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UNIFORM ESTIMATES FOR ELLIPTIC EQUATIONS WITH
CARATHEODORY NONLINEARITIES AT THE INTERIOR
AND ON THE BOUNDARY

EDGAR ANTONIO, MARTIN P. ARCIGA-ALEJANDRE,
ROSA PARDO, JORGE SANCHEZ-ORTIZ

ABSTRACT. We establish an explicit uniform a priori estimate for weak solutions to slightly sub-
critical elliptic problems with nonlinearities simultaneously at the interior and on the boundary.
Our explicit L™ () a priori estimates are in terms of powers of their H'(2) norms. To prove
our result, we combine a De Giorgi-Nash-Moser iteration scheme together with elliptic regularity
and the Gagliardo-Nirenberg interpolation inequality.

1. INTRODUCTION

Let us consider the nonlinear boundary value problem of semilinear eliptic equations
—Au+u= f(z,u), z€l,

g—:; = f(z,u), z€0Q, (1.1)
where Q C RY | (N > 2), is an open, connected, bounded domain with C? boundary, 8/9n = -V
is the (unit) outer normal derivative, and the functions f : @ x R — R, and fp : 9Q x R — R,
are both slightly subcritical Carathéodory functions. In (H1)-(H4) below, we give the precise
statement of the hypotheses on the nonlinearities at the interior, and on the boundary.

Our goal is to establish explicit L>(Q2) a priori estimates for weak solutions to , in terms
of powers of their H*(£2) norms (see Theorem . Our estimates are independent of the sign of
the solutions. Consequently, any sequence of solutions to , uniformly bounded in the H!(£2)
norm, is also uniformly bounded in the L>°(Q2) norm.

Our techniques are based on an iterative process due to Moser, in the elliptic regularity theory,
and in the Gagliardo-Nirenberg interpolation inequality.

For the homogeneous Dirichlet boundary conditions, by a Moser’s type procedure, it is well
known that weak solutions to a subcritical or even critical elliptic problem are in L7(Q) for all
1 < g < oo (see 11, Lemma 1], see also [, Section 2.2], [I5, Lemma B.3]. Moreover, by elliptic
regularity, the solutions are in L(£2).

Moser’s results can be extended to the case of nonlinear boundary conditions, and also to a
general quasilinear problem, which includes in particular , see, for instance, [9, Theorem 3.1].
In [9) the authors state that weak solutions to some quasilinear problem are in L>(Q) N L (99Q).
By elliptic regularity, weak solutions to are in fact more regular, and in particular, they are
uniformly continuous functions. Indeed, the elliptic regularity theory, applied to weak solutions of
a subcritical or even critical problem implies that they are in C(Q), see estimate (5.2)) in Theorem

So, in that case,
[ull L= (o0) < llullo@) = lullLe=(@)- (1.2)
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The type of L () estimates given by are known for slightly subcritical nonlinearities in
the homogeneous Dirichlet problem with the Laplacian operator, see [13, Theorem 1.5], with the
p-Laplacian operator, see [14] Theorem 1.6], and also with a linear problem at the interior joint
with nonlinear boundary conditions on the boundary of power type, see [3].

In this article, we analyze the combined effect of both nonlinearities simultaneously. We estab-
lish the explicit estimates provided by Theorem [2.2] where both nonlinearities in the interior and
on the boundary are slightly subcritical, not necessarily of power type.

This article is organized in the following way. Section [2| contains the statement of our main
result, Theorem we also give an application to finite energy solutions. The proof of Theorem
[2:2]is achieved in Section[3] By the sake of completeness, we include two appendices. In Appendix
[ we recall the regularity of weak solution to the linear problem with non homogeneous data both
at the interior and on the boundary, see Theorem Appendix [5] deals with further regularity
of weak solutions to 7 see Theorem

2. MAIN RESULT

For p > 1, we define the trace operator I' : WLP(Q) — LP(99), in the following way
(1) Tu = ulpq if ueWLP(Q)NC(Q),
(2) [[Tullran) < Cllullwrr@),
where C' = C(p, |€2]) is a constant and 9 is C?. From the surjectivity and the continuity of the
trace operator, we obtain
1 1-1 (N-Dp
L:WHP(Q) > W »P(0Q) — L1(0Q), for 1<¢q< N
-p

)

and
||FuHLq(,9Q) < CHUHWLp(Q), for some C' > 0,

(N—1)p

N—1 .
Nop and compact for 1 < ¢ < % (see [6l, Theorem

this operator is continuous for 1 < g <
6.4.1] and [2, Lemma 9.9]).
Throughout this article, we use the Sobolev embedding
HY(Q) — L* (Q), (2.1)
and the continuity of the trace operator
HY(Q) — L*(09),

where ( ) ( )
2N 2(N -1 N -1

2% = — d 2,:= = 2%, 2.2

N_2 ™ N_2 N (2:2)

are the critical Sobolev exponent and the critical exponent in the sense of the trace, respectively.

