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DECAY ESTIMATES AND EXTINCTION PROPERTIES OF PARABOLIC
EQUATIONS WITH CLASSICAL AND FRACTIONAL TIME DERIVATIVES

FANMENG MENG, XIAN-FENG ZHOU

ABSTRACT. In this article, we study the decay estimates and extinction properties of weak
solutions to some parabolic equations with classical and fractional time derivatives. Firstly, we
establish a new comparison principle for parabolic equations with mixed time derivatives. Based
on this comparison principle and energy methods, we obtain the power-law decay estimates for
weak solutions of nonhomogeneous abstract parabolic problems with mixed time-derivatives.
Furthermore, we present three specific applications of the decay results for the abstract parabolic
problem. Finally, we discus the finite time extinction property of the weak solution for the 1-
Kirchhoff type parabolic problem with mixed time-derivatives.

1. INTRODUCTION

This work considers the decay estimates and extinction properties of weak solutions to the
abstract parabolic problem
MOpu(z, t) + A5 u(x, t) + Nu] = f(x,t) in QxRY,
u(z,t) =0 in (RV\ Q) xR, (1.1)
u(z,0) = up(x) in Q,
where 0 < o < 1, Ai, A2 > 0, A1 + Ao = 1, Q is a bounded subset of RY with smooth boundary,
u = u(x,t) is the unknown function, ug € L>®(Q), f(t) € L*(Q), s > 2, Nu] is a possible nonlocal

operator, 6&tu(x, t) denotes the Caputo fractional derivative of u of order «, which is defined by
17

Of e t) i= 71 (hoxlu = ua) (0 = g | 2 g )

where I'(+) is the Euler’s gamma function and k4 (n) = 1‘(“1;7&&)

Fractional calculus has attracted much attention not only because it involves profound mathe-
matical theory, but also because it appears in a variety of real-world phenomena in different forms
[4, o, 1T, 14 [16], 25], 29]. Compared with classical derivatives, equations with fractional derivatives
can better describe some physical phenomena. In particular, time-fractional derivatives have been
applied in the fields of wave equations [3, 22], porous media equations [5], fluid dynamics [30],
quantum physics [I5], and so on.

A large body of literature is devoted to studying the existence, uniqueness, regularity and
asymptotic properties of solutions [8, [I0, 13} 21, 23, 24]. For example, Smadiyeva et al. [21]
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studied the time fractional evolution equation
96 ult,x) + a(t) A(u(t, ) = 0, (t,2) € RF x ,
u(0,x) = up(x), =€, (1.3)
u(t,z) =0, t>0,z¢€dQ,

/\\_/

where 0 < a < 1, a € L'(R*), © € R is a bounded domain with smooth boundary, 054 is the
Caputo fractional derivative operator. They established the decay rate of the solution of problem
when A(u) is one of the following operators:

e Laplace operator: A(u) := Au = div(Vu);
p-Laplace operator: A(u) := A,u = div(|Vul[P~2Vu);
Porous medium operator: A(u) := div(g(u)Vu);
Kirchhoff operator: A(u) := M (||Vul|Lq)Apu.

However, most of these results depend on a specific single time derivative or space operator.
This paper investigates the decay behavior over time ¢ in the Lebesgue norm of weak solutions
on a bounded domain for problem . The problem involves the parabolic evolution
of the function u under the action of the spatial diffusion operator A/, which has an appropriate
“ellipticity” property, and can be either classical, fractional or nonlinear. We set it in a very general
framework, which is suitable for both local operators and non-local operators. This analysis also
includes the combination of fractional and classical time-derivatives. Therefore, the results of this
paper are more general. This is a novelty of our paper.

In this paper, we also give several specific examples of the general framework with mixed time-
derivatives. More specifically, the cases in which the operator N in problem is defined as the
following spatial diffusion operators are studied:

(i) the case of space-fractional double nonlinear operator;
(ii) the case of the sum of space-fractional double nonlinear operators in different directions;
(iii) the case of fractional p-Kirchhoff operator.

These results generalize and include some cases in [9), 9], 20} 21} [26] which can be regarded as
special cases of our results.

As usual, we say that the solution w vanishes in finite time if there exists 7" > 0 such that
u(-,t) = 0 for all ¢t > T. To the best of our knowledge, there are few papers to discuss the
extinction properties of solutions of parabolic problems with fractional Kirchhoff operators. In
[19], Pucci et al. studied the following initial-boundary value problem with fractional p-Kirchhoff:

)| S . . +
8tu+M //RN |m_y‘N+5p ddy)( Au=f(x,t) in QxR
u(z,0) = up(x) in Q, (14)
u=0 in RV \Q,

where M : Ry — R{ is a continuous and nondecreasing function, 1 < p < % Under suitable

assumptions, the well-posedness and extinction properties of solutions of the time integer order
parabolic problem are obtained by using the sub-differential method. In the past, most of
the p-Kirchhoff type parabolic problems were studied in the case of p > 1. So far, the extinction
properties of solutions for time-fractional parabolic problems like ([1.4) when p = 1 have not been
studied, nor have such problems with mixed derivatives. Therefore, this paper is the first attempt
to study the extinction properties of weak solutions of parabolic 1-Kirchhoff problems with mixed
time-derivatives (see Problem (5.1))). This is also a novelty of our paper.

The remaining part of this paper is organized as follows. In Section [2| we introduce some
important definitions, lemmas and properties, and we also prove a new comparison principle
which is needed to obtain the main results of this paper. In Section [3] we prove a result on the
time decay estimate of weak solutions to the abstract parabolic problem . In Section [4, we
present three specific applications of the result in Section [3] In Section [5) we consider the finite
time extinction property of weak solutions for the 1-Kirchhoff type parabolic problem with mixed
time-derivatives. The conclusion is introduced in Section [Gl
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2. PRELIMINARIES

In this section, we introduce some tools and important results that will be used in the proofs
of the main theorems in this paper.

