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MULTIPLE SOLUTIONS FOR PARAMETRIC WEIGHTED (p, q)-EQUATIONS

XIAOHUI ZHANG, XIAN XU

ABSTRACT. In this article, we prove that equations driven by a weighted (p, ¢)-Laplacian have at
least two positive solutions, two negative solutions, and two sign-changing solutions. To obtain
these result, we construct an operator that has invariant sets consisting of supersolustions and
subsolutions. Then using this operator, we find a locally Lipschitz continuous operator and use
it to construct a descending flow. Finally, by the method of invariant sets of descending flow,
we obtain the 6 solutions stated above.

1. INTRODUCTION

Let © ¢ RY be a bounded domain with a C2-boundary 9. We study the parametric weighted
(p, 9)-equation
a a _ s—2 :
—Aftu(z) — AZ2u(z) = AMu(2)]" u(z) + f(z,u(z)) in Q,
=0, 1<s<gq, 2<q<p<p", A>0.

(1.1)

P
Given a a € C%1(Q) and r € (1,+00), by A%u(z), we denote the weighted r-Laplace differential
operator

Alu(z) = div (a(z)|Du|T_2Du> Yu € Wy (Q).

In problem we have the sum of two such operators. Many people have studied (p, ¢)-Laplacian
equations (see [, T4} [17, (18, 19} 20, 24}, 25| 26] ). Recently Papageorgiou and Scapellato [24] studied
the positive and nodal solutions for weighted (p,¢)-Laplacian equations. They proved global
existence and multiplicity results. Papageorgiou, Qin and Radulescu [I§] proved the existence of
infinitely many nodal solutions under symmetry conditions. Wu, Guo and Winkert [I4] showed
multiplicity of solutions for surperlinear (p, ¢)-equations in symmetrical domains by Lusternik-
Schnirelmann category.

The nonlinearity of is a combination of convex and concave terms. Many people have
studied this type of equations. For example, Ambrosetti, Brezisl and Cerami in their well known
paper [I] considered the boundary value problem

—Au = u?4+uP in Q,

u=0 on0f. (1.2)

They obtained the following results in [1],

Theorem 1.1. Let 0 < g <1 < p. Then there exists A > 0 such that
(1) for all A € (0,A), (1.2)) has two positive solutions;

(2) for A=A, (1.2) has at least one positive solution;
(3) for all X\ > A, (1.2)) has no positive solutions.
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Li and Wang [12] studied the multiple solutions of the boundary value problem

—Au = Mu|"?u+ g(u) in Q,

1.
u=0 on 0, (1:3)

where g € C1(R,R), g(u) = o(|u|) at 0 and ¢’(u) > —a for some a > 0. They obtained the existence
of at least two positive solutions, at least two negative solutions and at least two sign-changing
solutions.

The main purpose of this paper is to investigate the solutions of equation by the method
of descending flow invariant sets. As far as we know, up to now, only few people have used the
method of descending flow invariant sets to study the multiplicity of solutions of (p, ¢)-equation
(see [17, [8, 26]). The main results of this paper generalize some results in [I2]. A key challenge
in this approach lies in identifying upper and lower solutions for equation and constructing
an appropriate pseudogradient vector field to ensure that certain sets related to upper and lower
solutions are descending flow invariant. So we first find two supersolutions and two subsolutions
for equation . Then we construct a compact operator, which ensures some sets with respect
to supersolutions and subsolutions being invariant. Using this operator, we can obtain a locally
Lipschitz continuous operator, which is used to construct a vector field. Finally, using the method
of invariant sets of descending flow, we obtain the result of six solutions.

2. MAIN RESULTS

Let X=W,?(Q) and Y=C}(€2), X* be the topological dual of X and (-,-)x~ x denote the
duality pairing between X* and X. Let P be a closed convex cone of X, that is

P= {ueW&’p(Q):u(z) >0a.a. z €0}

Let PL=PNY and —P, = —PNY. Then P, = {u € C3(Q) :u(z) >0 forall 2 € ﬁ} P; has a
nonempty interior in the Y topology and its interior in the Y topology is defined by

inty Py = {u € Cy(Q) 1 u(z) >0 forallzeﬂg |

with 8“ = (Du,n)g~ and n is the outward unit normal on 9. Let dy A be the boundary of A in
Y if A cY.
We introduce the following conditions:
(HO) ay,as € C%L(Q), ai(z) =¢> 0 and az(z) > 0 for all z € Q.
(H1) f:9Q xR — R is a Carathéodory function such that f(z,0) =0 for a.a. z € Q and
i) |f(z,2)] < a(z)[1 —|— |z|"71] for a.a. 2 € Q, all z € R, with @ € L>®(Q), p < r < p*,
(i) let F(z,2) = [ f(z,s)ds and there exist m > p and M > 0 such that

f(z,x)x =2 mF(z,z) fora.a. ze€Qall|z| > M,

<0}

(iii) f(z,z) is monotonically increasing in « € R, for a.a. z € Q,
(iv) there exist dp > 0 and 7 € (p,p*) such that

f(z,2)x < colz|” for a.a. z € Q, all |z| < by, some ¢o > 0.

Remark 2.1. Condition (H1) (iii) can be replaced by a more general monotonicity condition, see

[3, condition (H3”)].
1/p 1/r
lullx = / Dupd)"" ull, = / jul" dz
([, |pulaz) ( )

be the standard norms of WO1 P(Q), and L7 (Q) for r > 1, respectively. For A > 0, we introduce the
functional Jy : X — R as

JA(u):I—lj/gal(z)|Du|pdz+é/ﬂag(z)\Dusz—g/ﬂ\ufdz—/QF(z,u)dz.

Let
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Evidently, J € C'(X,R). Then we have
(Jy(u),v)x~ x _/ 1(2)|DulP~2(Du, DU>RNdZ+/ 2(2)|Du|T"3(Du, Dv)g~dz

—)\/|u\s 2uvdz—/fz u)vdz.

Let A% : WyP(Q) = W1#(Q) and A% : Wy(Q) = W17 (Q) be defined by

(2.1)

(A;l(u),v>x*7x = /Qal(z)|Du(z)|p*2<Du(z),Dv(z))RNdz for u,v € Wol’p(ﬂ),
(Agz (w),v)x+x = /QGQ(Z)‘DU(Z)|q72<DU(Z),D’U(Z)>RNdZ for u,v € V[/'Ol’q(Q)7

where % + ﬁ =1 and l + i, =1. Let V(u) = Ag*(u) + A (u) for all u € WyP(Q).
Proposition 2.2 ([7]). The operator V( ) is bounded, continuous, strictly monotone and of type
(S)4, i.e., if {un} is a sequence in Wy P(Q) such that u, — u in Wy () and

lim sup(V (uy,), upn, — w)x+ x <0,

n—o0
then w, — u in Wy (Q).
We introduce the following sets:
£t ={\>0:problem has at least a positive solution},
~ ={A> 0: problem has at least a negative solution},

Sy ={u:uisa positive solution of (L.1)},
Sy = {u: u is a negative solution of (L.I)}.

Then we have the following main result.

Theorem 2.3. Suppose that (HO), (H1) hold. Then there exists X > 0 such that for 0 < A < X,
(1.1) has at least two positive solutions, two negative solutions, and two sign-changing solutions.

Figure 7?7 shows the positions of six solutions.

FIGURE 1.

Corollary 2.4. If ay(z) =0, then problem (1.1)) is transformed into
—Aptu(z) = Au(2)]*?u(2) + f(z,u(z)) in Q, 22)
ul,, =0, 1<s<gq 2<qg<p<p", A>0, '

which is a p-Laplacian equation. Problem (2.2]) has at least two positive solutions, two negative
solutions, and two sign-changing solutions.
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Corollary 2.5. Ifas(z) =0, a1(z) =1 and p = 2, then problem (L.1)) is transformed into

—Au(z) = Mu(2)|*?u(2) + f(z,u(z)) inQ, 03
ul,, =0, 1<s<2, A>0, (2:3)

Then problem (2.3) has at least two positive solutions, two negative solutions, and two sign-
changing solutions.