For 1 < p, pp < 00, we denote

" ' . 1 2, 1
Py = o =2 (113) and 2, x/ps ::g:z‘(p—), (2.3)

bB

where p’ is the conjugate exponent of p, that is % + 1% =1.

For the nonlinearity f: Q x R — R, we assume the following hypothesis at the interior:
(H1) fis a Carathéodory function:

(a) f(-,t) is measurable for each ¢t € R;

(b) f(z,-), is continuous for each z € §;
(H2) f is slightly subcritical (at infinity), that is,

|f (@, )] < Ja(@)|f(|¢]), (2.4)
with a(z) € L"(Q) for r > &, f 1 ]0,+00) — [0,+00) is continuous, non-decreasing,
f(t) > 0 for ¢ > 0, and such that
f®)

lim —=
t—+o0 ¢ N/r—1

=0. (2.5)
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Likewise, for the nonlinearity fp : 022 x R — R, we assume the following hypothesis on the
boundary:
(H3) fp is a Carathéodory function:
(a) fp(-,t) is measurable for each t € R;
(b) fB(x,-) is continuous for each x € I9.
(H4) fp is slightly subcritical (at infinity), that is:

|f5(,0)] < lap(@)|fa(It), (2.6)
with ap(z) € L"#(0Q) for rp > N — 1, and fB : [0,400) = [0,400) is continuous,
non-decreasing, fp(t) > 0 for ¢t > 0, and such that

. fB(t) B
im0 o @
We say that u € H'(Q) is a weak solution to [L.1) if f(-,u) € L2 (Q), and f5(-,u) € L) ()
are such that for all ¢ € H(),

/QVquder/Qm/)d:Lf(x,u)wdx+/é)ﬂf3(x,u)wd5,

being (2*) = ]\2[—12 and (2.) = w the conjugate exponents of 2* and 2., respectively.

Remark 2.1. (i) Let u € H*(2). By Sobolev embeddings, for f and fp slightly subcritical, we
have

7 T ve—l o111
f(u|) € L*N+"1(Q), where N/TziJrﬁ,;’
f Ee— 2. Ny — 1 N 1
24, N/rg 1 *N/rp _ S
fB(lu]) € L 57 (0R), where 3, SN 1) g

Hence,
flu) e LEY(Q) and  fp(-,u) € L&) (69).
(ii) We can always choose f and fp such that f(~t) > 0 and JEB~(t) > 0 for ¢ > 0. Note that
redefining both functions, f(t) and fg(t), as max ) f and max(y , fB, respectively, we can always
choose f(t) and fp(t) as non-decreasing functions for ¢ > 0.

Now, let us define two new functions,

21 2o N/rp—1
h(t) := — nd hgp(t) = ——— fort>0. 2.8
W= M=y ot 29

Since the nonlinearities f and fp are both slightly subcritical, it follows that

h(t) - oo and hp(t) - o0 ast— oco. (2.9)

Let h,, be defined as the minimum of & and a certain power of kg, specifically
2}‘\]”—1
hon () := min {h(t), by Y2 (1)}, (2.10)
with h and hp defined in (2.8]).
We will denote as aps the maximum of the corresponding norms of a € L"(2) and of ap €
L™5(0Q), that is
apr = maX{Ha”Lr(Q),Ha,B”LTB(aQ)}. (211)

The next Theorem provies estimates for i, (||ul|p(q)) in terms of their H'(£2) norms.

Theorem 2.2. Assume (H1)—(H4) hold and u is a weak solution to (1.1)). Then, for all e > 0,
there exists C. > 0 depending of €, N, |Q] and |09)|, but independent of u, such that

(QTV/T—Q)(A-FE))

(el (@) < Cea (14 lull ) (2.12)
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where hy, is defined by (2.10), apr by (2.11), and

N—r
%7NN—T1 if either v > N, or N/2 <r < N and r* > X5,
A= 27 Nrpg (2.13)
1 ifN/2<r<Nandr*§%,

Remark 2.3. Since (1.2), we have

€ (25 —2)(A+e)
hn(lull o)) < Ceagy™ (1 +llullrey )

Remark 2.4. From the definitions of h and hp given in (2.8)), we note that

- 2% /-1 2% —1
25/ —1 e\ 2o N/rp =L SN
Pt) == and by () = (e ) YT
f(®) fB(t)
Thus,
. 1271 21
t) = min = , - .
) = min { e
F24,N/r— 1
I (t)

We apply our result to finite energy solutions of subcritical problems satisfying Ambrosetti-
Rabinowitz condition. A sequence {u,,} C H'(Q) of weak solutions to has uniformly bounded
energy if there exists a constant cg > 0, such that J[u,] < ¢g, where .J is the associated energy
functional defined by

Ju] = %/ (1Vuf? ) —/QF(x,u)dat—/aQFB(ac,u)daw

with F(x,t) fo f(x,8)ds, and Fg(x,t) : fOfBJ:s)ds

The Ambmsettz Rabinowitz condition holds if there exist two constants # > 2, and sy > 0 such
that

0F(x,s) < sf(x,s), VzeQ, V|s|> s,
0Fp(x,s) < sfp(x,s), VxedQ, V|s| > so.

