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CONTROLLABILITY UNDER POSITIVITY CONSTRAINTS FOR
NON-LINEAR AND NON-LOCAL PARABOLIC PDES

MIGUEL R. NUNEZ-CHAVEZ

ABSTRACT. This article studies the control of a non-local and non-linear parabolic PDE. The
tools to develop the control study are: regularity in Holder spaces, parabolic regularity, Carleman
and Observability inequalities, compactness, stability and the Kakutani Fixed Point method. We
obtain three results about controllability. first, local results in Holder spaces; second, restriction
on the control signal with target trajectories; and third, positivity of the minimal controllability
time.

1. INTRODUCTION

Control Theory is a branch of Differential Equations with foundational results dating back
approximately 60 years. Early studies in this field focused on optimizing (controlling) resources
(such as time, space, finances, personnel, and material quality) through the framework of the
Calculus of Variations. The development of the HUM method and observability inequality were
pivotal advancements, enabling the study of controllability in elliptic, parabolic, and hyperbolic
equations. Prominent contributions to Control Theory, both in theoretical and numerical aspects,
were made by researchers such as Lions, Alekseev, Fursikov, Imanuvilov, Yamamoto, Coron, Puel,
Guerrero, Zuazua, Ferndndez-Cara and others.

Studies on controllability involving nonlocal terms were carried out by Fernandez-Cara, Limaco
and Menezes [4] in 2012; Ferndndez-Cara, Clark, Limaco and Medeiros [3] in 2013; Ferndndez-
Cara, Liu and Zuazua [0] in 2015; Ferndndez-Cara, Limaco, Nina-Huamén and Nufiez-Chévez [5]
in 2019; Prouvée and Limaco [16] in 2019; Lopes and Limaco [12] in 2022; and Costa, Limaco,
Lopes and Provée [2] in 2023.

Furthermore, studies addressing signal-constrained controllability of the solution or control were
conducted by Lohéac, Treldt and Zuazua [I1] in 2017; Pighin and Zuazua [I4] in 2018 and [15] in
2019; and Nunez-Chdvez [13] in 2021.

The importance of nonlocal terms in differential equations is highlighted in models such as:

e Population dynamics with a( [, y(z,t) dz, [, Vy(z,t) dz),
e Reaction-diffusion systems with a( [, {()y(z, t) dz),
o Wave theory with [, K (z,t)y(z,t) dx.

The present work on controllability integrates the concepts of nonlocal terms and sign preservation
of the control. Let Q € RY, with N > 1 an integer, be a non-empty, open, bounded, connected
set with a sufficiently regular boundary 99Q. For each T' > 0, we denote the sets Qr := Q x (0,T)
and X7 := 9Q x (0,T).
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Let w,w; C © be two non-empty open sets such that w; C w. We will analyze the control
behavior for the nonlinear, nonlocal parabolic system

Yr — a(/ y(x',t) dx’) Ay =wvg, in Qr,
Q
y(z,t) =0 on Xp,
y(x,0) = yo(z) in €,

(1.1)

where v(x,t) is the control, y(z,t) is the solution associated with the control v, and g, € C§°(Q)
is such that g, > 01in Q, g, = 0 in Q\w, and g, =1 in wy.

Let a = a(-) € C?(R) be a real-valued function, and suppose there exist positive constants ag,
a1, and M such that

0<ap<a(r)<a; and |d'(r)|+|a"(r)| <M, VreR. (1.2)

Remark 1.1. Concerning the function a(-), by the Main Value Theorem, for any ri,72 € R, we
have
la(r1) — a(r2)| < Mlri — 7o, |a/(r1) —d/(r2)] < Mlre — 7.

For each k,l € Ng := NU {0} and ¢ € (0,1), we define:
Ck’l(@T) = {Z € C(@T) : agz(at) € 0(6)7 V|U| < k7Vt € [O7T]7
0j(w,) € C([0,T)), Vj <1, Vo € Q.