To show Theorem [2.3| we need to give some Lemmas. Let’s recall some facts about the spectrum
of the s-Laplacian with Dirichlet boundary condition. Consider the nonlinear eigenvalue problem
—Agu(z) = Nu(2)[*2u(z) in Q,

2.4
=0 on OfN. (2:4)

We say that A is an eigenvalue of (—A,, Wy*(€)) if the above problem has a nontrivial solution

@, known as an eigenfunction corresponding to A. Let A1(s) be the smallest eigenvalue. Then it is

positive, isolated, simple and satisfies

[ Dul§
[l

Xl(s):inf{ cu € Wy (Q),u # 0}

By 1 (s) we denote the positive, L*-normalized eigenfunction corresponding to N (s).

Lemma 2.6. If hypotheses (HO) and (H1) hold, then £+ % () and, for any A € £+, S{ C inty P;.
Proof. For each A > 0, we consider the C'-functional ¥, : Wol’p(Q) — R defined by

! P ! a zfi um)dz — z,u")dz
ﬂA(U):E/gzal(Z)‘Dm dera/Qag(zﬂDu\ d S/Q( e d /QF( ,ut)d (2.5)

for u € WP (Q). Hypotheses (H1) (i) and (iv) imply that

F(z,2) <dy(z" +2") fora.a. ze€Q, V>0, somed; > 0. (2.6)
Using (2.6]), we have
1 A
0r(w) > el - 5 [t de = dy [ () ) d
p s Ja Q
. N (2.7)
> Eaﬂu”’;} = Sdellullx — dsllullx — daflullx,

for all u € W, P(2), where d,da,ds,ds > 0. Let p = ||u] and choose « € (0, pis). We set p = A\
and then from ([2.7) we have

1 d
Oa(u) = —CAP — ZNOSTL _ g \T — @ \°"
P S
-y (2.8)
= [f — 2 )\ale—s) _gaelrop) d4)\a(r—p)])\ap.
P S

Note that a(p — s) < 1 and so if A — 07, then df)\l_a(p_s) + dsA\*TP) 4 g\ (r=P) 5 0. So,
from (2.8)) it follows that we can find Ao > 0 such that

Ia(u) = my >0 forall |Jul|lx = pr =A% A€ (0, ). (2.9)
On account of hypothesis (H1), we obtain
F(z,z) >0 foraa. z€Q, allz >0.
Then we can find ¢ € (0,1) small such that

_ tP _ Iz _ AL
D(tur (s)) < ;HallloollDul(S)lli + Ellazl\ooHDul(S)llg -t <0

Using the Sobolev embedding theorem, we see that ¥,(-) is sequentially weakly lower semicon-
tinuous. Let By = {u € WyP(Q) : |lul|x < pa}, then from the reflexivity of W,”(Q) and using
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the Eberlein-Smulian theorem [27] we have that B, is sequentially weakly compact. So, by the
Weierstrass-Tonelli theorem, we can find uy € B) such that
Ix(uy) = inf[Is(u) : u € By] = Jr(up) < 0=19,(0) = uy #0.
Then, from we see that
0 < luxllx < pa,
= P\ (ur) =0,

(2.10)
= (V(upr),h)x~x = )\/ lul|* " hdz +/ f(z,ul)hdz forall h e WP ().
Q Q
Here we choose the test function h = —uy € Wy"*(Q) and obtain
c||Duy||h <0 = ux =0, uy#0. (2.11)

So, uy is a positive solution of ((1.1)), hence (0, \g) C £+ # 0.
For u € Sj, we have

a a . s—2 :
—Aptu — APu = AMu[*“u+ f(z,u) inQ, 0.

ulyo =
From [II, Theorem 7.1], we have that v € L°°(€). Then, the nonlinear regularity theory of
Lieberman [13] implies that v € P; \ {0}. Invoking [24] Proposition 2.2], we have that u € inty P;.
Therefore S;\r C inty P;. The proof is complete. O

Lemma 2.7. If (H0), (H1) hold, A € &%, uy € SY, and pp € (0, ), then p € L+ and there exists
u, € SI Cinty P1 such that u, < uy.

Proof. We introduce the Carathéodory function

k#(z’x) _ {M|$+|3_2$+ + f(Z7CIZ’+) if x < u)\(z)

= L lua () 2un(2) + F(zun(2) i ua(2) < o, (212)

where 27 = max{0,z}. Let K,(z, %) = [ ku(z, s)ds and consider the C"'-functional

1 1
ou(u) = ];/Qal(z)|Du\pdz + p /Q as(z)|Dulldz — /QKM(z,u)dz for all u € W, ().

From (2.12) it is clear that o,(-) is coercive. Also it is sequentially weakly lower semicontinuous.
So we can find u,, € Wy (Q) such that

0, (uy) = inflo,(u) : u € WP (Q)]. (2.13)
We see that for ¢ € (0,1) small, we have
ou(tua(2))
tp p tq q M S S
< —la1lleo [ |Dua(2)|Pdz + —||lazlleo [ |Dux(z)|%dz — =t (ur(2))’dz — | F(z,tux(z))dz
p Q q Q § Q Q
< 0.
(2.14)
So we have that
op(uy) <0=0,0) = u, #0. (2.15)
From ([2.13), we have
o, (uy) =0 = (V(uu), h)x-x = /Qku(z,uu)hdz. (2.16)

Choosing h = —u,, € W, P (£2), we obtain
|| Du, [Ih <0 = u, >0, uy, #0. (2.17)
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In (2.16) we choose h = (u, —uy)* € Wy(€2). Then we have
V), (= 1) e = [ e, = a)
Q

- /Q (lual*2us + £z, un)) (t — up) *dz

(2.18)
S /(A|UA|572UA + (2 un)) (up —un) T dz
Q
= (V(ur), (up = ur)")x x,
= uy < Uy
We have proved that
uy, € [0,un], u, #0. (2.19)
Then, (2.19)), (2.12)) and (2.16]) imply that
u, € S5 Cinty Py
The proof is complete. O
Remark 2.8. Lemma implies that .# 7T is an interval.
From (H1), we can see that
f(z,x) = Otextfor a.a.z € 2, all z > 0.
Based on this property of f(z,x), we consider the auxiliary Dirichlet problem
—A%y(2) — A%u(2) = Mu(2))*™! in Q,
pru(z) — AgPu(z) = Au(2)) (2.20)

u|89:0, uz=0, A>0.

For this problem, we have the following existence and uniqueness result.

Lemma 2.9. If hypotheses (HO), (H1) hold, then for every A > 0 problem (2.20) has a unique
positive solution Wy,.

Proof. First we show the existence of a positive solution. To this end, we consider the C'-functional
©x : WeP(Q) — R defined by

1 1 A
oa(u) = 7/ a1(z)|DulPdz + f/ as(z)|Dulldz — f/ lut|*dz for all u € WyP(Q).
P Ja qJq S Ja

Since s < g < p, it is clear that

pa(+) is coercive.
Using the Sobolev embedding theorem, we see that ¢y (+) is weakly lower semicontinuous. So, we
can find Ty, € Wy () such that

ox(@) = inf [%(u) Tu € W&”’(Q)} . (2.21)
We can see that for ¢ € (0,1) small, we have
N tP N 1 N AL,
pa(tui(s)) < —llarlloo | [Dur(s)[Pdz + —llazllee [ |Dur(s)["dz — —1 <0.
b Q q Q §

So we have that
oa(@y) <0=p\(0) = @) #0. (2.22)
From (2.21)), we have

PA(@) = 0 = (V(@n), k) xe x :)\/ @t [ . (2.23)
Q

Choosing h = —u, € W,”(Q2), we obtain

c||Duy || <0 = uy\ >0, uy #0. (2.24)
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Therefore 1), is a positive solution of (2.20). Then, the nonlinear regularity theory and Proposition
2.2 [24] imply @, € inty P;. Now we show the uniqueness of this positive solution. To this end,
we introduce the integral functional j : L'(Q) — R = RU {+occ} defined by
. 1,
i) = {11) Jo a1 (z)|Dut/9|Pdz + %fQ a(2)|Dut/9|%dz  if u >0, ul/T € W P(Q)

] (2.25)
+00 otherwise

From Lemma 1[5], we know that j(-) is convex. Suppose that Ty € W,?(Q) is an other positive
solution of (2.20). Again we have Ty € inty P;. So using [21] Proposition 4.1.22, p. 274], we have
2, 2 e 2(Q).