Assuming that (H1)—(H4) and (2.14]) hold, a sequence of solutions to (1.1)) is uniformly L>°()
a priori bounded if and only if it has uniformly bounded energy. It can be proved using the same
arguments as in [3, theorem 5.1].

(2.14)

3. L*°(£2) A PRIORI EXPLICIT ESTIMATES

Our method combines elliptic regularity with the Gagliardo-Nirenberg interpolation inequality.
Let u be an arbitrary solution to . First, we find estimates of the nonlinearities in terms of
products of the H!(Q)-norm of u and their L>(Q)-norm. With it, using elliptic regularity (see
Theorem ([4.1))), we obtain estimates of the W™ (Q)-norm, with m > N, of the solutions to (L.1J).
Finally, applying the Gagliardo-Nirenberg interpolation inequality, (see [12]), we obtain an explicit
estimate of the L°>°(Q2)-norm of u in terms of the H'() norm of w.

Proof of Theorem[2.2. Let u € H'() be a weak solution to (L.1). By Theorem ue€ HY Q)N
L>(Q).

Firstly, we will estimate both nonlinearities (the interior and the boundary nonlinearities) in
terms of the H!(Q)-norm and the L°(Q2)-norm of u.

Step 1. W1™(Q) estimates for m > N. By hypothesis, f and fz are both increasing. By (1.2)

we denote ~
M := f(|lull =) =  max
[0, ]Jull oo (0]

B (3.1)
Mp = fp([[ullLe (@) =

Along this proof, we will use the obvious fact that for any v > 0, there exist two constants Cy
and Cy, only dependent on -y, such that

Ci(1+27) < (1+2)" <Cy(1+27), forallz>0. (3.2)

ax
[0,][ull Loo (2]
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Throughout this proof, C denotes several constants independent of u.
By the growth condition (2.4]) and the definition given in (3.1]), we have that

[ wlds < [ ja@ltF(u)* de < 07 [ Ja@P il de @33)
Q Q Q
for all ¢t < ¢, and all
N
q € (E,mln{r,N}). (3.4)

Using Holder’s inequality, for all 1 < s < co, we can write

e O e R R S (35)

where s’ is such that%Jr%:l. Choosing s and t < ¢, so that ¢gs = r and ts’:z*Qi*_l,we have
P : N/r
2% q
2N/T—1 T
11 2,1 11 1 3.6
—_— < -4 (3.6)
q T 2% r 2+N
= q> ,
17 N12

: N _ 2N
simce ¢ > 5 > §Nig-
On the other hand, by subcriticality, see (2.5]), and the Sobolev embeddings, see (2.1)), we have

-
[ 1RGabdr < [ (1o ) de
Q Q
<O (14 02 ) (3.7)
<C (1 + \|u||‘§;1(m) . (3.8)
Substituting (3.8)) in the second factor on the right-hand side of (3.5)),
- 1/s . 1/s’
[ ta@if(ul) de < o [ lat@rds) " (1 fule) (39)
Q Q
Finally, substituting (3.9) in (3.3]) and since 1/(¢s’) = 1/q — 1/r, we obtain
Ya _t 2*(1-1)
([ 1 pds) ™ < ool (1+ Tl ) (3.10)

Likewise, by the condition (2.6)) and the subcriticality (2.7]), we obtain

/ |fB(xau)|QB ds < / ‘G/B<.’I})‘QB]EB(|u|)QB—tB+tB ds
o0 90

i (3.11)
<cyp™® [ Jan(o)® falfu)” ds.
o0
for all tg < ¢p, and all
qp € (N —1,7p). (3.12)

Using Holder’s inequality, for all 1 < sp < 0o, we obtain

1/s'y

/8Q lag ()92 Fa(ju])'? dS < (/m|a3(x)q353d5>1/83( 8Qf3(|u\)t58%ds) . (3.13)
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where s’ is such that i + 4 = 1. Choosing, as before, sp, tg < qg, so that qgsp = rp, and

B
2. .
tBS/B = W, thuS,
2* 4B
e (1)
P 2. N/rg — 1 B 15
1 1 2, N/rg — 1 1 N -2
= — - — < B -
4B rB 2* B 2(N — 1) (314)
— L < N
aB 2(N — ].)
- 2(N-1)
— (B N 5
and the last inequality is satisfied since gg > N — 1 and N > 2.
On the other hand, again by subcriticality, see (2.6) and (2.7]), we have
25
[ s =T < e [k ul) ds
20 a0
< C (14 02 e ) (3.15)
2.
<O (1+ lulfig) - (3.16)