— — 8"3lz(x1 tl) — 8“812(362 t2)|
Ck+07l+§(Q ) — {Z c Ck,l(Q ) . sup sup | z Ot ) z Ot )
’ g lo|=k (z1,t1)#(z2,t2) (|‘T1 - I2| + |t1 - t2‘1/2)6

CkJrO(ﬁ) — {Z c Ck(ﬁ) . sup sup |aggZ(1'1) - 8952(1'2”

lo|=k 21722 |21 — 22

< +OO}

< +oo},

all three are Banach spaces with their canonical norms. To simplify notation, we denote:
- || : norm of the Banach space LP(€), 1 <p < o0

|| Hp P ) p )

(+,+) : inner product in the Hilbert spachz(Q),

| ||k : norm of continuous space C*!(Q),

Il - llp,q,s1,s5 : norm of the Bochner space LP((s1,s2); L4(£2)), 1 < p,q <00, p#q

|+ lp,s1,s, - norm of the Bochner space LP((s1,s2); LP(£2)), 1 < p < o0,

| - lx+e : norm of Holder space C*+9(€2),

Il - HkJre’H% : norm of Hélder space CH01+3(Q ).

Remark 1.2. Note that, if yo € C’2+%(ﬁ) satisfies the first-order compatibility condition and
v € CV24Qy), with [Yollo41 and [[v][1/2,1/4 sufficiently small, then system (L.1) has exactly

one solution y € C2T2:1+3(Q) satisfying
Ilas .0y < O M.ag,an)(Iely3 + ol ).
The proof will be provided in Appendix

1.1. Important results. Although we have local existence and uniqueness results, the present
paper will demonstrate global results regarding controllability along trajectories.

Definition 1.3. Let 5, = 7y(x) and 7 = 9(z, t) are sufficiently regular. The function § = y(x, t)
is said to be a target trajectory for the system (L.1)) if it is a solution of the system

Yy — a(/Q y(a',t) da:’) Ay =7g, inQr,
y(z,t) =0 on Xp,
y(z,0) =Fo(z) in Q.

The function v is called a target control.

(1.3)
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Remark 1.4. The good definition of a target trajectory is based on the existence and uniqueness
of the solution to the system 7 for a particular case, we can observe the one provided by
Remark when the initial data g, € C2+3(12) and the control 7 € CY/21/4(Q) are sufficiently
small. In fact, we have the following result:

72043 < OO Mo, a) (17l 1/ + [Follay g )
We will present the first main result, which is actually the key result of the work, local control-
lability along target trajectories.
For each 6 > 0, let us denote Dgs := {yo S C2+%(ﬁ) : ||y0||2+% < 5}.

Theorem 1.5. Let 3, € C212(Q) and v € CV/2V/4(Qr). We denote byy(x,t) the target trajectory
for the system . Assuming condition on the real function a(-). For each T > 0 and
each initial data yo € C’Q“‘%(ﬁ) with yo — Yo € Ds where § > 0 is sufficiently small, we can find a
control v € CY2Y4(Qy) such that

[v="2ll1/2,1/a < CQM)llyo — Yollo 1
where the associated state y(x,t), the solution of the system (1.1)) with initial data yo, satisfies
y(z,T) = 5(z,T) in Q.

Remark 1.6. In [5], the authors proved a local controllability result similar to Theorem With
control on LP spaces, but we will need much more regularity (Holder spaces) in the local control
v for the following results.

Let us additionally suppose that the target trajectory satisfies the following:
_ ao
(7l 2o (0, +00; 3 (02)) < SM|2C, < 400, (1.4)
where || is the measure (volume) of 2, and
Co = max { €(2), [CQ), @, [C@))*, [CQ)F } = max{C(@), (0@},

with C(£2) the constant from the Poincaré Inequality || - |2 < C(Q)||V - ||z
We have the second main result, global controllability for large-time target trajectories while
preserving the control signal.