VX U\
If we let h =u§ — v, then for |{| < 1 small we have
uf +th, v} +th € domj = {u € L'(Q) : j(u) < oco}.

So, exploiting the convexity of j(-), we see that j(-) is Gateaux differentiable at @} and at 79 in
the direction h. Using the nonlinear Green’s identity, we have

1 [ —ADT, — AT 1
§@)h) = - / I / X hdz,
Q Q

—q—1
q ud
1 [ —AJ0N — APD 1
7' @)(h) = 7/ v 224 2hdz = 7/ TS hdz.
qJa 73 qJa
A

The convexity of j(-) implies the monotonicity of j'(-). Therefore,

o g . 1 e Ce—an _
0< ') - 7 -0 = ¢ /Q @ - w7 @ - oY) <0,
—> U) = Ux.

This proves the uniqueness of the positive solution uy € inty Py of (2.20) for A > 0. The proof is
complete. 0
Lemma 2.10. If hypotheses (HO) and (H1) hold for A € Z*, then w\ < u for all u € S .

Proof. By Lemma 2.1, we can infer that S;\r Cinty P;. Letu € Sj and consider the Carathéodory
function

At it e S u(z)
Iz @) = {/\u(z)s_l if u(z) < x, (2.26)

where 27 = max{0,z}. We set Lx(z,2) = [; Ir(2,s)ds and consider the C'-functional ¢ :
WyP() = R defined by

1 1
Ya(u) = —/al(z)\Du\pdz%—f/ag(z)|Du|qdz—/L,\(z,u)dz for u € Wy (Q).
P Jo qJo Q

It is clear that 1, () is coercive. Also, it is weakly lower semicontinuous. So, we can find @) €
WP (€) such that

YA(in) = inf[px(u) : u € WyP(Q)]. (2.27)
Since u € inty P, we can find ¢ € (0,1) small such that tu;(s) < u. Also, as before, choosing
t € (0,1) even smaller if necessary, we have

Q/JA(tﬂl(S)) <0 = ’(/J)\(fb\) <0= 1/))\(0) = ay # 0.
From , we have

Choosing h = —i; € Wy"*(), we obtain

e Das|E <0 = ay =0, @y # 0. (2.29)
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Next we choose h = (iy —u)t € WyP(). We have

V@), (@ — u) ") xex = /Q (2 (i — u) " dz
:/)\|u(z)\571(ﬂ>\—u)+dz
Q

< [ NP @ =+ [ feulo) - s
= <V<u)7 (ﬂA - u)+>X*’X7
= u) < U.

So we have
Uy € [O,U], Uy # 0. (2.30)

Then (2.26)), (2.28), and (2.30) imply that @) is a positive solution of (2.20]). Hence
Uy =Uy = U\ < U forallueS;\r.
The proof is complete. O

This lower bound leads us to an existence of the smallest positive solution.

Lemma 2.11. If hypotheses (HO), (H1) hold and A € £, then problem (L.1) has a smallest
positive solution u} € inty P (that is, u} € S;‘, ul <u forallue S;f)

Proof. From the proof of |22 Proposition 7], we know that Sj\' is downward directed (that is, if
Uy, U € S;‘, then there is u € S;f such that u < w1, v < ug). Invoking [, Lemma 3.10, p. 178],
we can find a decreasing sequence {u, }neny C Sf such that

inf S;\r = inf u,.
neN
We have
<V(’U4n)7h>X*’X = )\/

un)® thdz + | f(z,un)hdz forallhe W Lp(Q , alln e N 2.31
0
Q Q

Uy <up, <up forallnmeN. (2.32)

In (2.31) we use the test function h = u, € Wy?(Q). Using (2.32) and hypotheses (HO), (H1)(i)
we obtain

¢llunllx < ¢ for some ¢ =c(A) >0
— {Un}nen C Wy P(Q) is bounded.
Then, for at least a subsequence, we have
Uy — ul in Wy P(Q),  up — uf in LF(Q) for 1 <k < p*, un(2) = u}(2) ae. on Q,
lun(2)] < h(2) a.e. on Q, for all n > 1, with h € L¥(Q).
In (2.31)) we choose h = u,, — u}, pass to the limit as n — oo and use . We obtain
lim (V(up), un — uy)x+ x =0.

n— oo

Then by Proposition 2.2 we obtain

(2.33)

U, — ul in Wy P (Q). (2.34)
If in (2.31) we pass to the limit as n — oo and use (2.34]), then we obtain
(V(uy),hyx+x = )\/ lu |5~ 2u} hdz +/ f(z,ul)hdz for all h € W, P().
Q Q
Also, for (2.32) we have Ty < u}. Therefore,
uy € Sy and uj =infSy.

The proof is complete. O
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Similarly, for S}, we have the following conclusion.

Lemma 2.12. If hypotheses (HO), (H1) hold, A € Z~, vy € Sy, and pn € (0, ), then p € £~
and there exists v, € S, C inty (—Py) such that vy < v,.

Lemma 2.13. If hypotheses (HO), (H1) hold and A\ € £~, then problem (1.1 has a biggest
negative solution vy € inty (—Py) (that is, vy € Sy, v < v} for allv € Sy ).

The ideas for the proofs of Lemmas come from [24]. Now we take A € £+ N.£~.

Lemma 2.14. For each 0 < X\ < ), there exist Uy € inty Py, Oy € inty (—Py) such that Uy < uy,
U; < ﬁ)\7
7Aglﬁ)\ - AZQﬂ)\ < /\‘7’2)\‘872ﬂ)\ + f(Z,ﬂ)\) mn

2.35
uy =0 on N ( )
and )
—ANTDy — A%7\ > Moa|* "0\ + f(2,0 mn
p O = AGUN > A0ATTT0N + [(2,03) (2.36)

Uy =0 on 9N.

Proof. For each 0 < A < A, we take u < A. Let u} C Sj be the smallest positive solution. Then
by Lemma there exists u, € Sl‘f C inty P such that u, < u}. In {2 we have

—Aftuy — AgPuy, = prlug P+ f (2 u) < Ml 2uy + f(2,0).
Let vi C Sy be the biggest negative solution. Then by Lemma 2.6 there exists v, € S, C
inty (—P1) such that v} < v,. In Q we have

—Aptv, — APPv, = T2, 4 F(z0.) > Moa" 720, + f(z,0,).
Let u) = u, and ) = v,. The proof is complete. O
Lemma 2.15. If (HO) and (H1) hold, then for each 0 < A\ < X, there ezist Uy € inty P; and
Uy € inty (—Py) such that

7A;1ﬁ)\ — AZQQ)\ > /\‘ﬁ)\‘si2a)\ + f(Z,ﬂ)\) mn

2.37
ux=0 ondN ( )
and
7Aglf17)\ — A?f% < )\|5)\|5725)\ + f(Z,E)\) mn (2 38)
vy =0 on 0N. '
Proof. For any 0 < A < A, we take A < \g < X and Uy, € S:\"O Cinty P;. In Q we have
— A% un, — AfPuy, = Xolux,|" P, + F(zux) > A, [P ua, + f(2, )
Taking vy, € Sy, Cinty (—P1) In ©Q, we have
—AS vy, — Ay, = Aoloa " 2o, + f(2,00) < Aloae " 2ux, + f(2,00)-
Let Uy = uy, and Uy = vy,. The proof is complete. O

Now we introduce an auxiliary operator. For 0 < A\ < 400, v € Wy (), define u = Ay (v) €
WO1 (Q) to be the unique weak solution of the equation

—Ajtu(z) — AZu(z) = MNo(2)]°72v(2) + f(z,v(2)) in Q.
We can see that the set of fixed points of A is exactly the set of critical points of J.
Lemma 2.16 ([3]). There exist positive constants ci,...,cq such that for all £,n € RY,
1E1P72€ — In[P~*n] < e (€] + )P ~21€ —nl,
(1€/P72€ = nP=2n) - (€ = n) = e2(I€] + )P ~2|€ — nl?,
1€[P726 = InlP~*n] < esl€ —nlP™ ifl<p<2,
(1€[P=2¢ = [nl"=2n) - (€ —n) = cal€ =" if p> 2.
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In the following, we introduce the famous Minty-Browder Theorem.