Since tpsz = 2./(2. n/rp, — 1), and substituting (3.16) in the second factor on the right-hand
side of (3.13)),

~ 1/83 1/8/
[ Jas@) fallur as <c( [ fan@leeras) " (14 fulg) L (347)
o0 o0
Finally, substituting (3.17)) into (3.11)), and since 1/(¢psy) = 1/qs — 1/rp, we obtain
1/aB 17;% 2.(A-2)
([ istewlrae) ™ <0y anllrnoo (1+ 55 7)) @)
o

Now, using elliptic regularity, we estimate the norm ||ul|y1.m (o) in terms of the corresponding

norms of the nonlinearities, see Theorem [4.1] Equation (4.2). Specifically, using (3.10) and (3.18),

we obtain

_t 2"(:-1)
el < C[ M5l ey (1+ Tullpado, ™ )

i ) (L,L) (3.19)
+ My ™ llasllra e (1+ g 7)),
where m = min{q*, Nas q° = Ng_ , whenever 1 < g < N, see Theorem |4.1] Fixing
N—-1 N—q
4B N m=q"=-—>N, (3:20)

(in the forthcoming Remark we explain the necessity of the election for ¢p), moreover, we
have the following equivalences
) (N—l)q* 2, _2* o
aqB ‘= T — q73 = q7* — 2*7N/QB = 2N/q (321)
Indeed, we only have to notice that, using the definitions (2.2)), (2.3) and (3.20)), we can conclude
that

2, 2% 2 2%
2, S N N A L
\N/aB qB N q q N/q
With that election of ¢p, we also need to restrict ¢ in order to satisfy (3.12). Specifically
N N’I’B
—, mi —_— ). 3.22
q€(2’mm{“Aﬁ—1+rBD (3.22)
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Note that, because of the definition of ¢p, see (3.20)), and their restriction, (3.12]), the following
inequality has to be satisfied

(N -1)¢
N

By (3.4), we obtain that ¢* > N so WN-Dq” )q > N — 1. Thus, we only need to check that

NTB<:>1 1>N71 1>]\f71_|_1<:> < Nrp

N1 ¢ N~ Nrg ¢  Nrg N TSN _11rg

from which, using (3.4}, and that

N-1< =qp <TB.

*

q <

N’I“B

N 3.23
N_-ltrg -0 (3.23)
we conclude ((3.22)).

Step 2. Gagliardo-Nirenberg interpolation inequality. The Gagliardo-Nirenberg interpolation
inequality (see [12]), implies that there exists a constant C' = C(N, g, |€?]), such that

lull ey < Cllullgy s 55 (3.24)
where
1 2 1
2 2*(7_,). 3.25
S (3.25)
From ), by the definition of 23, , see (2.3), it is easy to check that
1 [/2-N N .
— =142 {(T)ﬁ-(l—g)] =25, — L. (3.26)

Substituting the estimate of [jullyy1.m (), see and using (3.2)) in the inequality (3.24)), we
obtain

_t 2" (-1
lullzeo) < C[M'Fllall o) (1+ I, )

2.5 =75 )\1% . (1—0)
i )] Il
Yo 1)‘7

< MO D al ) (1 + ulpiy )

0-32)
+ Mg

+ My wwmmwmo+w
(3.27)

o 2.(&- 1
lenllgrs o ( 5T |l
We now look closely at the exponents of [[u[|~(q) in the right-hand side, in order to achieve
our estimates. Taking into account the definitions of M and Mg, see (3.1), that f and fp are
non-decreasing, and the definitions of the functions h and hp, see (2.8]), we can write the following
relation between them,

el Jull e ™
M = Li“’) and Mp=— " (3.28)
h(llull Q)) h([Jull < (o))
Moreover, using the definitions of ¢, see , and of 2}, Jp S€e E, we obtain
t 2 1 1 -1
1—7=1—*7(7—7)—f/q7. (3.29)
q 2y, — 1\ 7 2N — 1

Thus, because of the expression (3.29)), we deduce

. t
<2N/7‘ - 1) (1 - 6) = (2*,]\7/11 - 1)7
and because of the definition of o, see (3.26)),

( N — 1) (1 - 2)0 — 1. (3.30)
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Similarly, from the definitions of ¢p, see (3.14)), and of 2, /4, see (2.3]), we obtain

t 2, 1 1 2, -1
1—3’:1—7(*_*) S Rt (3.31)
qB 2N/ —1\ge  TB 2 N/rp — 1
Likewise, since (3.31)), the definition of o, see (3.26)), and the equivalences (3.21]), we obtain
tB 2* N/q — 1
2 Ny —1 (1——)02’7:1. 3.32
( AN/rs ) qB 2*7N/q -1 ( )

