, the con-
traction conditions in Theorem 4.10 and Corollary 4.11 are different.

5. Application

Consider the following Lasota-Wazewska model on time scales:

u∆(t) = −β(t)u(σ(t)) + η(t)e−γ(t)u(t), t ∈ T, (5.1)

where u represents the number of red blood cells, β > 0 is the rate of death of a red blood cell,
while η > 0 and γ > 0 are the parameters related to the rate of production of a red blood cell.
For more details about this model, see [18].

If p ∈ R, then the dynamic equation u∆(t) = p(t)u(t) is called regressive.

Lemma 5.1 ([5]). Let u∆(t) = p(t)u(t) be regressive and t0 ∈ T. Then ep(t, t0) is a solution to
the initial value problem

u∆(t) = p(t)u(t), u(t0) = 1

on T.

Lemma 5.2. Let β : T → R such that β = inft∈T β(t) > 0. The equation

u∆(t) = (⊖β)(t)u(t) (5.2)

is exponential stable.

Proof. Let X(t) be a fundamental matrix of (5.2). It is clear that X(t)X−1(s) = e⊖β(t, s) by
Lemma 5.1. If µ(τ) = 0, for τ ∈ [s, t]T,

e⊖β(t, s) = exp
(
−
∫ t

s

β(τ)∆τ
)
≤ exp

(
−
∫ t

s

β∆τ
)
= e⊖β(t, s).

If µ(τ) ̸= 0, for τ ∈ [s, t]T, by Definition 4.1, we have

e⊖β(t, s) = exp
(∫ t

s

1

µ(τ)
log(1 + µ(τ)(⊖β)(τ))∆τ

)
≤ exp

(∫ t

s

1

µ(τ)
log(1 + µ(τ)(⊖β))∆τ

)
= e⊖β(t, s).

So

|X(t)X−1(σ(s))| ≤ e⊖β(t, σ(s)) for all t ≥ σ(s), t, s ∈ T.

That is, (5.2) admits exponential stable with parameters (β, 1, I). □

Theorem 5.3. Suppose that β, γ are positive a.a. with β = inft∈T β(t) > 0, γ = supt∈T γ(t) > 0,
η is positive Sp-a.a. for 1 < p < ∞. If

∥η∥Spγ <


(

1
1−e−β

)−1( 1−e−qβ

qβ

)−1/q
, T = R,(

1
1−(1+qβK)−1/q

(eqβK−1)
qβ

)−1
, T ̸= R,
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where 1
p + 1

q = 1, then equation (5.1) has a unique a.a. solution given by

u(t) =

∫
(−∞,t)T

e⊖β(t, s)η(s)e
−γ(s)u(s)∆s, t ∈ T.

Proof. Using the formula u(σ(t)) = u(t) + µ(t)u∆(t) and the definition of ⊖β, (5.1) can be trans-
formed into the equation

u∆(t) = (⊖β)(t)u(t) +
1

1 + µ(t)β(t)
η(t)e−γ(t)u(t), t ∈ T.

By a simple computations, we have

1 + µ(t)(⊖β)(t) =
1

1 + µ(t)β(t)
> 0.

That is, ⊖β ∈ R(T, R). Note that µ is non-negative a.p. ([24, Theorem 3.4]). By Lemma 2.12
(iv)-(v), it is easy to get that ⊖β is a.a. since β is positive a.a. Moreover, {(1 + µ(t)(⊖β)(t))−1 :
t ∈ T} = {1 + µ(t)β(t) : t ∈ T} is bounded. That is, ((A2) holds. Then it follows from Lemma
5.2 that

u∆(t) = (⊖β)(t)u(t)

is exponential stable with parameters (β, 1, I). That is, (A4) holds.

Let f(t, u) = 1
1+µ(t)β(t)η(t)e

−γ(t)u. Since β, µ and γ are a.a. and η is Sp-a.a., by Lemma 2.12

(iii)-(vi), we deduce that
f(·, u) ∈ SpAA(T, R).

and
|f(t, u)− f(t, v)| ≤ L(t)|u− v|

with L(t) = 1
1+µ(t)β(t)η(t)γ(t). Clearly, L ∈ SpAA(T) by Lemma 2.12 (iii)-(vi). That is, (A5)

holds. Moreover,
∥L∥Sp ≤ ∥η∥Spγ.

Thus all conditions of Corollary 4.11 are satisfied, which yields that equation (5.1) has a unique
a.a. solution given by

u(t) =

∫
(−∞,t)T

e⊖β(t, σ(s))
1

1 + µ(s)β(s)
η(s)e−γ(s)u(s)∆s

=

∫
(−∞,t)T

e⊖β(t, s)η(s)e
−γ(s)u(s)∆s.

□

Example 5.4. Consider the equation

u∆(t) = −(2.1 + sin(
√
3t))u(σ(t)) + η(t)e−(1.1+cos(

√
2t))u(t), t ∈ T, (5.3)

with

η(t) =

{
0.25| sin 1

2+cos t+cos(
√
2t)

|, t ∈ (n− 0.02, n+ 0.02), n ∈ Z,

0, otherwise.

Obviously, β(t) = 2.1 + sin(
√
3t) and γ(t) = 1.1 + cos(

√
2t) are positive a.a. with β = 1.1 > 0,

γ = 2.1 > 0, η is positive Sp-a.a. for p = 2. Note that ∥η∥Spγ < 0.05 ∗ 2.1 = 0.105. If T = R, then
q = 2 and ( 1

1− e−β

)−1(1− e−qβ

qβ

)−1/q

≈ 1.0494 > ∥η∥Spγ.

If T = Z, then K = 1, q = 2 and( 1

1− (1 + qβK)−1/q

(eqβK − 1)

qβ

)−1

≈ 0.1209 > ∥η∥Spγ.

By Theorem 5.3, equation (5.3) has a unique a.a. solution (see Figures 1 and 2).
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Figure 1. T = R. Curve of the a.a. solution of (5.3) with initial value u(0) = 0.05.

Figure 2. T = Z. Curve of the a.a. solution of (5.3) with initial value u(0) = 0.05.
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