Lemma 2.17 ([4]). Let X be a reflexive Banach space. Let A : X — X* be a continuous nonlinear
map such that
<A’U1—A1)2,’Ul—'l}2> >0, Yo, v € X, v 74'02,
and
i (Av,v)
lvll—eo o]

Then for every f € X* there exists a unique solution u € X of the equation Au = f.

Lemma 2.18. The operator Ay : Wol’p(Q) — Wol’p(Q) is well defined, compact and continuous.
Proof. We define ® : W, ?(Q) — R by

B(u) = 1/ al(z)|Du|sz+1/ a5(2)| Duldz.
pPJa q

Q
Clearly ®(u) is a C" functional on W, *(2). By Lemma [2.16, we infer that

(@' (ur) — D' (ug), ur — ug)x+ x

= / al(z)|Du1\p_2<Du1,Du1 — Dug)dz —|—/ ag(z)|Du1\q_2<Du1,Du1 — Dug)dz
Q Q

— / a1(2)|Dus|P~%(Duy, Du; — Dug)dz — / az(2)|Dus|*?(Dug, Duy — Dus)dz.
Q Q
= / a1(2){|Du1|P~?Duy — |Duz|P~2Dug, Duy — Dus)dz
Q
+/ as(2)(|Duy|* 2 Duy — |Dug|?? Dug, Duy — Dug)dz
Q

> E/ c4(p)|Duy — Dug|Pdz + 04(q)/ as(z)|Duy — Dusl9dz
Q Q
> cl|ur — uz|?,

which shows @ is strictly monotone. Due to (H1)(i), we can see that for fixed v € W, ()
the mapping ¢ — A [, |[v|* 2vedz + [, f(z,v)¢dz is a continuous linear functional on WyP(Q).
According to Lemma [2.17] there exists a unique u = Ay (v) satisfying

(@' (u), ) x= x = )\/Q [v|*2vpdz + /Q f(z,0)pdz, for all € WyP(Q).

Therefore, Ay is well defined.
Next we prove that Ay : X — X is compact. Take {v,} C X and ||v,||x < Mi. So we can
assume that, up to a subsequence, there exists v € X such that

v, = vin WyP(Q), w, —ovin L¥F(Q) for 1 <k <p*, wn(z) = v(z) ae. on Q
and |v,(2)] < g(2) a.e. on €, for all n > 1, with g € L*(Q). Let u, = Ax(v,). Then we have

(V(un), o) x+x = )\/ [vn|* 20 pdz +/ f(z,vn)pdz,  for all p € WyP(Q).
Q Q
We choose ¢ = uy,. Then by (H0), (H1)(i) and the Holder inequality we have that
cllun % < )\/ [V |* 20U dz +/ f(z,00)undz
Q Q

< )\/ |vn|s_1|un|dz+d1/(1+ (") |2
Q Q

< dg/(l Floml?" =) funldz
Q

p*—1

<dof [t ol N F ) T
Q

p*
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< d4</(1+ Ivn|p*)d2) " Hun p*
Q
< ds(1+ [loallp- ") llunllpe-
So by the Sobolev inequality we have
pro1 pro1
[unllx < do(1+ llvnll,2™" ) < d7(L+ [Jonll ) (2.39)

This implies {u,} is bounded in X. So there exist a subsequence{u,, } C {u,} and u € X such
that
Up,, — win Wy P(Q), up, = uin LH(Q) for 1 <t < p*,  up, (2) = u(z) a.e. on Q

and |uy, (2)] < h(z) a.e. on Q, for all k > 1, with h € L*(2). From the above convergence
properties, we obtain

/ [Un, |57 20, (U, — u)dz — 0 and / f(z,vn,)(Up, —u)dz =0 as k — oo.
Q Q
Then

lim <V(unk)7unk - u>X*,X = klim (>‘/ ‘vnk|s_2vnk (U‘nz. - u)dz +/ f(’z’Unk:)(unk - u)d’z) =0.
Q Q

k—o0 —00

It follows from Proposition that u,, — u in Wy (Q).

In the following, we prove that A, is continuous. Assume that v, — v strongly in WO1 P(Q).
Setting u, = Ax(v,) and u = A,(v), we need to show ||u, — ul|x — 0 as n — co. From (2.39),
we can infer that {u,} is bounded in X. Up to a subsequence, we may assume that u, — u in
WyP(Q), up — win L*(Q) for 1 < k < p*, un(2) = u(z) a.e. on Q and |u,(z)] < h(z) a.e. on Q,
for all n > 1, with h € L*¥(Q2). By (H1), we can infer that

lim (@' (up) — @' (u), un — u) x+ x

= nlgrgo ()\/Q(|vn|s_2@n — [0]*72%0) (up — u)dz + /Q(f(z,'vn) — f(z,0))(upn — u)dz) = 0.

It is easy to show that
Jun — ull < (@ (un) = ' (u), un — u)x- x,

where ¢ > 0. So lim,,_yo0 ||uy, — ul/%; = 0. Therefore, ||u, — ul|x — 0 as n — co. The proof is
complete. O

Lemma 2.19. The operator Ay : X — L>(Q) is bounded.

Proof. Let D C X be a bounded set of X. Then there exists M; such that for any v € D,
lv]|x < Mj. Set uw = Ax(v). From the proof of Lemma [2.18] we obtain

*

pr-1 p -1
Jullx < di(l+vl2") <do(l+ ol X7). (2.40)

By Sobolev inequality we have

p -1
|ulp < ds(1+[Jvfl ™).
From [II, Theorem 7.1, p. 286], we infer that Ay : X — L°(Q) is bounded. The proof is
complete. O

Lemma 2.20. There exists 0 < a < 1 such that Ay : L®(Q) — Cy*(Q) is bounded.

Proof. Let D C L*°(Q) be a bounded set of L>°(€2). Then there exists M; > 0 such that for any
v € D, ||v||oo < M;. Take any v € D. Let u = Ax(v). By (2.40) and Sobolev inequality we have

p*—1 *—1

)<l ) < Mo

|ulpr < e(1+lv

P
p*
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From [I1, Theorem 7.1, p. 286,], we obtain ||u|]lcc < Ms. The nonlinear regularity theory of
Liebermann [13] implies that there exists a € (0,1) and My > 0 such that

we Cy(Q) and |luf g < Ma, (2.41)
for all u satisfying u = Ay (v) and ||v||cc < M7. The proof is complete. O

Lemma 2.21. Let v € L>®(). Then

v =y = A\(v) >y, (2.42)
v< Uy = Ax(v) < Uy, (2.43)
v < U = A\(v) K Dy, (2.44)
v > (v) (2.45)

= A)(v) > u,.

3
>

Proof. Let u = Ay(v) for any v € L>°(Q2) and v < uy. Obviously, the operator A, is an increasing
operator. Then we have

u = A)\(’U) < A)\(it\)\) < ﬁ,\.
Take £ > 0. So we obtain that

—AS Ty — APy + E[Un [P Un > AU T2 + f(2,Un) + [P TN

> Mol 2v + f(z,0) + E[an Py (2.46)
> —Afu — APPu+ €lu|P~2u.

Since uy € inty Pp, from (2.46) and [0l Proposition 3.2 ], we conclude that u = Ay (v) < Uy.
Similarly, we can infer that (2.42)) (2.44) (2.45)) hold. The proof is complete. O

Lemma 2.22. For v e Wy*(Q), we have
(JA(v),v = Ax(0)x+ x = erllo = Ax() %
and
1@ < e2 (ol + 1A @172 + (ollx + 1Ax@)1)772) (o = Ax@)lx),
where c1,co are positive constants.