Theorem 1.7. Consider the dimension N < 3, let §y = Yo(z) and v = v(z,t) be sufficiently
reqular and sufficiently small. We denote by G(x,t) the target trajectory for the system .
Assuming the conditions in for the real function a(-), the condition on the target
trajectory y, and that there exists a constant n > 0 such that

v(z,t) >n, VY(z,t) € Qx[0,+00). (1.5)
Then, for each initial data yo € C2+2(Q) N (H*(Q) N HL(Q)), there exists a real number Ty > 0
such that for every T > Ty, we can find a control v € L (Qr) with
v(x,t) >0, VY(z,t) € Qr,
such that the associated state y(x,t), the solution of the system , satisfies
y(x,T) =g(z,T) in Q.

The method for obtaining controllability in the previous subsection is not the only one. So the
natural question arises: Can we obtain the result stated in Theorem for a small time (that is,
for any time)?

We have an answer to this question, regardless of the method that is applied, one thing is
certain, we will need to wait a not so small time for this to happen. Let us consider the state-
control (y,v) solution to with initial datum yo € C2+2(Q); and let us consider the target
trajectory y solution to with control v € 01/2’1/4(@T) such that ¥ > n > 0 in Q and initial
datum 7, € C?t2(Q). Let us denote the set

A=Ay 5,55 ={T>0:3veL®Qr), v>0such that y(T) = H(T) in Q}.
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By Theorem we have A # (), and it is clear that T'= 0 is a lower bound for set A. So, we can
define the minimal controllability time as Ty, = inf A.
We have the third main result: positivity of Tinin.

Theorem 1.8. Consider the dimension N < 3. If yo # Yy, then Tmin > 0. In fact, we have
Tiin = Top >0 for some T > 0.

1.2. Outline. The rest of this paper is organized as follows. In Section [2 will be proved the local
exact controllability for the system with control in a Holder space. Here, the compactness
technique of [0] is used to show the Carleman and Observability inequalities. Then, the control
regularization method of [I0] is used to obtain the control in Holder space. Finally, Kakutani’s
Fixed Point Theorem is applied to obtain the desired result. In Section [3] will be proved the
global exact controllability with suitable trajectories preserving the control signal for a large time.
Here, a stabilization result is proved for the system in H3-norm. The construction of the non-
negative control is using the local controllability result with Holder space control. In Section [4]
will be proved the positivity of the minimal controllability time. The proof is done in two cases:
in the first case the regularity of parabolic systems and the principle of comparison are used, in
the second case the method called ”proof by contradiction” is applied, for this an initial data is
constructed in the associated adjoint system arriving at a contradiction. In Section [5| (Appendix),
the regularity results (existence and uniqueness) for system will be proved. Furthermore, an
important and fundamental lemma about spectral theory will be proved.

2. PROOF OF THEOREM

The proof follows from the well-know Kakutani Fixed Point Theorem. The approach to solving
this type of problem is to simplify the expression; in other words, we will perform a change of
variables to analyze the null controllability of a system equivalent to system . To do this, let
us denote y(x,t) = z(z,t) + Yz, t), v(z,t) = u(z,t) + v(z,t) and yo(x) = 2zo(z) + Yo(z). Then,
from systems and 7 we obtain the system

zt—a</9(z—|—§)dx’)Az— [a(/ﬂ(z—l—@)dm') —a(/ﬂ@daz’)}A@:ugw in Qr,

z(z,t) =0 on X,
z(z,0) = zo(x) in Q.
It can be verified that the null controllability of system (2.1) is equivalent to the exact local
trajectory controllability of system (|1.1)).
To study this type of nonlinear problem, we must work with the linearized version of system

[2.1), as suggested by the ideas in[6]. As a first step, let us fix w € Z := CH1(Q) and consider
the linearized system

2zt —at,w)Az + b’(t,w)(/ 2(2 ) t) dx/)Ay =ug, in Qr,
Q
z2(x,t) =0 on X7,

z(z,0) = zp(x) in Q,

(2.1)

(2.2)

where

at,w) = a(/Q (w(x’,t) —&—ﬂ(x',t)) dsc'),
B(t,w) = /01 a'(/Q (Aw(2’,t) +y(2', 1)) dx')d)\.