We fix the fractional exponent § in (0,1). For any p € [1,400), the fractional Sobolev space
WoP(RN) is defined as follows [6]:

WoP(RY) := {u € LP(RY) : W € LP(RY x RN)}. (2.1)
r—y|»

This is a Banach space endowed with the norm

1/p
lullywo @y = (HuIILp avy  [Wyosm))

4] : [u@) = u)I” 4 4 )1/ : (2.2)
W&,p(RN) . eon |33 — ‘N—&-ép Yy .

is the so-called the Gagliardo Semi-norm of u.
Let © be a bounded open subset in RY, the spaces W%?(Q) and Wé’p (Q) are defined by

where the term

WoP(Q) == {u e LP(Q) : M €LP(xQ)} (2.3)
T —y|r

and
Wg’p(Q) ={ue W‘;’p(ﬂ) tu=0 ae. in RN\Q}.
The spaces are also endowed with the norm

1/p
lullweiey = (Il + [yssiy) -
Definition 2.1 ([27]). Let k € L}, .(RT). When o > 0 and § > 0, k is said to be of class K(a, )
if the following conditions hold:
(1) k is a sub-exponential growth, that is, [;* e*'|k(t)|dt < +oo for all € > 0;
(2) k is 1-regular, that is, there exists a constant ¢ > 0 such that [Ak'(A)| < ¢[k(\)| for all
ReX > 0;
(3) k is B-sectorial, that is, |arg(k k)(A)| < 6 for all Re > 0;
(4) satisfying limsup,_, | E(A)N < oo, liminfa_, 4o [E(A)A? > 0 and liminfy_o [k(N)] >
0.

Definition 2.2 ([27]). We say that the kernel k € L], (RT) is of the type PC if it is non-negative
and non-increasing, and there exists another non—negatlve and non-increasing kernel | € Lloc(Rﬂ
such that k£« =1 on (0,+00). Furthermore, we call (k,1) a PC pair.

Lemma 2.3 ([27]). Let T > 0 and H be a real Hilbert space. If there exist k € L}, (RT) and some
le€K(a,B) with0 < a <1 and § < m such that kxl =1 on (0,400), then

we L2(0,T;H) and kxu € Wol’Q(O T;H) = kx* Hu||§_[ e W0, T),
where Wy 2 (0, T;H) = {u € L*(0,T;H) : % € L2(0,T; H), =0}.

Lemma 2.4 ([6]). Let 0 < d <1 and p 2 1. If op < N, then there exists C, > 0 depending on
N, § and p such that

p < )| 4,p RN .
7 <O [ sy, e wor )

Lemma 2.5 ([28]). Let p € (1,+00), T > 0, and Q is a subset of RN with arbitrary measure.
If k € WHL(0,T) is non-negative and non-increasing, then for any ug € LP(Q) and any u €
LP(0,T; LP(Y)) it holds

a0 (k * (lu(®)lp — lluollp)) < /Q (&) [P~ u(t)Dr (k  [u — uo])(t)dx

for almost everywhere t € (0,T), where || - ||, denotes the norm of LP(€2).
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It is known that the Riemann-Liouville kernel [2§]
@ tafl

ko(t) = =———— and 4(t)= =, t>0 2.4
for 0 < a < 1 belong to the PC defined in Definition [2.2] However, the Riemann-Liouville kernel
- ) does not belong to W1(0,T) for all T > 0, so in order to be able to apply Lemma [2.5| .,
we need to recall the Yosida approximation of the time fractional derivative operator proposed in
[2, 27] and its properties. For convenience, we only provide some important properties needed in
this paper as follows.

Property 2.6 ([2, 27]). Let p > 1 and X be a real Banach space. For a fractional derivative
operator defined as Bu = %(kja xu), where

D(B) = {u € LP(0,T; X) : ko *u € W"P(0,T; X), (ko * u)(0) = 0},

its Yosida approzimation B,u is defined as B,u = nB(n + B)~'u (B,u can also be expressed as
B,u= %(kma xu)), n € N, where ko = NSn.q, With s, o being the unique solution of the scalar
Volterra equation
Spa(t) +n(lxs,qa)(t)=1, t>0, nelN
Then
(1) Bpu — Bu in LP(0,T;X) as n — 400 for any u € D(B);
(2) the kernel sy, n € N is nonnegative and nonincreasing in (0,00) and s, o € WH1(0,T)

(see Prop. 4.5 in [18]). Hence, the kernel ky o, n € N possesses the same properties;
(3) kna — ko in LY(0,T) as n — +oo.

To prove our main results, we need to state the following comparison principle involving mixed
time-derivatives.

Lemma 2.7. Let 0 < o < 1, A, 2, T > 0, f € C(R) and g € LY([0,T)). Assume that f is
nondecreasing. Suppose that v,w € W11([0,T)) satisfy v(0) < w(0) and

A0(t) + A28y (ko * [U(t) — v(0)]) + f(v) < g(t), a.e. t€]0,T), (2.5)
A0 (t) + A0t (ko * [w(t) —w(0)]) + f(w) > g(t), a.e. t€][0,T).
Then v(t) < w(t) for allt € [0,T).
Proof. Subtracting inequality from inequality yields
MO (v(t) = w(t)) + A2k (ka * [v(t) —w(B)]) + f(v(t)) — fw(t) < ka(t)(v(0) —w(0)) <0, (2.7)
thanks to v(0) < w(0). Integrating (2.7)) with respect to ¢, we obtain

/\1/ s(v(s) — w( ))d8+)\2/ 0s (ko * [U(s )—w(s)])ds—l—/o fv(s)) = flw(s))ds <0,

which implies that

A(v(t) — w(t)) + Aakg * (V(t) —w(t)) — Aakq * ( — w( ’t 0 / flw (w(s))ds
< A1(v(0) - w(0)),
that is,
M () — () + Aoka + (0 / o (w(s))ds < 0. (2.8)

Let (v(t) — w(t))+ = max{v(t) — w(t),0}. Multiplying (v(t) — w(t))+ on both sides of (2.8) gives

A(v(t) = w(®))(v(t) —w(t))4 + F(l)\ia)(v(t) - W(t))+/0 (t—s)""(v(s) —w(s))ds
(2.9)

+ (0(t) —wl(t)+ / F(0(s)) = f(w(s))ds < 0.
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If (v(t) —w(t)) <0, then (v(t) —w(t))+ = 0, which implies that

(v(t) = w(t)(v(t) —w(t)y = 0= (v(t) — w(t)}
and

(0(t) =wO)s [ (0= 97 (0s) = (s))ds

—0

= @) =)+ [ (=97 (0(s) —w(s))eds
If (v(t) —w(t)) > 0, then (v(t) —w(t))+ = (v(t) — w(t)), which means that
(v(t) = w(t) (V(t) —w(t)+ = (v(t) —w(t)}

and

(0(t) — w(t)) / (- )" (u(s) — w(s))ds

t
= (v(t) - W(t))+/0 (t—s)"*(v(s) —w(s))+ds
still hold for all 0 < s < t. Therefore, (2.9) can be reduced to

)\I(U(t)_w(t))2++ & )(U(t)—w(t))+/(t—S)_a(U(S)—w(S)MdS
0

I -a (2.10)

+ / f(v (w(s))ds <0,

Since f is nondecreasing, then the third term in (2.10) is nonnegative, and then this term can be
removed to give

M ((t) —w(t)? + F(fia)w) —w(t)+ / (t — )~ (0(s) — w(s))1ds <0,

which implies that (v(t) — w(t))+ = 0, that is, v(t) < w(t) in [0, 7. O
Throughout this article, for u(x,t), we also define it by
u(t)(z) = u(x,t) (r € RN, t € RY).