Proof. Set u = Ax(v). By the definition of Ay and (HO) we obtain
(Ja(v),v —uyx« x = / 1(2)|Dv|P~2(Dv, Dv — Du)dz —|—/ 2(2)|Dv|?2(Dv, Dv — Du)dz
—)\/ [v|$ 2 v—udz—/fz v)(v —u)d
= /Qal(z)\DvV’_Z(Dv, Dv — Du)dz + /Q az(2)|Dv|""2(Dv, Dv — Du)dz
- /Qal(z)|Du|p_2<Du, Dv — Du)dz — /Qag(z)|Du|q_2<Du, Dv — Du)dz.
= /Q a1(2){|Dv|P~2Dv — | Du|P~2Du, Dv — Du)dz
+ /Q az(2){|Dv|9"2Dv — |Du|?*"? Du, Dv — Du)dz

> ¢ co(p) / |Dv — Dul|Pdz + Cg(q)/ az(z)|Dv — Dul%dz
Q Q

> o — ullk
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and
(@ e)x-x| = | [ a@Dup2D0, D)z + [ ax(a)|Defr*(Do. D)z
Q Q
f)\/ |v|572vg0dzf/f(z,v)gadz‘
Q Q
_ ‘ / a1(2)| Dv[P=2(Dv, Dp)dz + / as(2)|Dv|72(Dv, Dy)dz
Q Q
= [ a@IDup*Du, Dpdz ~ [ aa(2)|Dult*Du, Dp)iz
Q Q
= ‘/al(z)<|Dv|p_2Dv— |Du|P~2Du, Dp)dz
° (2.47)
+/ as(2)(|Dv|9™? Dy — |Du\q_2Du,D<p>dz‘
Q
< 03/ |[Dv[P~* Dv — [ DulP~*Dul||Dy|dz
)
+C4/ |[Dv|9"2Dv — | Du|?"? Du||Dy|dz
Q
. p=1
<03(/ ‘|Dv|p_2Dv—|Du\p_2Du|dez) " ellx
Q
+C4(/ ’|Dv|q_2Dv - |Du|q_2Du’%dz)q%l\Dcp|q
Q

for any ¢ € Wy*(2), where (-,-) denotes the inner product in RY. From Lemma we obtain
that

p—1

(/ |[Dv[P~*Duv — \Du|p_2Du’ﬁdz> !
Q

p—1
< c(/ (|Dv| + |Du|)p(17p:12) |Dv — Du|177%1dz)T
o (2.48)
p>2 1/p
< c(/ (|Dv| + |Du|)pdz) (/ |Dv — Du|pdz)
Q Q
< () (llollx + llullx)P~2[lv — ullx.
Similarly, we infer that
PN
([ IIpelr2Do~ 1Dupr2Dul™dz) T < clalells + ) 2o~ ullx. (249
Q

By ([2.47), (2.49), (2.49)), we can show that
175 )llx+ < ea(([vllx + [ AN@)1x)P 2 + (Jollx + [Ax()]1x)7*)(lv = Ax(v)l|x).-
The proof is complete. O
Let Z=C"*(Q). We define
Di={veY:vy<v<un}, Di={veY:v=u}, Ds={veY:v<u}

Let D; be the closure of D; in X. Let Ky = {z € X : Ji(u) = 0}. Note that K\ C Z is the
regularity results from Lemma [2.19 and Lemma [2.20

Lemma 2.23. For any A € (0, ), there exists a locally Lipschitz continuous operator By : Xo — Z
with the following properties:

(i) Forv € Xo and ¢ from Lemma we have
1
v = Ax@)llx < flv = Ba(v)llx < 2[lv = Ax()llx,

(J3(0),0 = Ba(@)x-x > T lv = @)l
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(ii

)
(iii)
(iv)

(v) B

Proof. For any v € X, setting

B)\(Dl n Xo) Cinty D; fori=1,2,3;
B)\(PﬂXo) C Pl, B)\(—PQXU) C (—Pl),'
By : Xo — L*°(Q) is bounded;

A (XoNL®(Q), || lleo) = Z is bounded.

1
Ar(v) = S llv = Ax(©)llx (2.50)
and setting
C1 _ _ —9\ —

Aa(v) = 5 -llv = A@)IE (ollx + 1Ax@))x)P 72 + ([vllx + [ A@)lx)*) 7 (2:51)

we choose y(v) € (0,1) such that
[Ax(u) = Ax(w)]x < min{Aq(u), Ay (w), Ag(u), Ax(w)} (2.52)
holds for every u,w € N(v) := {x € Wy P(Q) : ||z — v||x <~(v)}. Let U be a locally finite open
refinement of {N(v) : v € Xo}. We refine ¢/ in order to construct the required operator B,. For
any U e U, if UN Dy # 0, UN D3 # (), then we replace U in the covering U by the two open sets
U\ Dy ~amd U\ Ds. NThe new covering is U*. We need to refine U* once more. For any U C U*,
fUNDy #0,UND3=0and UnN(—P) # 0, then we replace U in the covering &* by the two
open sets U\ Dy and U\ (—=P). For any U CU*,if UND3 # 0, UN Dy = and U N P # (), then

we replace U in the covering U* by the two open sets U \ D3 and U \ P. The new covering is W.
We refine W. For convenience, we set Dy = P and D5 = —P. For any V C X, we define

Iy ={ie{1,2,3,4,5}: VND;#0}.

For any V.C W, if Iy = {1 4,5} and VN Dy N DyN D5 = (), then we replace V in the covering W
by the two open sets U\D4 and U\D5 For any V.C W, if Iy = {1,2,4} and VN D;NDsy =0,
then we replace V' in the covering W by the two open sets U \ Dy and U \ Dy. If Iy = {1,3,5}
and V' N Dy N D3 = 0, then we replace V in the covering W by the two open sets U \ D; and
U\ Ds. The new covering is W*. We refine W* once more. For any V € W*, if Iy = {i,j} with
i# jand VN D;N Dj = (), then we replace V in the covering W* by the two open sets U \ D;
and U \ D;. The new covering is V*. To make By satisfy (iv) and (v), we need to refine V*. If
Iy ={2,4} and if

inf o]l < inf [v]looc —1=: By
veEVNL>(Q) veEVND2NL>®(Q)

for some V' € V*, then we replace V in the covering V* by the following two open subsets:
VA\{v € L®(Q) : |[vlo < By} and V\ Dy;
If Iv = {3,5} and if

inf olle < inf oo — 1=t By
vEVNL>(Q) vEVND3NL>®(Q)

for some V' € V*, then we replace V' in the covering V* by the following two open subsets:
V\{veL* Q) : ||[v]w < Bv}and V\ Ds;
We obtain a new covering V**. We refine it. If Iy = {i} with ¢ =4 or 5 and if

inf  Jollo < inf  fufle — 1= By
vEVNL>®(Q) veVND,;NL>(0)

for some V' € V**  then we replace V in the covering V** by the following two open subsets:
VA {veL®(Q): |v)lo < By} and V\ Dy

otherwise V is left unchanged. The new open covering V obtained in this way from V** is a locally
finite open refinement of V**, hence of {N(v) : v € X}, and in addition, any V' € V satisfies:

VN D;#0and VN D, # 0 implies VN D; N D; # 0,

inf lvlloo > inf lvlloo — 1 if Iy = {i} with i =4, or 5,
vEVNL>(Q) veEVND;NL>(Q)
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inf lv]oo = inf lvl|eo — 1 if Iy = {2,4},
vEVNL>(Q) vEVND2NL>®(Q)

inf lv]|oo = inf lvlloo — 1 if Iy = {3,5}.
vEVNL>=(Q) vEVND3NL>®(Q)

Now we are ready to construct the operator By. Let {my : V € V} be the standard partition of
unity subordinated to V defined by