Now, we divide both sides of the inequality (3.27)) by ||u[| (o). Using the definitions of M and
Mg, also the two expressions concerning o; (3.30)), 13.32: , and the definition of a,s, see (2.11)), we

obtain
1-4o 2:(g5—75)o
Wt gy Ot i ),
s cagy (< s Jul82) (3.3
pT Cllullz=@) by (ull (o))
The definition of h,, (see (2.10)), implies that
1 { 1 1
1 = max 1 ) 1
2% 1 2 Njrp—1
han " (lull o () WS (lull poe (o)) by ™Te (lull = (q))
So, substituting this maximum in the inequality (3.33]), we obtain
1
27 — o 2*(l % T rg 1—0o
th/ (||UHLO<>(Q)) < CaM (]_ + Hu”H1(qQ qB B )H ”(L?*(S)]) (334)

The right-hand side in the above inequality is bounded above by a term with the largest exponent
of both addends. Let us denote this maximum by

1 1 1 1

Ey i=max {2%(— — =), 2,(— — —) }. 3.35
L RN E ). 857

From inequality (3.34)), definition (3.35) and Sobolev’s embedding, we obtain
Pon([ull o 9) < Calhy (14 ull s g ) (3.36)

where
9-—(2* —1)a—£ (3.37)
T N/r 2* Nia — 17 .
-0

= (EM +— )9. (3.38)

Now, we look closely at the definition of Ej;. Firstly by definitions of 2* and of 2,, see (2.3)),
secondly by election of gg, see (3.20)), and finally rearranging terms, we observe that

1 1
2522 )
q r 4B B

(:)1 1 1>N—1<1 1) (3.39)
¥N r— N qp TB '
1 1 N -1
S —< .
r N~ Nrpg

If r > N, then 1/r — 1/N < 0, and the last inequality holds. Moreover, if N/2 < r < N, then the
last inequality holds if and only if

(1/r —1/N)"" =:1* > Nrp/(N —1).

Observe that
"> Nrp/(N—1) < 2§/, 2 2. N/rp-
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On the contrary, the reverse inequality to (3.39)), will be satisfied whenever N/2 < r < N, and
r* < Nrg/(N —1). Hence

q T

J(E-2L) fN/2<r<Nandr < {5

2*(l71) ifrZNorN/2<r<Nandr*2%T_51,
= (3.40)
2
9B TB

Consequently, we have two cases in the search for the optimum exponents 6 and 3 varying ¢, see
(-22),

Case (I): Either r > N, or N/2 < r < N and r* > %11. Using the definition of 3, (3.38)), the
first equality for Ej; in (3.40), and the expression for o, see (3.25), and for 2%, /s SCE (2.3]), we

have

= [2*(5*%)+1;0]9 (3.41)
11 21 )
= [2 (5 )+ (5 *5)]9:( Ny~ 2)0. (3.42)

The function 6 : ¢ — 6(q), defined by (3.37) is decreasing. We look for the infimum for ¢ in the
interval (3.4)).

Assume r > N. Since (3.22)—(3.23)), we deduce that ¢ € (%, #TTB)

Assume N/2 <r < N and r* > % Note that

Nrp 1 1 N -1 Nrg

- TN ST N i1, 3.43

" =2NZ1 r N~ Nrp T_NflJrrB’ ( )

md g€ (¥, p2).
Hence, in case I,
Nrp 1 _ N-r
- eng( )ZZ = 3.44
a€(¥ w2TEg) (@ N—1+rp 3~ Nro (3.44)

Case (II): N/2 <r < N and r* < % Likewise, using the definition of 3, (3.38]), the second
equality for Fj; in (3.40), and the expressions for o (3.25)), for Qf\,/p, 2, N/ps (2.3), and the
equivalence (3.21]), we have

p=lo.(- - =)+

qp TB o
= (F ) e (gE )l (3.49
= [208/rs = 2uv/a5 — 2+ 2hg)0
= [2*,N/r3 —2J6.
For ¢ satisfying (3.22)), thanks to (3.43), we deduce that ¢ € (&, r), hence
qei(n%fyr) 0(q) =06(r)=1. (3.46)

Finally, we introduce into the inequality (3.36)), the infima of 6 and § given by (3.44)) and (3.42)
respectively in case I, and by (3.46) and (3.45)), in case II. Since these infima are not attained in
the set where ¢ belongs, for any € > 0, there exists a constant C. > 0 such that

(2N/r—2)(A+e)
Bl (o) < Cag (14 ulligiey 7).
where A is defined in (2.13)), and C. = C.(e, N, |Q],]09|) and it is independent of u. O

In the following Remark, we state the necessity of the election for gp, see (3.20]).
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Remark 3.1. Assume that (3.20)) does not hold and, to fix ideas, that

(N —1)g" Ngp
—_— = N.
g < N —— m N1 >
We also have the equivalence
(N -1)g¢" 2" 2, *
< ————— &= — < — &= 2, < 2%/,
N q* a5 N/aB N/q

Indeed, the first equivalence is obvious. With respect to the second one, notice that, due to the
definitions of 2}‘\,/q and of 2, /g, see , we can conclude that

qaB q q
Now, in the Gagliardo-Nirenberg interpolation inequality, see 7 the parameter o is given by

Ly
o N m

1 N-1
—1 2*<f 1 )
2N N
= 2*7N/QB -1
<25/, — L.

And the expression ((3.30) becomes
t 2, -1
(2h,—1)(1-2)o= M >0,
q 2*:N/QB -1

The above inequality implies that the exponent of ||ul| 1 (q) in the right-hand side will dominate
1, which is the exponent of HU”LOO(Q) in the LHS, and the bounds can not be reached.