3. DECAY ESTIMATES FOR PROBLEM (|1.1])

In this section, we utilize energy methods and a new comparison principle (Lemma [2.7) to
investigate the decay estimates of weak solutions for the abstract parabolic problem (1.1)). Before
that, we first introduce the definition of a weak solution to (1.1)).

Definition 3.1. Let s > 2, f € L*(Q) and u(-,0) = ug(:). A function u € W2(0,T; L*()) is
said to be a weak solution of problem (T.1), if Nu] € L2(Q), ko * (u — ug) € Wy2(0,T; L2(R2)),
and for almost every ¢t € (0,7), T > 0, it holds that

Al/glatu(m,t)go(x,t)dm+)\2/93&tu(x,t)gp(o:,t)dx:/ (f(:c,t)f./\/'[u](x,t))ga(a:,t)dx (3.1)

Q
for all ¢(t) € L*(2).
Theorem 3.2. Let s 2 2 and u(-,0) = up(-). Suppose u is a weak solution of problem 1' in the
sense of Deﬁmtion 1, If there exist v > 0, Cy > 0 and C > 0 such that |lug|| =) > 3 (CCo )1/7

and ||f(t)|Ls ) < (t+1 for allt > 0, and the solution u and the nonlinear opemziorj\/ of (L)
satisfy

[l )||Ls1+7 < C’/Q lu(z, )" 2u(z, )N [u)(z, t)dz, >0, (3.2)
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then
(0 25 D) 1) < s (33)
10t + A20) ¢ s@) < CESE .
for some Cy > 0. Furthermore,
#
u(t) || ps o) < = 3.4
ooy < (3.4)
for some Cu > 0, depending only on o, v, C, Cy and ug.
Proof. Choosing ¢(t) := |u(t)|*"2u(t) in (3.1)), we have
)\1/ [u(z, t)|*2u(z, t)Opu(x, t)dx + /\2/ |u(x,t)\S*QU(x,t)a&tu(:r,t)dx
@ @ (3.5)
= [ a0 2utet) (£ ) ~ Nl 0)d
Q
It is easy to show that
1
L dufue, O = Jue, )"0 5 e, 8) = Jue, O 2ule, (e, 1), (3.6)
s u(z, 1))
Integrating both sides of (3.6]) with respect to = over € yields
/ [u(, t))*2u(z, t)Opu(z, t)d /8t|u z,t)]*dx = |lu(t)|}. Q)at”u( ) (3.7
It can be obtained from (1.2]) that
/ (e, £)[*~u(a, )08 u(z, t)dx
Q
- / i, ) 2u(w, )9, (o % [u — uo]) (£)d
@ (3.8)

= /Q lu(z, )] 2u(z, t) [0 (ko * (u — ug)) — Oy (kn,a * (u—up))] (t)dx

+ /Q lu(z, t) 5~ 2u(z, )0, (kn.o * [u— uo]) (t)dz,

where k,, ., € WH1(0,T) is the approximation sequence of k, (see [27]). Then the equation (3.8)
and Lemma [2.5] imply that

/Q|u(m,t)\s_Qu(x,t)a(‘itu(%t)dx

> / lu(z, t)|s_2u(x, £) [0y (K % (1 = t6)) — B (ko # (1 — u0))] (£)da (3.9)
Q

10 (Ko * [[lu(t)]

Since s > 2 and ) is a bounded subset of RY, it follows that L*(Q)) — L?(Q2). Taking the limit
on both sides of inequality (3.9) as n — 400, applying Lemma and Property yields

/Q|U(I7t)‘sf2u(;p,t)6&tu(x,t)dx2 (115 (K [a(t) 7).

which implies that

+ (w7

o) — lluollzs@)]) -

/Q\U(x,t)|572u($at)a&tu(%t)d$ > [lu(t)l177 (e e lult) (3.10)
Now, substituting (3.7) and 1) into (3.5), we obtain
lu(®)15 0 (A13t||u( Mze @) + A206 u(t) | e ()
(3.11)

s/me“%qumw—wawmm
Q
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By using (3.2)), the decay estimate of f and Holder’s inequality, (3.11]) can be reduced to

. @)l oy
Hu(t)HLs(Q) (Alat —|— )\anvt) Hu(t)| LS(Q) S _f + Q ‘u(x;t” |f(1'7t)|d1'
w15 5=
< - Ol e
@z | ol
= c (t+1)>
which implies that
||u(t)||2s<m Co

t>0

(A0 + X285,) l[u(t) o) < — C + (t+1) "=

(3.12)

(3.13)

provided that [Ju(t)|zs) # 0. If [|u(t)|[zs() = 0, obviously (3.13)) also holds. Therefore, the

estimation (3.3]) holds for all ¢ > 0.
Next, we introduce the function

() = 2||uoll s @) 0<t<to,
2||uol| s ()t t5, t>to,

and prove the inequality

N ©7(t) Co
> > 0.
A10sp(t) + )\280,t‘»0(t) + C T+ 1)a’ t20

Indeed, for the case 0 <t < tg, we have

A10yp(t) + X205 p(t) + 5907@) = 2M104|uo || Ls () + 22205 ¢ [0l s () + 5||“O| Zs(g)
5 __Co
—(t+ 1)~
due to [Jug|| L) > %(000)1/7.
For the case t > ty, we obtain
A10sp(t) + X20p: (1)
. 720&)\1”U0| Ls(Q)tgt_%_l B 20[)\2||U0| LS(Q)t(? /t Q_%_l dg
ot (1 - ) t (t—0)"
- 720[)\1||7.L0| Ls(Q)tgt_%_l - 20[)\2”'(1,0”];5(9)75(?75_@_% /1 5_%_1 ds
- ) A1 — ) w (1=
If t > 2tg, that is, %0 < %, then (3.17)) can be reduced to
AMOpp(t) + X0y 4 o(t)
o 720&)\1”U0‘ Ls(Q)tgt_%_l
v
20 holfuo || Lo ta 5, (U2 55 L og=5-1
_ 2lluolle ()t (/ s ds+/ SRR ds)
AT(1 - a) P e A A =T

=5

> 20 [Juol| sy tg.
v

2aha||ugl| s t%t_o‘_g 1z o 1
— 2uolle @t | (2“/ 3_7_1ds+2?+1/ (1 —S)ﬂlds)
%

(1 — )