()= (Y avt) av()

vevy

where ay (v) = dist(v, Xo \ V). For each V' € V choose ay € V such that
VNL=(Q d o < inf oo+ 1 2.53
oy €VAL®) and favle< ik o+ (259)

if IV = @, and
ay € Vier, D;NL®(Q) and  [lay|le < inf [vlloo +1 (2.54)
VeV ) DiNL>(Q)
i€y

if Iy # (). Now we define B) : Xo — X by
Ba(v) = > my(v)Ax(ay).
vey

As a consequence of the Lipschitz continuity of my, the locally finiteness of the covering V and
the fact Ax\(L>°()) C Z, By : Xo — Z is locally Lipschitz continuous.
For each v € X, we have

1B:(0) = As@)llx = | 3= mv () Aa(av) = 3 wv(0)Ar(v)|

vev vey * (2.55)
< Y v )][Arar) = )]
vey

By (2.50), (2.51)), (2.52)), and (2.55)), we infer that

[1Ba(v) = Ax(v)][x < %Ilv = A()lx,

c B - R
[ Br(v) — Ax(v)lx < 272”“ — A5 <(||v||x + [ A@)[[x)P 72 + (lollx + A5 (0)]|x)? 2) :
Thus, we have
o= Br@)lx < lo ~ Ax@)llx +143(0) = Br(0)lx
1
< flo — Ar@)lx + g llo — Ar()x
< 2o — A3(v)]x
and
1
lv = Ax()llx < llo = Ba(v)x + [1Ba(v) = Ax()llx < llv = Ba(v)[x + 5 llv = Ax(v)]x-
So )
2o = Ar@)lx < o~ Ba@)llx < 20— Axw)x.
And by Lemma [2.22] we obtain
(J3(v),v = BA(v))x+,x = (Jy(v),v — Ax(v)) x+ x — [JA(0) [ x| Bx(v) — Ax(v)]1x
1
> eiffo = Ak — gallv = AN@)lk (2.56)

a1
= Lo — @)l

Thus (i) is proved.
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If v e D;N Xy with ¢ = 1,2,3, then v € D; NV for any V with my(v) # 0. From the
construction it follows that ay € V N D; N L>°(Q) for any V with 7y (v) # 0. This implies
B (v) € conv Ay(D; N L*®(Q)). So by Lemma (ii) is proved.

If v € PN Xy, then v € PNV for any V with 7y (v) # 0. From the construction it follows
that ay € VN PN L>®(Q) for any V with my(v) # 0. Since Ay is an increasing operator and
Ay L®(Q) = Z, Ax(PNL*>®(Q)) C Py. This implies By(v) € P;. So Bx(PNXy) C P;. Similarly,
we can infer that By(—P N Xy) C (—Py). Thus (iii) is proved.

To prove (iv), we suppose v € Xy and |[v]|x < dy. If 7y (v) # 0, then v € V. Since v,ay € V C
N (u) for some u € Xp, and since v(u) < 1 we have

lav —vllx <llav —ullx + [lu—v]x <2

and thus |lay||x < di +2. So [|[Ax(ay)|leo < do for all V € V with 7y (v) # 0 by Lemma 2.13.
Then we have
IBx@lle £ 3 7 @)l Ax (@)oo < ds.
vey
It remains to prove (v). Suppose v € Xy N L¥(Q) and ||v]|ee < d3. If my(v) # 0 then
v eV NL®(Q). If Iy =0, then

lavieo < inf  fjvffoc +1 < ds+ 1.
veEVNL=(Q)
If Iy = {i}, i = 4,5, then
lav e < inf [V]oo +1<  inf  fvfloo +2 < d3 + 2.
vEVND;NL>= () vEVNL>(Q)
If Iy = {2,4}, then
lav|loo < inf V]| +1 < inf lv]|oo + 2 < d3 + 2.
vEVNDLNL=(Q) vwEVNL>®(Q)
If Iv = {3,5}, then
lav oo < inf V]| +1 < inf lv]|oo + 2 < d3 + 2.
veEVND3NL>®(Q) vEVNL>®(Q)

If Iv = {4,5}, then ay = 0. Obviously, |lav || < d3.

If Iy = {1},{1,4},{1,5},{1,4,5},{1,2,4},{1,3,5}, since D; N L>°(Q) is bounded in L>(),
we have [lay |« < ds. In any case, by Lemma [2.20 we have || A\ (av)||z < ds for any V € V with
my (v) # 0 and

IBx()llz <Y wv(0)|Ax(av)l 2 < ds.

vev
The proof is complete. O
For v € Yo =Y \ K C Xy we consider the initial value problem, both in X, and in Yj,
do
— = —0o(t B t
= —o(t,0) + Balo(t,0), -

o(0,v) =

Since B) : X¢ — Z is locally Lipschitz continuous, the solution of considered in Xy and
the solution of considered in Y] are exactly the same. Let o(¢,v) be the unique solution
of with its right maximal existence interval [0,7(v)). From Lemma we infer that
Ia(o(t,v)) is strictly decreasing in ¢ € [0, 7(v)).

Lemma 2.24. Ifv € D;\ Ky, then o(t,v) € inty D; for 0 <t < 7(v).
A proof of the above lemma can be found in [10].
Lemma 2.25. For each b € R, there exists a constant cs = c3(b) > 0 such that

[ollx + [Ax(0)[[x < es(1+ [lv = Ax(v)[[x)
holds for every v € X with Jx(v) < b.
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Proof. For v € X, we have

1) = L) xex = (2 -2

% - %) /Qal(z)|Dv|sz+ (é - %) /QGQ(Z)|DU|‘1dZ
+ (% - %) /Q \v|sdz—|—/Q (%f(z,v)v - F(z,v))dz.

If J\(v) < b, then (H1)(ii) implies
ol < di(+ ol + 15@)lx-
Then using Lemma we obtain
ol < da (1 + olix + (Clollx + 14x@) 107~ + (lollx
+ 143 (@)1)772) llo = Ax@)llx vl x ).
Then Young’s inequality gives

ol < dz(1+ ol + CE) (vl

1
m

vllx)-

1A @172 + (lellx + 1A @)Ix)72)" [0 = Ax@) I + <ol ),

1

17

(2.58)

(2.59)

(2.60)

where % + 7 =1, € > 0 is arbitrarily small, C(e) = (ep) 7'/ /p'. We take ¢ > 0 sufficiently small

such that doe < 1. Then we have

ol < ds(1+ ol + (vl + 1Ax@ )72 + (ollx + 143 @)1072)" o = A @)IF).

Obviously, there exist some positive constant dy, ds such that
daflvll —ds < [[oll% — dallvll%-

Thus,

ol < do(1+ (el + 143@) )7 + (lollx + 143 @)1x)72) " o = Ax@)I%)

and so

ol < e (14 (ol + 1A @172 + (ollx + 1A@I1072)" o = 4@IE?). (@61

Using (2.61)), We infer that

[Ax(@)][x < flv = Ax(v)llx + llvllx

’

’ 1—2
= v = @5l = A@)llx * + vl

< o =A@ (lollx + 14 @) 1) + [lvllx

/

/ p'/p
= llo = @I ((lollx + 1 AA@Ix)72)" " + ol

; p'/p
< o= AA(U)llgc/p((llvHX + 1A 1x)P7% + (ol x + HAA(U)HX)H) + llvllx

’

< ds (14 (ol + IAN@) P+ (ol + 14> @) 1x072)" o = Ar) 157

Thus, we have

[ollx + [Ax(@)lx < dg(l + ((Ilvllx +1AN@)Ix)" 7 + (vl x

CA\P /P /
+14x@) 1)) o = As@)IR”).
Using Young’s inequality again, we have

[ollx + [ Ax ()] x

SN—
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< da (142 (ol + 1AA@I072 + (ol + 1A @I)72) 7 +CElo - 4wl )