Likewise, if ¢g > W, then m = ¢* and it can be proved that

1 72 1 i
*:1+2 (7$1_6):2N/q_1<2*,N/QB_17

o N
and so
tp 2, NJgp — 1
(2*7N/TB - 1) (1 - 7)0 = (2*>N/QB - 1)0 = *ngl > 1,
4qB N/q -

concluding that necessarily, ¢g has to be chosen as in (3.20)).

Throughout that proof, we have explicit estimates of Ay, (||ul|f(q)) expressed in their L?" (1)
norm and L?(9Q) norm (see and (3.15)). Previously, we unify those estimates in their
H'(Q) norm to simplify the expression. In the next Corollary, we split those estimates in terms
of the L?"(Q) norm and the L?*(9Q) norm.

Corollary 3.2. Assume that the hypotheses of Theorem[2.4 hold. Then, for alle > 0, there exists
C. > 0 depending of ¢, N, |Q| and |09, but independent of u, such that

ol =) < €™ (14 Tl 2250 + Tl 2 il 25, )
where A is defined in , with
Ap = ( 7\//7" —2)A, Ay:=0, A;z:= (2*,N/r3 —2)A,
if either r > N or N/2 <r < N and r* > %231, and
A= 27\,/7, =2, Ay:=2 Njrp — Q}kv/r, Az = 27\,/T -2,

if N/2<r <N andr* < {5,
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Proof. The proof is similar to the proof of the Theorem (2.2]).

Step 1. Wh™(Q) estimates for m > N. Substituting (3.7)) in the second factor on the right-hand
side of (3.5, and this is (3.3]), we obtain

1/q _t 2%(1-1)
( / fawltdz) < CM' 7 al oy (14 ull ), (3.47)

with M defined in (3.1)), ¢ in (3.6 and ¢ in (3.4)), respectively. See the analogy with (3.10)).
On the other hand, replacing (3.15) in the second factor on the right-hand side of (3.13]), and

this in (3.11)), we obtain
w5 ) 77 -2 75 )
([ Vsmpear) ™ < oMy faplro oo (1+ 5™ ). (348)

with Mp defined in (3.1)), ¢t in (3.14), and ¢p in (3.12)) respectively. See the analogy with (3.18]).

By elliptic regularity, we estimate the norm |[jul/y1.m (o) in terms of (3.47) and (3.48)), see
Theorem obtaining

[l wr.m (o)

) tB 1 1)
< C[M 7 al ooy (14 Tl %)) + My ™ llas s ony (1+ uly ey ™ )],

with m > N. See also the analogy with (3.19).

Step 2. Gagliardo-Nirenberg interpolation inequality. Substituting (3.49) in the Gagliardo-
Nirenberg inequality (3.24) and using the inequality (3.2)), we obtain

LYy 2*(L-1)o
) < C[MO ||a||mm(1+||uuL2* o)

(1-¢E)o 2. (g —)o -0
+ Myl oy ( By ) Il

Using the definitions of M and Mg, see (3.28)), using also (3.30)), (3.32), the definition of aps (see
(2.11))), and dividing both sides of the inequality (3.50) by ||UHL00(Q ), We obtain

(3.49)

(3.50)

1)0_
1<CGK4<(1+||U||L2*(Q) ) N (1 + flu

*( )0

L2*(8Q) ) I ”(1—0)
1

RN (o) by ™7 (]| e gg))

L2 ()

Then

1
%, 1 (L-Lyo 2 (55 —7g 1—0o
B2 (||u||LQC(Q)<CaM(2+|\u||L2*(Q) A )HUH(LQ*(QZ).

where h,,, is defined in . See the analogy with (3.34)). Clearing, we obtain

)(2N/r Do 2. (@—@)(2?\1/7« o (1-0)(2x,-—1)
(092) )” HL?*(Q)

o(2n/r—1)
hon(lll =) < Cag ™ (14l 35,

Substituting in the exponents the parameter 6 (see (3.37))), we obtain

[2* (5 -5H)+23%10 (g =750 0
on(lll <) < Cadly (14l 52y lhull eyl 5 ) (3.51)