(3.14)

(3.15)

(3.16)

(3.17)
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—a—e

LS(Q)tat v

2 QQ_%Q)\1||’§LO| Ls(Q)tia i 2a+%+1>\2”1},0|
vt r'(l—a)
B 2a+1>\2”U0| Ls(Q)tia B 2°‘+%+1a)\2||u0| Ls(Q)tgt_a_%
I'l-—a) (2 — «)
> (‘ 2° 75 ai|uollre) 2T NafluollLe) 2% ade|uol LS(Q))t‘“
- vty I'l-—a) (2 — «) ’
which implies that
v(t
A10yp(t) + A20yp 4o(t) + ch(w )
> (_ 2a7%01>\1||u0| Ls(Q) _ 2a+1)\2”U0| L3 (Q) . 2a+104)\2||U0| L'Q(Q))tfo‘
- 5T I'l—a) (2 — )
27Hu0\|75(mt8t*°‘
C
S <7 206_70[)\1||UO| L) 2a+1>\2”U0| Le(Q) 2a+104)\2||UQ| L3 ()
- s I'(l-—a) (2 — «) (3.18)
27 luollz- )16 _a)fa T 2 uollz- (0 15
C Ct+1)~
> (7 QQ_%Q)\1||UO| Ls(Q) _ 2a+1>\2”U0| Ls(Q) _ 2a+104)\2||UQ| Ls(Q)
- Nt IN(l-a) (2 — )
toC toC
Ll O)tfa Lt~
2 2(t + 1)"‘

5> _CGo
T+ 1)
provided that we choose a large enough to. If tg < ¢ < 2t, then (3.17) can be reduced to

)
Leytgt 7 /1 S T 4
t (1—s)*

A0pp(t) + X2y 4p(t
ti%il 205)\2“1,60‘

_20&/\1||UO||L5(Q)1‘,0;
gl (1 =)
> 720[/\1||UO| Ls(Q)tO?t_%_l—i_at*a
Y
20{)\2”11/0”[/5(52)250%1;7&7% tO _%_1 1
- — / (1—s)"%ds
A0(1 — ) t t
200a|uo|| ety (t = to)' "

a FI'(2 — «)

B 20\ ||u0||LS(Q)t_

v
B 2a\ ||UO||LS(Q)t_a B 2&)\2HUO||L5(Q)talt1_a
A0(2 — )

L= (Q) ) —a

g~
N (7 20[)\1||U0| L3 () _ 404)\2||U0|
- ytg 1 (2 -a)
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which implies that

7(t
ML)+ Moy (1) + £
N (_ 20 [|uolLoo) 4a)\2||u0||Ls(Q)>t_a . 27[Ju|}. gt~
N Sl (2~ a) c
N (_ 20\ [Juollpe)  4odaluollLe (o) 2“||uolzs(mt3) o 27 Mol ) tE (3.19)
= et YI'(2 - «) C Ct+1)
> (7 20&)\1||U0‘ L3 () B 40[/\2||UO| L (Q) 4 thO)tia + th()
- et Y2 — ) 2 2(t+ 1)~
5 Co
T (t+ 1)

provided that we choose a large enough ty. Therefore, combining (3.16[)-(3.19)), it can be concluded

that (3.15]) holds for all £ > 0. Since ||uo|| s (o) < ©(0) by (3.14), combining inequalities (3.13) and
(3.15)), and then applying the comparison principle (Lemma, we can deduce that [|u(t)||zs ) <
©(t), which implies that

t) 75 < -
lu(®)|z Q) = 1462

for some Cyx > 0 and for all ¢ > 0. Thus, the estimate (3.4)) is established. The proof is
complete. 0

4. APPLICATIONS OF THEOREM

In this section, we present three specific applications of Theorem (see 4.3]).

4.1. Space-fractional double nonlinear operator. The space-fractional double nonlinear op-
erator is defined (up to normalization factors) by

m _,m p—2 (Um(ﬂf) _ um(y>)
Nongp = (=8)pu" (@) c0* RN\ B (z) |z — y|NFop v (&)

where 0 < d < 1,p>1,m>0, Bo(x) = {y eERN |z —y| < 5} and u™ is the m-th power of u.
Note that the multiplicative constant is also neglected in the definition of the operators below.

e When m = 1, the operator (4.1)) is transformed into the fractional p-Laplacian [6]:

CAYu(z) — lim lu(z) — u(y)[P* (u(z) — uly))
(FA)pulz) := lim, RN\ B, (x) |z — y|N+op . (4.2)

e When p = 2, the operator (4.1)) is transformed into the fractional porous medium operator
[12):
m _,m
(—=A)’u™(z) := lim Lﬁmg{y)dy'
=0 JRN\B_(z) lz -yl

e Taking p=2in (4.2) or m = 1 in (4.3) can continue to be reduced to fractional Laplacian
[6].

In these settings, we have the following decay estimates.

(4.3)

Theorem 4.1. Let 0 < § < 1, p > 1 and s > 2. Suppose u is a weak nonnegative solution
of problem (1.1) with v € W12(0,T; Wg’p(Q) N L5(Q)). Further assume that the operator N in
problem defined by . Then, for any s > 2, there exists a constant Cy > 0 depending
on N, s, Q and § such that

Cy

<Y 4o (4.4)
1 _|_tmp77n

lu(t) ||z o)
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mp—m+4s—1

Proof. Let v:=u z . We first prove that
[o(a, 1) = v(y, )P < Clu™(z,1) —u™ (y, P> (™ (2,1) — w™(y,1)) (u* (2,8) =~ (y, 1)) (4.5)

for some C' > 0. For this, we construct the auxiliary function

mp—m+4s—1

(5

(1,+00) 5 & g(§) = - : (4.6)
(€m =P (et =)
Sincemp—m+s—1=m(p—1)+ (s—1) > 0, it is not difficult to obtain
mp—m4s—1 P
1 P -1
lim ¢g(§) = lim ((1+e) — )
I (R Ty
(mp—m+s—1)e p
——— Fo(¢e
= lim ( p71 ( ))
20 (me +0())" ((s = e + o(¢))
~(mp-m+s—1)
p(mp)P~1(s —1)
and
(1 — W)p
lim ¢g(¢) = lim = =1
=00 =00 (1 _ g}w) (1 _ 6%1)
Thus, supge (1, 1o0) 9(§) < +00, then we may as well set
C:= sup g(&) < 4. (4.7)