< dy (14 @) ((lollx + 1Ax©)1x) + (lollx + 1143 (0)]1x)772 ) + CE)lo = Ax@)]lx )
We take &’ > 0 is sufficiently small such that dgc(p)e’ < 1. Then

lollx + 1 Ax@)lx < dio(1+1lv = Ax(@)llx + (lollx + 143 (0) )77
Obviously, there exist some positive constant dy1, di2 such that
dua(lollx + 14x@)1x) — d2 < lollx + 43 @)x — diolllollx + 14x @) 1) 3.
So there exists a constant c¢g = c3(b) > 0 such that
[ollx + [|Ax(0)[[x < es(L+ [lo = Ax(0)][x)-

The proof is complete. O
Lemma 2.26. For each A\ > 0, Jy satisfies the Palais-Smale condition in X.
Proof. Let {v,} C X be such that |Jy(v,)| < M; for some My > 0 and J4(v,) — 0in Wo_l’p/(Q) =

WyP (Q)* (% + i =1) as n — co. We first claim that {v,} is bounded. From |J)(v,)| < M1, we

have

1 1
*/a1(2)|Dvn|de+*/CLQ(Z)|DUn|qu—é/ |vn\sdz—/F(z,vn)dz<M1. (2.62)
P Ja qJa s Ja Q

From Jj (v,) = 0, we have |(J}(vn), vn)x+ x| < ¢||vn||x for some ¢ > 0, namely

f/ CLl(Z)‘D’UnV)dZ*/0Q(Z)|D’Un|qd2+)\/ |vn\sdz+/ f(z,vp)vndz < cljop||x.  (2.63)
Q Q Q Q

By (H1) (ii), for some ¢; > 0 we have
/ (f(z,v0)vn — mF(2z,v,))dz 2 —c;. (2.64)
Q

Then by (HO), (262), [€63), and €5, we have
m
(? - 1)a|vnH§( <mMy + e1 + cl|vnllx + Acal|vnl-
Since m > p > s, we infer that {v,} C WO1 (Q) is bounded. Going if necessary to a subsequence,
we assume that
vy = v in WeP(Q), v, »ovin L¥F(Q) for 1 <k <p*, wn(z) = v(2) ae. on Q
and |v,(2)] < g(2) a.e. on , for all n > 1, with g € L*(Q). We can deduce from ||J5 (v,)| x+ — 0

and v, — v that [(J}(vp),vn — V) x+ x| = 0 as n — 4o00. This reads

(V(vn),vn —v)x+ x — )\/ |Un|3_2’l}n(1}n —v)dz — / f(z,vn) (v, —v)dz| = 0 as n — +oo.
Q Q

We have
)\/ [V * 20 (v, — v)d2 —|—/ f(z, ) (v, —v)dz = 0 asn — oo,
and so ’ "
nli%rrgo<V(vn),vn —v)x=x =0.
From Proposition we can deduce that v,, = v in WO1 "P(Q). The proof is complete. (]

Definition 2.27 ([I5]). A nonempty subset D of Y is called an invariant set of descending flow
of (2.57) if o(vg) C D for all vy € D, where o(vy) = {o(t,v9) CY :t € [0,7(vg))}
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Definition 2.28 ([15]). Let M, D C Y be invariant sets of descending flow of (2.57) with D C M.
Denote

Cr (D) ={vo :vg € D or vy € M\D and there exists ¢’ € (0,7(vg)) such that o(t',vg) € D}.
If D = Cp(D), then D is called a complete invariant set of descending flow of (2.57)).

Lemma 2.29 ([I5]). Let G C Y be a connected and invariant set of (2.57) and D be an open
invariant subset of G. Then the following assertions hold:

(1) Cq(D) is an open subset of G;
(2) 0gCq (D) is a complete invariant set of descending flow of (2.57)).

Lemma 2.30 ([28]). Assume U is bounded connected open set of R? and (0,0) € U, then there
exists a connected component T of the boundary of U, and each one sided ray I through the origin
satisfies INT! # 0.

We set
Glz{ueY:'ﬁ,\<<u<<ﬁA}, GQZ{UEY:5A<<U<<@\)\}.

Proof of Theorem[2.3 For convenience, we divide the proof into four steps.

Step 1. There exist a positive solution u; € G and a negative solution uy € Ga. For each
A € (0, ), we introduce the Carathéodory function

B Mot 5722t + f(z,21), z < Ux(2),
(e, @) = {)\ﬂ,\(z)ﬁ_ga,\(z) 4 f(z00(2), Ta(2) <z, (2:65)

where 27 = max{0,2}. Let K\(z,2) = [ ka(z,s)ds and consider the C' functional ¢y :
WyP(Q) — R defined by
1
O(u) = —/ a1(z)|DulPdz + ;/ as(z)|Dul?dz — / Kx(z,u)dz, Yue W,P(Q).
Q Q Q
It is clear that {)(+) is coercive. Also it is sequentially weakly lower semicontinuous. So, we can
find uy € W, ?(Q) such that
Ca(un) = inf [Ga(u) 1 u € WyP(Q)]. (2.66)
We see that for ¢ € (0,1) small, we have
O(tur(s)) <0 = O(ux) <0=00(0) = uy #0.
From ([2.66)), we have
Cun) =0 = (V(ux), B)x-.x :/k,\(z,u,\)hdz. (2.67)
Q

In (2.66|) first we choose h = —u), € WP (€2). We obtain
|| Duy || <0 = ux >0, ux #0.

Next we choose h = (uy —Ux)" € Wy P(Q). We have

(V(uy), (ux — n)*) = / Fa (2, ux) (s — ) *dz

= / N (2)*H(uy — uy) Tdz +/ f(z,0x(2)) (ux — ux)tdz
Q Q

<V (@), (ux —ua)™)
— Uy < a,\.
We have proved that
uy € [O,a)\], uy # 0. (2.68)
Then, (2.65)), (2.67), and (2.68]) imply that u, is a positive solution, and by Lemma we have

u) € G1. We denote this solution as u;. Similarly, for G2 we obtain a negative solution us.
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Step 2. There exist a positive solution ug € dp,Cp,((inty D1) N D3) and a negative solution
ug € 0p,Cp,((inty D1) N D3). First we consider the set Cp,((inty D1) N Dy), which is an open
subset of Dy. Let e1,e5 € Y be linearly independent and denote Y7 = span{ey,es}. Clearly, (H1)
(ii) implies

F(z,xz) 2 cylz|™ —cs forzeR
for some positive constants ¢4 and ¢5. So we have

1 1
J,\(u):];/Qal(z)|Du|pdz—|—g/ﬂag(z)\Dquz—%/Q\ufdz—/QF(z,u)dz.

A
< Ci’/ |Du\pdz+c—4||Du||g——/ |u|3dz—/ cs|ul™dz + .
P Ja q S Ja Q

This implies that if u € Y7 and ||u|ly — 400, then Jy(u) — —oo. Therefore, Cp, ((inty D1)NDsy) #
Dy and 9p,Cp, ((inty D7) N D2) # (. By Lemma [2.29] we have 0p,Cp,((inty D1) N Ds) is an
invariant set of descending flow of (2.57). In addition,

(2.69)

inf I(u) =>d:= inf Ja(u) > —oo.
uG@DQCDQ((inty Dl)ﬂDg) )\( ) ue(inty Dl)ﬂDg A( )

Take ug € dp,Cp, ((inty D1) N D3). So we have
o(t,up) € Op,Cp, ((inty D1) N D) for 0 < ¢t < 7(up).
Since Jx(o(t,u)) is strictly decreasing in ¢t € [0, 7(u)), we obtain
d < In(o(t,ug)) < Ia(ug) for 0 <t < 7(ug). (2.70)

Next we prove that there exists ug € K and an increasing sequence (t,), with ¢, — 7(ug) such
that limy, 0 |0 (tn, uo) — usl|x = 0. By (2.57) and Lemma for 0 < t1 < t9, we have

lo(ta,u0) = oftr,uo)x < [ oo u0) = Ba(o(s, u) xds
. (2.71)
< 2/ llo(s,up) — Ax(o(s,up))||xds.

t1
At first, we assume 7(ug) < +00. As a consequence of the Holder inequality we have

to 1

(s u0) — Ax(o(s,uo))Feds) " (t2 — 1'%,

[ ot u0) — axiots, et <

t1 ty

Thus, (2.57) and Lemma imply

/ 2 lo(s,u0) — Ax(0(s,u0)) || xds < dy(Ja(0(t1,u0) — Ja(0 (b2, 1)) /P (ts — 1) 7.