Let us define the function 6; = 6;1(q) as the first exponent inside the brackets. Using the
definitions of 2%

N/g> S€e , and of o, see (3.26)), we obtain
1 1 1—0 "
()= [2(; — ) + =7 ]0ta) = @23~ 2600)

note that this value is equal to 8 in case I of Theorem (2.2)), see (3.41])—(3.42)).
We define the function 6, = 02(q) as the second exponent. By the definition of 2, n/,,, see

(2.3)), and the equivalence ([3.21),
1 1

02(0) == 2. (- F 1= - )0(0) = (2ewpmy — 2ivj0)0a)

B



12 E. ANTONIO, M. P. ARCIGA-ALEJANDRE, R. PARDO, J. SANCHEZ-ORTIZ EJDE-2025/95

We define the function 03 = 03(q) as the third exponent. Using the expression (3.26) for o,
1-0 N
5(a) 1= (*—2)(a) = (24, —~ 2)0(a).
As before, let g, 6 be defined by (3.20)), and (3.37)) respectively. The function
(01462 + 05)(q) = (2, + 24, n/r5 — 4)0(q),
is decreasing, and we look for their infimum for ¢ in the interval (3.22). Thus, as before, we
consider the previous two cases.
Case (I) Either » > N, or
defined in (2.13]), the exponents are

N : N N
-5 In this case, ¢ € (5, N—lerB)' For A

Al = 91(#%) — (250 — 24,
A= GQ(N —Nlmj—rg) B N2—2(N_rIB+TB —1- Nrgl)A:O’

and

oo () (1Y) )
(

e () )

Hence, inequality (3.51]) can be rewritten as

A (2% —2)A+te (24,N/rg—2)A+e
hm(HUHLoo(Q))SC@M+E(1+H ||LZ,IZ/(Q +||u||L2 (09) [|u HL2*N6)B )a

where A is defined in (2.13)).
Case (II) N/2 <r < N and r* < ]]:,’1’31 In that case, ¢ € (5, r) (see (3:22)). The exponents are
Al =0, (r) = 2}‘\,/T -2,

2 (N N -1

=2, r — 2; )
rg ) N/rE N/r

§1=0s(r) =24, —2
Therefore, inequality (3.51]) is rewritten as

r—2+e «,N/7 rte r—2+e
B0l <) < Ceald= (1wl i1, + ol il 2ty ). 0

The next corollary proves that any sequence {uy} C H'(Q) of weak solution to (1.1]), uniformly
bounded in the L?" () norm and in the L?*(9Q) norm, is also uniformly bounded in the C(Q)-
norm.

Corollary 3.3. Assume (H1)-(H4) hold and let {uy} C H'(Q) be a sequence of weak solutions
to (L.1) satisfying that, there exists Cy > 0, such that
ekl 2 Q) <Co and ||ug|re- o) < Co.
Then, there exists C > 0 such that,
lukll o < €

Proof. We proceed by contradiction, assuming that ||ug ||z ) — oo. By the Theorem (2.2)) and
the remark we obtain

hm(”uk”C(ﬁ)) < Ca for C' > Oa (352)
where, Ay, is defined in (2.10). Using (2.9), we deduce that fum, (|Jux||o(q)) — oo as k — oo, which
contradicts (3.52)). O

Corollary 3.4. Assume (H1)-(H4) hold and let {uy} C H(Q) be a sequence of weak solutions
to (L.1). Then the following statements are equivalent:
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(1) Nukllr2+ @) < C1 and |lug| r2- (90) < Ch,
(i) [Jurlle) < Cs,
(iii) ||uk||H1(Q) S Cg.
for some constants C; independent of k, i = 1,2, 3.

Proof. We prove that (i) = (i7) = (iii) = (3).

The proof of (i) = (ii) follows directly from the Corollary Now, using the elliptic regularity
result, see the estimate in the Theorem and the Gagliardo-Nirenberg interpolation, the
proof of (i7) = (i) is done. Finally, Sobolev’s embedding and the continuity of the trace operator,
proves that (iii) = (7). O

4. APPENDIX: REGULARITY FOR THE NEUMANN NON HOMOGENEOUS LINEAR PROBLEM

In this appendix, we recall the regularity of weak solution to the linear problem with non homo-
geneous data both at the interior and on the boundary. Let us consider the linear nonhomogeneous
Neumann problem

—Au+u=g(x), e,
ou (4.1)
— = x), x € 0N,
an 95(x)

where Q € RY, (N > 2), is an open, connected and bounded domain with C? boundary.

Theorem 4.1. Let us consider the problem (4.1), there exists a positive constant C > 0 indepen-
dent of u, h and gg such that the following holds:
(i) If 9Q € C%', g € LY(Q) and gp € LB(0Q) with ¢ > 1 and qg > 1, then there erists a
unique u € WH™(Q) and
[ullwrm@) < C (l9llra@) + lgsllzee @) - (4.2)
NN—_qq, %q_ﬁ whenever 1 < q¢q < N, or m = min{q,% whenever ¢ > N.