£€(1,+00)
Obviously, when u(x,t) = u(y,t), and u(z,t) = 0 or u(y,t) = 0, the inequality (4.5 holds. When
u(z,t) # u(y,t) # 0, let u(z,t) > u(y, t) without loss of generality, then

mp—m+s—1
u(z,t) ﬁil)p
g u(@,t)y _ (<Z(Jt)) _ - (4.8)
) ) ) ()

(T @) - )
= - . (4.9)
(e t) = ) (0 ) — e (3, 1))

—m+s—1

Combining [@.7), @8) and v =u" » , we can conclude that (4.5) holds.
Next, we proceed to prove that there exists C’ > 0 such that

ol t) — vy, O
[0y < C” // n e daay (4.10)

holds for all g € [ , NN5 ] when p € (1, %) and for any ¢ € [1,+o0] when p € [%,—i—oo). In fact,

if pe (1,%), then can be obtamed by Lemma and Hélder’s inequality. If p € [§, +00),
let a > max{p,q} then 0 < ¥ - X « N o5 <1, Ford € (— - %,ﬁ) (0,1), using Lemma
again, we obtain

(y,t

LN=3p (Q)

, we obtain that

p < Q Np— a(N 5p) P < O ( )‘pd d
o) I7e )y < 1€ lo@I" _w, 2 x
R2N |

LN=57 () x —y|N+p




EJDE-2025/89 DECAY ESTIMATES AND EXTINCTION PROPERTIES 11

for some constant Cy > 0. We choose an appropriate > 0, since v is zero outside {2 and p < a,
it follows that

[[v(t) ||pa(Q < Cy //RQN \x - |N(+y(;pt)|pdxdy
_c, / / v(z,t) —v(y, )lpd:pdy
B(z,r) JB(xz,r) |xfy|N+5P
O f /> . Txt— |N%§Z)|pdxdy
< 02/ / D) |v(z, tz N(:U(; t>|pdxdy
B(z,r) JB(z, 7') |z —y|N+op
p
+C'2/C SM)/C . |gc|1:x|2L6pdxdy
< Oy ) //RQN |v( th_ yN(+5p)|pd$dy
+C’§/ |v(m,t)|pdx/B o |x_y1|N+gpdy
— Cyr?(5=9) //RN |x_ N(+5p”pdxdy

+o0o 1
+c / lo(, £)Pda / / 1 4s,dr
8B(z,r) TVOP

p(5-5) v(z,t) — vy, t)”
< Cor //]R?N ‘N+5p dady

CEo(1) % hllffoo

p Cl/
_ C p(6— 5 // |U ( )| dzd _ 2A t p
" |x—y\N+6p oy + = G VOl

where B(z,7) := {y € RN : |z —y| < r}, B(z,r) :={y € RY : |z —y| > r} and C%, CY are
appropriate positive constants. Therefore,

t)||p d d 4.12
[o@)I7aq) < ) 7“51) ey J Jan |x — y|N+5p Yy (4.12)

provided that (gp)rgp > C¥. Since ¢ < a, by using Holder’s inequality, we obtain

||U(t)‘|iq(9) <0 B (t)Hpa(Q)' (4.13)

Combining (4.12)) and ( -7 we obtain

oy, P
O < ¢ [ P daay,
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where C' := %, which implies that (4.10) is obtained. It is known that u is zero

outside €2, then substituting v = u" 7 and (4.5) into (4.10) yields

g(mp—m+s— P/q
([ o ”dm)

<c’ [t —um P @ e~ 0.0)
dzdy

x (w2, t) — ut Ty, 1)) [ (4.14)
~ u™(z,t) —u(y, )|P72 (v (x, ) — u™(y, 1)) uS TN (x, t
—ofe [ W0 WO ) )

:C’3/Qusfl(x,t)(fA)gum(x,t)dx

for some C3 > 0. When p € (1, %), it is not difficult to verify mpifrfﬂfl € [1, = 5p} if s > 7,
N(m—mp+1)

where 7 := max{ mp_ﬁ_17 5 }. Therefore, if n < 2, then for all s > 2 or p > & 5> We can
P
choose ¢ := Wﬂ_s_l, so that (4.14)) is reduced to
s—14+mp—m s— m
LS(J) S Cg/ﬂu Y, t)(=A)Su™(x, t)dx, (4.15)

[[u(?)] p

which implies that (3.2)) in Theorem [3.2) n is satisfied when v := mp — m. Substituting v = mp —m
into of Theorem |3.2[leads to the conclusion that

Cy
w(t) ||y < —F—, t > 0. 4.16
”()|L(Q)*1+tm7 ( )
7N Py— . .
If n > 2, then for s > n or p > 5, we can also choose ¢q := 777@—::—&-3—1 such that the inequality

(4.15) holds. Thus, the estimate (4.16]) can also be obtained. In addition, for 2 < s < 7, using

Hélder’s inequality, we can obtain [[u(t)||r:o) < Callu(t)| n(q). Since n > 7, then (4.15)) is also
satisfied. In summary, we conclude that (4.16)) holds for all s > 2. The proof is complete. O

As special cases of Theorem we can take m = 1 or p = 2, which correspond to the case
of fractional p-Laplacian defined in (4.2]) and the case of fractional porous media defined in (4.3)),
respectively. For the convenience of readers, we state these results as follows:

Corollary 4.2. Let0 < d <1, p>1 and s > 2. Suppose u is a nonnegative solution of problem
(T.1) with uw € W12(0,T; Wg’p(Q) N L5(2)). Further assume that the operator N in problem (1.1))
is defined by (4.2). Then, for any s > 2, there exists Cy > 0 that may depend on N, s, Q and ¢

such that o
#

w(®)||pe ) < —2, t>0.

o) < — 2
Corollary 4.3. Let0 < d <1, p>1 and s > 2. Suppose u is a nonnegative solution of problem
(T.1) with uw € W12(0,T; Wg’p(Q) N L5(2)). Further assume that the operator N in problem (1.1))
is defined by (4.3). Then, for any s > 2, there exists Cy > 0 that may depend on N, s, Q and ¢
such that

lu(®)]

Next, we consider the more complex setting of the fractional double nonlinear operator.

Cy
LS(Q)S 1—"—15%7 tZO

4.2. Sum of space-fractional double nonlinear operators in different directions. For a
fixed i € {1,2,..., N}, let e; (the i-th element of the Euclidean basis {ej,...,ex} of RY) be a
unit vector, representing different directions, then the fractional double nonlinear operator defined
in the e; direction is expressed as

u™ x-|—,{ei pi—2 u™ () — u™ © + Ke;
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where p; > 1, 0 < d; < 1, m > 0, and u'™ is the m-th power of u. Given Sy, fs,...,8n > 0,
multiplying both sides of equation (4.17) by 8; and summing over ¢ from 1 to N, we obtain the
operator A/ that we are about to study, namely

Nomspst us (—Ap)) u™( Zﬂz u™(z), (4.18)

where 8= (61,...,8n), d = (01,...,0n) and p = (pl,...pN).
In our above settings, there is a decay estimate.