ty

In view of (2.70) and the finiteness of 7(ug), we see that

to
lim / llo(s,ug) — Ax(o(s,up))||xds = 0.
t1,t2—7(u0)—0 Jy,
So by there exists uz € X such that lim;_;(yy)—o [lo(f, uo) — usl|x = 0. Since [0, 7(ug)) is
the maximal interval of existence of o(t,ug) in Xy, we have ug € K.
It remains to consider the case 7(ug) = +oo. By and Lemma 2.17 there exists an
increasing sequence {t, } with ¢,, — +oo such that

d
0 < dzflo(tn, uo) — Ax(o(tn, uo))llx < = Ja(0(t uo))

Now {o(tn,up)} is bounded in X by Lemma 2.19. Since Ay : X — X is a compact operator it
follows that

— 0.

t=ty

Jim{|o(tn, uo) = usllx = lim [|Ax(o(tn, o)) — uslx =0
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for some uz € K. Next we prove that lim, o ||0(tn,u0) — usl]ly = 0. We first claim that
{o(t,up) : 0 < t < 7(up)} is bounded in X. Suppose that ||o(t,ug)||x = 2¢3 for t € [t}, %] C
[0, T(up)) with ¢3 from Lemma Then we have

llo(t,uo) — Ax(o(t,ug))||x =1 fort € [t',¢3]. (2.72)
So using (2.57), Lemma [2.23] [2.72), (2.70), we have
t2
lo (£, o) — o (t!, uo) |l x < 2/ lo(s,u0) = Ax(o (s, uo)) | ds.
. (2.73)
< day(Ia(o(t, ug) — Jx(o(t?,up)))
< ds.
Then we obtain {o(t,up) : 0 <t < 7(up)} is bounded in X. It follows from (2.57) that
¢
o(t,ug) = e ‘ug + e_t/ e’By(o(s,up))ds for 0 <t < 7(up). (2.74)
0

As a consequence of Lemma [2.23] By(o(s,uo)) : [0,7(ug)) — Z is continuous. Since ug €
Y C L*>®(Q) and since By : Xg — L>(Q) and By : (Xo N L™(Q),] - [l«) — Z is bounded,
{e~t ft e*By(o(s,up))ds : 0 <t < 7(up)} is bounded in Z and relatively compact in Y. This fact
and imply that {o(t,up) : 0 <t < 7(ug)} is relatively compact in Y. So lim,,— oo [|0(tn, ug) —
uslly = 0 and uz € 9p,Cp, ((inty D1) N Dg). Since {o(tn,u0)} C Ip,Ch, ((inty D) n Dg), we
have usz ¢ (inty D1) N Da. So uz ¢ inty Dy. Thus, ug = Ax(us) and Ax(D;) C inty Dy imply
usz ¢ D1. So ug ¢ G1 and us # up. It follows from ug € Do that ug is the other positive solution.
Similarly, we can find a negative solution uy € dp,Cp, ((inty D1) N D3) and uy # us.

Step 3. There exists a sign-changing solution us € dy Cy (inty D1). By (2.69)), we can infer that
Cy (inty D7) # Y and so 9y Cy (inty D;) # 0. It follows from Lemma Cy (inty Dq) is an
open invariant set of (2.57). Let Y2 C Y be a two-dimensional subspace of Y. So Cy (inty D;)NY3
is an open subset of Y5. According to Lemma there exists a connected component I of
dy, (Cy (inty D1) NY>), and each one sided ray [ through the origin of Y5 satisfies INTY # (). Let T’
be the connected component of dy-Cy (inty D) containing I'V. Then T is an invariant set of .
Obviously, Cr(inty Do NT') and Cr(inty D3 NT') are two open subsets of I'. By the connectedness
of I' we see that

A= F\ (Cr(inty Dy N F) @] Cr(inty D3N F)) #* 0.

Since T is an invariant set of (2.57)), Cr(inty D; NT") and Cr(inty D3 N T') are two complete
invariant set of (2.57) in T', A is closed invariant set of (2.57)) in I". Moreover,

= inf J > inf J > —0o0.
¢ JIEIA )\(’U,) uéaycg%inty Dy) )\(u) o0
Then for any ug € A, we obtain {o(t,ug) : 0 <t < 7(up)} € A and ¢ < Jx(o(t,ug)) < Jxa(uo)
for 0 <t < 7(up). Using a similar argument as before we find an increasing sequence {t,} with
t, — T(up) and us € K such that

lim ||o(tn, uo) — us|ly =0.
n—oo

Since us € A, we obtain us ¢ inty Do and us ¢ inty D3. By Lemma we can infer that
us ¢ Do and us ¢ Ds. Thus, us is a sign-changing solution.

Step 4. There exists a sign-changing solution ug € dp, Cp, ((inty D2) N Dy). Since ((inty D2) N
D) N ((inty D3) N D1) = 0 and ((inty D3) N Dy) is an invariant set of descending flow of (2.57)),
we have Cp, ((inty D) N Dy) # Dy. Then dp,Cp, ((inty Do) N D) # . By Lemma we
have dp,Cp, ((inty D2) N Dy) is a closed invariant set of descending flow of (2.57). Let ¢ =
infucap, Op, ((nty Do)nDy) Ja(u) > —00. So there exists {v,} C dp, Cp, ((inty D2) N D1) such that

1

n

E< Ia(vn) <+ — < i+ 1.

N
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Using a similar argument as before we find an increasing sequence {t,,} with ¢,, — 7(v,) and
v, € K such that

lim ||o(tm,vn) — Onl|x =0 forall n € N,

m— o0

li_r>n lo(tm,vn) —Onlly =0 for all n € N.

Since J € C'(X,R), we obtain
1
J3\(0,) =0 and ¢ < J\(0p) < Ja(vn) < C+ ~ < c+1

for any n € N. Since J) satisfies the Palais-Smale condition, there exists a subsequence {v,, } and
vg € K such that

kli_>n010 |0n, — vollx = 0.
This implies {¥p, } is bounded in X. By Lemma there exists M; > 0 such that
1n, ]lco < My for all kK € N.

By the nonlinear regularity theory of Liebermann [I3], we can find 8 € (0,1) and My > 0 such
that
B, € COP(Q) and ||y, 1oy < Mz for all k € N. (2.75)

The compact embedding of Cé B (Q) into C}(22) and imply at least for a subsequence we
have
Up, — vo  in CH(Q).

This implies vy € 6D10D1((inty DQ) N Dl) and J)\(’Uo) = ¢. Since achDl((inty DQ) n Dl) n
(inty D3) N Dy) = 0, vo ¢ (inty D3) N Dy. Since Ax(Ds) C inty D3, vg ¢ D3 . This shows that
vp is not a negative solution. Since vy € dp,Cp, ((inty D2) N D1), vo ¢ Dy. This shows that vy
is not a positive solution. Thus, setting vy = ug, we have that ug is either a trivial solution or a
sign-changing solution.

Next, we show that ug is a sign-changing solution. Let e3,e4 € Y be linearly independent with
es € (inty D2) N Dy, eg € Y\(P; U (—P1)) and denote Y3 = span{es,eq}. Since

A
B <2 [ Dupdz+ S Duly -2 [ fud
P Ja q S Ja
there exists € > 0 such that
sup Jy(u) <0,
u€Y3NS,

where S; = {u € Y : ||ully = ¢}. By Lemma if € > 0 is small enough, we can choose
wy € (inty PN SE) such that wy; € Cp, ((inty D) N Dy). Choose a wy € int v(—P;) NS.. By
the connectedness of Se, it follows that Sc N dp, Cp, ((inty D2) N D1) NY3 # (). Then we have

In(vg) =¢ < inf Jx(u) < 0.
u€dp, Cp, ((inty D2)ND1)NS.NY;

This implies vy # 0, and so vg = ug is a sign-changing solution. The proof is complete. O
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