Furthermore, if ¢ > % and qg > N — 1, then

where m = min{

ullgr @ < C (gl Lace) + 9B Loz 00 »

where v =1—_"(m > N).

(i) If 9Q € C11, g € Cv(Q) N LYQ) and gp € L (0%2) with q > & and gp > N — 1, then
there exists a unique u € C¥(Q) N C*" ().

(iii) If 0Q € C%7, g € C¥(Q) and g € CV(9N) with v € (0,1), then there exists a unique
u e C?(Q) and

lullga @ < € (9o + llgsllor o)

where C' is a positive constant independent of u, g and gp.

(iv) If 9Q € C?, g € LP(Q) and gp € Wlf%’p(ﬁQ), then u € W2P(Q) and

s @) < C(lgllira + 198l 200 )

where C' is a positive constant independent of u, g and gp.
(iv) If 9Q € CY with v € (0,1], g € C¥(Q) and gg € C*(92) N L>(9Q) then if u is a bounded
weak solution to (A1), then u € C1#(Q) N C%P(Q), where B depends on v and N.

Proof. (i) It follows from [7, Ch.3 Sec. 6] or [10, Lem. 2.2] that there exists a unique u € W1?(Q)
solving . Now if p > N, using the Sobolev embedding theorem, one has u € C%(2). Then by
applying [5, Thm. 6.13] for the corresponding nonhomogeneous Dirichlet problem, we have that
u € CH(Q), see also [10].

(i) From part (i) we have that u € C%(Q). Since 9Q € O, ) satisfies the exterior sphere
condition at every point on the boundary and using the fact that g € C%(f), reasoning as above
it follows from [5, Thm. 6.13] that u € C*(Q) N C>%(Q).

(iil) See [1l Page 55] or [7, Chap.3 Sec. 3.

(iv) See [1, Page 55] or [7, Chap.3 Sec. 9].
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(v) By [8, Thm. 2], one has u € C1#(Q). Then using the bootstrap for the differential equation
in 2, we obtain the desired regularity in €. O

5. APPENDIX: REGULARITY OF WEAK SOLUTIONS

In this section, we establish auxiliary results on further regularity of weak solutions to , by
assuming that conditions on the growth of the nonlinearities are subcritical or even critical. Using
a Moser type procedure, it is known that v € L7(Q) N LI(9Q) for all ¢ < oo (see [9, Theorem
3.1]). Moreover, using elliptic regularity theory, we state the following result that guarantees, in
particular, Holder regularity of any weak solution to (|1.1)).

Theorem 5.1. Let Q CRY, f: QxR — R and fp : 00 x R — R be Carathéodory functions,
such that

|f(z,8)] < ‘a($)|(1 + |s|2}k\1/7.—1)7
\fB(z,8)| <lap(z)| (1+|s[>~/s71),
where
a(x) € L"(R), with g <r< oo,
ap(x) € L™ (0Q), with N—1<rp < oo.

Let u € H' () be a weak solution to (1)), then u € LY(Q)NL1(0RQ) for all 1 < q < co. Moreover,
u € WHm(Q) N C¥(Q), and the following estimates hold

lullwrm@y < C(IFCwllr@) + I8¢ wllLrs o)) » (5.1)
lullgvimy < C (NG w)llr@) + 1 fB(w)llLrs o9)) (5.2)

wherem:min{r*,%’?l}, if1<r <N, orm:min{r,xiﬁ}, z'frZNandl/zl—%. Also

lall o o0y < Null = lullz=)-

Proof. Let u € H*(Q) be a weak solution to (1.1)). Then u € L4(Q) N L9(9N) for all ¢ < oo (see
[9, Theorem 3.1]).
Next, we use elliptic regularity theory. By Holder’s inequality, we have
f(,u) € LY(Q), foreveryl<gq<r,
fe(z,u) € LIE(0R)), forevery 1 < qp <rp,

By elliptic regularity (see Theorem ([4.1)), u € WH™(Q) for m = min{q*, ]]\\;q_Bl whenever 1 < ¢ <
N, or m = min{g, %qj

Thanks to r > N/2 and rg > N — 1, we can always choose
qE(N/Q,’I"), qBE(N_laTB)'

Then m > N, sou € C*(Q) for v =1- 2.
Moreover, since u € C*(Q), a € L"(Q) and f € C(Q), using the Holder inequality, then, the
product |a(-)|f(Ju(-)]) € L"(2). Hence, f(-,u()) € L"(Q).
Similarly, if u € C¥(Q2), ap € L™8(99) and fp € C(99), by Holder inequality, then, the product
lag()|fe(Ju(-)|) € L™ (89). Hence, we can conclude that fz(-,u(-)) € L™ (89Q). Then and
hold, completing the proof. O

, whenever ¢ > N.
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