Theorem 4.4. Let m > 0 and s > 2. Suppose u is a nonnegative weak solution of (1.1). And

assume that the operator N in (L.1)) is defined by (4.18). Then, for any s > 2, there erwists a
constant Cy > 0 depending on N, s, 9, ) and B such that

la(®) o) < — et >0, (4.19)

1+ tmpe—m
sAEmpiTm e £1.2 .. N}.

where p, is the one p; that minimizes ||u(t)

Proof. Let (K1,Ka, ... Ki1,Rit1,---,kny) € RN7L 4 € {1,2,..., N}. Given a point z € RV, we
use the notation © = (k1,...,kN) = k1€1 + -+ + Knyen with k; € R. We define the space
Qi(lihlig,...I‘ii_l,lii+1,...,IiN)

= (Q N{(k1,k2,...Ki—1,0,Kit1,...,6KN) F+ ce;,c € R})i CR
where Q = (Qy,...,Qx) C RY. Further define the function
R 2 k; = u(kier + koeg + -+ + knen, t) € Qi(k1, Ko, -« - Kie1, Kidt1, -« KN)-
It is known that u is zero outside §2;, then by using the estimate we obtain

s—14+mp;—m
(/ u®(k1e1 + koo + -+ + HNGN,t)dKJZ)
R

s—14+mp;—m
s

= (/ us(mel+f~@262+---+/$NeN,t)d/<;i)
Qi (K1,K2,Kim1,Ki41,--KN)

<Ci / u* " (k1e1 + Kgea + -+ Kyen, t)
R

x (—02)%u™ (kie1 + koea + -+ + knven, t)dr;

for some Cf > 0. We integrate the above formula separately at coordinates (1, K2, . . . Ki—1, Kit1,-- - KN)
to obtain

s—14mp;—m
s

(/ u’(Kk1e1 + Kaeg + - -+ + kyen, t)dridks .. .dFLN)
]RN

s—14mp;—m
s

= (/ u’(kie; + kaea + - - + knyen, t)dridrs . .. dHN)
Q

< 05/ us_l(ﬁlel + Koeg + -+ + Kyen, t)
RN

X (—6§i)gium(mel + Koeg + -+ + knyen, t)dridrg . .. Ak,
which implies that

;—m

s—14+mp;
[lu(t )||SleJ)mpl = </Qus(x,t)dx) ) < C5/Qusfl(x,t)(—@gi)gi,um(x,t)dx. (4.20)

Let ||u(t) S_l'zmp*_m := min {||u(?) S_H)mpl_m o |Ju(e) SL:(lg)mpN_m , which means that p, is
the one p; that minimizes |lu(t )”sleék)mpl ,1€{1,2,...,N}. Thus, (4.20) can be reduced to

[[u(t)

SZIJr)mp*fm < C5/ usfl(ac,t)(—@gi)gium(x,t)dx. (4.21)
Q
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By multiplying §; on both sides of (4.21)) and summing ¢ from 1 to N, and then combining (4.18)
yields

a5z ™ < Co /Q w T @, 1) (—Ap)du™ (x, t)dw

for some Cg > 0. This implies that the inequality (3.2) in Theorem is satisfied when v :=
mp, — m, then the estimation (4.19) is established by substituting v = mp, — m into (3.4]) of
Theorem 3.2 O

4.3. Fractional p-Kirchhoff operator. The function M : RSL — Rar in Kirchhoff operator is
continuous and nondecreasing. A typical example is

M(n) = Mo + kn, (4.22)

where My > 0 and k& > 0. Next, we will consider the cases where M is degenerate (My = 0 in
(#:22)) and where M is non-degenerate (M (0) > 0 in ([£.22)).

Let 0 < § < 1 and p > 1, the definition of the fractional p-Kirchhoff operator is given (up to
normalization factors) as

, , P u(z) — u(@)[P~* (u(x) — u(y))
N&,p U 81;1(1)14r M ([U]Wé,p(]RN)> /RN\BE(I) oz — y|N+5?’ dy, (4.23)
where B.(z) = {y € RN : [z —y| < e}, the definition of [u]ys.rry) is shown in (2.2) and the
definition of space WP (R¥) is shown in (2.1

In these settings, we have the following results.

Theorem 4.5. Let 0 < d < 1, p > 1 and s > 2. Suppose u is a weak solution of (1.1). Further
assume that the operator N in (1.1)) is defined by (4.23)). Then, we have the following statements:

(1) If the function M(-) is non-degenerate, then for any s > 2, there exists a constant Cy > 0
depending on N, p, 0, Q and mq such that

Cy

lu®lle@) < =0 £20. (4.24)
(ii) If the function M(-) is degenerate, then for any s > 2 when N < 2dp, or for every
s < ]\][\5271’2;? when N > 26p, there exists a constant Cy > 0 depending on N, p, § and €2
such that o
#

Proof. (i) Firstly, we consider the case that M (-) is non-degenerate. Since M (-) is non-degenerate,
M (-) has a positive minimum, that is, there exists my > 0 such that

mo = inf M(n). (4.26)
neRY
Thus,
s— &
[ e O 2t 0M ([ufy s an,) (-8)] ula o
“ (4.27)
> mo [ Ju(e, O Pu(et) (~A)] ula )da.
Q
Letting v := |u\%, we can prove that
|U(:C7 t) - U(y7 t)|p
(4.28)

< Clu(x,t) = uly, )17 (ulz,1) = u(y, 1)) (Julz, )" 2u(@,t) = [uly, )" *u(y, 1)).

We construct the auxiliary function

(1-1¢" ) |
(=172 (1= ¢) (1= [¢+=2¢)

(_17 1) 3¢ Q(C) =
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Note that p —2+ s >p—1 > 0, so there is

o (1—(1—5)%)17
S A T a—u—au-a-9
( p— 2+s)6 (5))11
0 e+ o) T ((g— Ve +ole))

_(p=2+5)
pP(s —1)
(1—(1—5)”%)1’ (@)pgl’
g£m1g(<) = lim 4(1—(1—¢)P? = lim 4ep—2 =0
Therefore, we can take
C:= sup g(¢) < +oo. (4.29)

¢e(=1,1)
Obviously, when u(z,t) = u(y,t), and u(z,t) = 0 or u(y,t) = 0, the inequality (4.28) holds. When
u(z,t) # u(y,t) # 0, let |u(x,t)] > |u(y, t)| without loss of generality, then

o(42D)

(1- )’

(1= 180" (- 529) (- zfei2zie) -
B (e, 001 = Juty, 01 *5)
(Jula, )] = July, )" (ulz,t) = u(y, 1)) (|u(z, t)ls Ju(z,t) — fu(y,t )IS*QU(y,t))'
Combining equations (|4.29 - and (| with v = |u| , the inequality (4.28]) can be obtained.

Since it has been proved at - that

v(y, )P
o0l < € [[ | MR gy

holds for all g € [ , Ni&p} whenp € (1, %) and for any ¢ € [1,4+00] when p € [%, +00). Therefore,
it can be inferred from v = |u|" b , (4.10) and (4.28) that

(/Q m@dex)p/q

< 50’// u(z, t) — u(y, t)[P~>
]R2N
dzdy

x (u(@, 1) — u(y, 1)) (Jule, ) u(z,t) — uly, )" u(y, 1)) Ty (4.31)

=20¢ // u(z,t) — uly, )P~ (u(z, t) — u(y, b)) [u(z, )" *u(z, t) dady
R2N

|z — y|N+op

:25'0'/ u(z, £)|*u(z, t)(—A)Ju(z, t)dw.

When p € (1, 6) it is not difficult to verify ﬁ > 1, and p+s Lo < N]\_[’;p if s > %}:p).

Therefore, if N(g P < 2, then for all s > 2 or p > &, we can choose ¢ := % and substitute it
into inequality (4.31) to obtain that

||u(t)||SLJ§f’Q)2 < QCC’/ |u(x,t)\872u(x,t)(—A)Zu(x,t)dx. (4.32)
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Combining (4.27)) and (4.32)), it can be concluded that

@72 < 260 [ i, ) 2u(o, )M ([u]p ) (=AY u(z, t)da (4.33)
L@ = my Jo ’ ' Wép(RN) p ’ '

which implies that the condition ([3.2) in Theorem [3.2] is satisfied when ~ := p — 1. Substituting
v =p—1into (3.4]) of Theorem [3.2[yields the estimate (4.24]). If %p_p) > 2, then for s 2 %p_p)

orp > ]g, we can also choose g := p:sp 5 such that - holds. Thus, the estimate can

also be obtained. In addition, for 2 < s < (2 2) , by using Holder’s mequahty, we can obtain

lu()ll L) < Cillu(t)]] Ne-p . Since N(gp p) > N(gp 2) it follows that ( is also satisfied.
L r(Q
In summary, we conclude that (4.24) holds for all s > 2.
2pts—2
(ii) Next, we consider that M (-) is a degenerate case. Let v := |u] i , we need to prove that

[o(,t) = v(y, )"
< Clula,t) — uly, )"~/ (ulw, 1) — uly, 0)(Julz, ) 2ulz, ) - July, )" 2uly, 1))

for some C' > 0. For this, we construct the auxiliary function

(4.34)

2p+5 2 )2p

(1— sl .
1=l (1 =) (1 = Jg|*—%)

Similar to the proof of inequality (4.28)), the inequality (4.34)) can be obtained (this proof is omitted
here). Note that inequality (4.10) is known as

(z,t) = v(y, I
b0 < [, MG an

which holds for all ¢ € [1, —p] when p € (1, %) and for any ¢ € [1,+00] when p € [, +00).

Combining (4.10) with (4.34]) yields

([ o5 )™ <o [[ | ute.n - ul 0P~ o) - ut. 00

. o 1/2 dzdy
* (Jule, )" u(z, t) — luy, t)*"*u(y, 1)) o — y[N T

(=L,1)3¢=g(s) =

(4.35)

When p € (1, E) if either N < 2dp, s > 2or N > 20p, s < ]\]]\52}’252) holds, then it is not difficult to

N(2p—2)

prove that € [1, s } Therefore, for s < N-25, OrD >N 5> we can choose ¢ :=

2p+9 2 2p+s—2
such that ( is reduced to
2pts—2
( / |u(3:,t)|sdx)
Q
1 p—1 1/2
< [[[| Jutet) =~ utp )P (utet) — uty. 1)
]RQ
s—2 s—2 1/2 d.’l?dy
X (|uz, t)]*u(z, t) — |u(y, t)] U(yvt)) o= y[Nror (4.36)

/// t p—
<or(ffL, G ) f[L et - o op
< (u,£) — u(y, 1) (e, O ~ue, 1) — fuly, O 2uly, 1) et Y

|x — y|NHop
thanks to Holder’s inequality. Since M (-) defined in (4.22) is degenerate, it follows that

M ([ ]WJP(RN)) = k[ulys.p @) = //Rw |x - Ng_ép)pdxdy. (4.37)
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It is known that w is zero outside Q. Substituting (4.37) into (4.36) and squared on both sides,
we obtain
(0/11)2
Ju(t) M ([l ax) )

// ju(e. 1) = u(y. P2l t) — uly )l O a0
]RZN

o=y ¥

2p+s—2

I /\

07/ e )2, OM ([0l g, ) (-2 (e, )

for some C7 > 0. This implies that (3.2) in Theoremnis satisfied when v := 2p—1. Substituting
v =2p— 1 into (3.4) of Theorem yields the decay estimate (4.25)). O

5. FINITE TIME EXTINCTION

In this section, we discuss the finite time extinction properties of weak solutions of problem
when Nu] := M ([u]ys.1 @) (—=A)w and f =0, as follows
AMOpu(z,t) + X205 u(z, t) + M ([ulwsawny) (=AYu(x,t) =0 in Q x RT,
u(z,t) =0 in (RV\ Q) xR, (5.1)
u(z,0) = up(x) in Q,
where M ([U]W&,lﬁ%N)) (—A)f u is the fractional 1-Kirchhoff operator (defined in below)

In Theorem we proved that for any p € (1,400), the solution of the mixed time-fractional

nonlocal p-Kirchhoff type parabolic equation decays with behavior of t71 and t% 1. Now, we
show that this behavior does not occur when p = 1, but vanishes in finite time, which is defined
as follows.

Definition 5.1. Let u be a weak solution of (1.1f). We say u(z,t) vanishes in finite time if there
exists a constant T' > 0 such that u(z,f) =0in Q for ¢t > T.

For p € (1,+00), the p-Kirchhoff operator has been defined in (4.23). Now let us turn our
attention to the case of p = 1. Formally, the fractional 1-Laplacian operator of order § € (0,1) of
a function u € W%1(RY) is defined as

, 1 u(z) — u(y)
M . “AYui= lim M , dy, (5.2
([ulwsr@ry) (—O)] u o ([u] s (my) /]RN\B 0 17— 9V Julz) — uly)] y, (5.2)
where B.(z) = {y € RN : |z — y[ < e} and the definition of [u]ys.1 g is shown in (2.2). Note

that in thls formula one has to give a meaning to % when u(z) = u(y). To solve this
difficulty, we follow the idea of studying similar problems in [I]. More specifically, we replace
u(z)—u(y)
[u(z)—u(y)]
that

by an antisymmetric L>°-function p(z,y) that satisfies ||p(-, )| @y xry) < 1 such

plz,y) € sign(u(z) —u(y)) ae. (z,y) € RY xRV,
where sign(€) is the multivalued sign of £. With this setting, we can give the definition of the
weak solution of problem (5.1)) as follows.

Definition 5.2. Let 0 < § < 1, u(-,0) = up(-) and uo € L?(Q2). We say that the function
u e WhH2(0,T; Wg’l(Q) N L?(Q)) is a weak solution of (5.1), if kq * [u — ug] € Wy 2(0,T; L2(Q)),
and for almost all t € (0,T) there exists p(-, -, t) € L‘X’(RN XRN) p(x,y,t) = —p(y, x,t) for almost
all (z,y) € RN x RN, |Ip(-, -, t)|| oo g3 xrvy < 1 such that

plx,y,t) € sign(u(z,t) —u(y,t)) ae. (z,y,t) € RY x RN x R
and

M / (2, )Oyu(w, )dz + Ag / (i, 1) u(z, t)dx

e(y,1))
+M ulyys1 () //R?N |3:— |N+6 plz,y,t)dedy =0
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for all p(t) € WH(Q) N L2().
The main result of this section is as follows.

Theorem 5.3. Let N > 2,0 < «,6 < 1, and C,, mg > 0. Assume that the function M : Rg — Rg

is non-degenerate and ug € L' (Q\{0}. If the weak solution u of problem (5.1) in the sense of
Definition[5.9 is globally bounded, and

mo )\?F(Q—Oz) ﬁ
luoll 5 ) < Y(0) < g (F—) (5.4)

where Y () denotes the supersolution of the equation \10yg(t) + A2059(t) = —&*, then u vanishes
in finite time.

Proof. For any q > 2, taking o(t) := |u(t)|972u(t) in . 5.3)) yields

)\1/ |u(x7t)|q_2u(x,t)8tu(x,t)dx+)\2/ |u(m7t)|q_2u(x,t)8&tu(x7t)dx

5.5
(e, DP~2u(r, 1) — fuly, 017 2u(y, 1) )
+ M ([ulwsamry) /sz P p(z,y, t)dzdy = 0.
From equation (3.7) when s := ¢, we obtain
/ Ju(z, )| 2ule, )dpu(z, t)da = [u(®)]]q o) 0l u(®)] La)- (5.6)
Furthermore, from inequality (3.10] - when s := ¢, we obtain
/ [u(z, 1) " u(e, )95 u(z, t)da > [lu(t)]|7, 9)30 tllw(®) Lae)- (5.7)
Since M (-) is non-degenerate, then it can be inferred from (4.26) that
M([U]Wé’l(RN)) Z mo. (58)
It follows from
|m|92m — |n|?"?n| = sign(m — n) (jm|?*m — [n|9n), Vm,n€R
and
p(z,y,t) € sign(u(z,t) —u(y,t)) ae. (z,y,t) € RY x RV x Rt
that
t)|a—2 t S92y, t
[ ) g0 000) g
R2N ‘m - y|N+6 (59)
B T R R R P
R2N |z — y|NTo .

Since p =1, 0 < § < 1, it follows that op < N. Applying Lemma [2.4] - to , we obtain that

()| 2u(z, t) lu(y, )9 2u(y, t)| N(q Dy NT_(S

Substituting (5.6| into , it can be concluded that

m
Allu(®)l7a Q)atIIU( Mzac) + Aallw() ]2 o) 5 ellu(®) Lao) + ?OIIU( )Ilq T <0. (511)

Since N > 2, we have % > 2. Let g := %, then (5.11)) can be reduced to

o m
M)y o) + 2205l x o + 5 <O (5.12)

Now we define an energy functional

y(t) = )l y o
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This means that (5.12]) can be expressed as

d
NP L ee 4+ <0 ¢ > 0. (5.13)
dt ' C,
Next, we exhibit a supersolution Y (¢) of the equation A; dt) + A208,9(t) = —F2, namely
dY( ) Mo
—— 4+ X0, Y (t — >0, t>0. 5.14
dt + A2 0,t ()+ O* = = ( )
To achieve this goal, we first find a function Y (¢) satisfying
dY(t) mo
A =0 5.15
1 dt QC* ) ( )
It is not difficult to conclude that Y (¢) satisfying equation ([5.15) is
mo
Yt:(YO— t>>0, 0<t<T,
() © 200, (5.16)
Yt)y=0, t>T,
where T' = %*OY(O). For 0 <t < T, since
tlfoc Tlfoz aylfoz 0
R Y (1) = — >0 =__0 U (5.17)

20MCT2—a) = 2MCT(2—a) (2MC)T(2—a)

Combining (5.15)) and - 5.17)) yields

dY( ) mo . o mo
- V() + o = X0, Y (0 + 50
m&gY1=(0) mo

2MC)eT(2—a) | 20, T

thanks to Y (0) < 2 (’\ F(z o‘)) ==, which implies that (5.14) holds. Fort > T, thereis Y (t) = 0,
obviously (5.14] - also holds. Since ||u0|| @ = <Y (0), combining (5 and -, and applying
the comparison principle (Lemma ., we can obtain that

mo

t <Y(0)-— t, 0<t<T,
[u(Ol, 5 ) < YO) = 356
[u@)l, o =0, +>T
Therefore, the weak solution u vanishes in finite time. This proof is complete. O

6. CONCLUSION

This paper mainly studied the decay estimates and extinction properties of weak solutions for
some parabolic equations with mixed time-derivatives. By using the energy method and a new
comparison principle, the power-law decay estimates of weak solutions for the abstract parabolic
problem were obtained. In addition, we also provided three specific applications of the decay
results of problem . For the p-Kirchhoff problem with mixed time-derivatives, when p > 1,

the weak solution decays according to the behavior of t7-1 and tZ-T (see Theorem. However,
when p = 1, the weak solution no longer decays but vanishes in finite time. Therefore, at the
end of the article, the finite time extinction property of the weak solution of the 1-Kirchhoff type
parabolic problem with mixed time-derivatives was also obtained.
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China (11471015) and by the Postdoctoral Scientific Research Project for Anhui Jianzhu University
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