Proofs of the next 2 propositions will be provided in the appendix.

Proposition 2.1. For each fized w € Z, the linear system (2.2)) has a unique solution in Sobolev
spaces. That is, given zo € L*(Q) and u € L*(Qr), there exists a unique solution z(x,t) to the

system (2.2) with the reqularity
2 € L2(0,T; HY(Q))NL>®(Qr) and z € L*(0,T; H ().
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Proposition 2.2. For each fized w € Z, the linear system (2.2)) has a unique solution in Holder
spaces. That is, given zy € C?T2(Q) and u € CY/>Y4(Qy), there exists a unique solution z(x,t)
to the system (2.2)) with the regularity

2 € CPTE(Qy)
satisfying
22y ez < OO M, w2, [T243142) (20023 + lllij210)-
The adjoint system of is defined as

—pr — at,w)Ap + B(t,w)/ Ay, t)p(x' t)dz' =0 in Qr,
o(x,t) i 0 on X,
p(2,T) = ¢"(z), inQ,
where o € L(Q).
Proposition 2.3. For each fired w € Z, the adjoint system has a unique solution in Sobolev

spaces. That is, given T € L?(Q), there exists a unique solution ¢(x,t) to the system (2.3)) with
the reqularity

0 € L*(0,T; HY(Q) N H*(Q)) and ¢ € L*(0,T; H*(Q)).
The proof of the above proposition is analogous to proof of Proposition [2.1
Remark 2.4. We can obtain more regularity for the system (2.3)). Thus, if 7 € H2(Q)NHZ (),
then p € L?(0,T; H3(2) N H(Q)) and ¢, € L?(0,T; Hi (Q)).

2.1. Null controllability of the linearized system . It is well known from the results of
Fursikov and Imanuvilov [7] (see also [§]) that to demonstrate the null controllability of a linear
system, it suffices to establish the observability inequality. This is precisely the reason the adjoint
system to the linear system was presented in this work. The following lemma guarantees the
existence of the Fursikov function, which plays an important role in developing the observability
inequality. Its proof can be found in the book [7].

Lemma 2.5 (Fursikov function). There exists a function oo € C?(Q) that satisfies
oo(z) >0, Vrel,
oo(z) =0, Vze o,
|Voo(z)| >0, Vze Q\wp.
Continuing with the development of control in the linear case, we will introduce the following
functions (weight functions):
etMloolloe — oA2llo0llco+00(2)) e*2lloolleoto0(2))

0] S = I(t) ’

T2
—_ 0<t<
(t)y=4 4’ 7
(T —t), 5<t<
Let us denote by A1, Ag,..., (respectively ¢1,ds,...) the eigenvalues (respectively the unit

eigenfunctions in L?) of the Dirichlet Laplacian operator in €. We recall some important proper-
ties:

o(x,t) =

with

Sl

O</\1</\2§)\3§---§/\m%m2/N as m — +oo,

and ¢1(z) > 0 in Q.
We also have the following result from spectral theory, whose proof can be found in Appendix

oy
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Lemma 2.6. For any w € Z, if the function a(-) satisfies the conditions (1.2]), then there exist

two positive constants Ry := Ro(Q,w,T) and Cy = Co(Q,w, T, a9, a1, ||w|z) such that for every
f € L%(Q), we have

+oo
Ze’m‘)ﬁl(f, ¢;)> < Co //
=1 w

With the previous results, we can demonstrate the controllability result for the linear system.

—+o00 2
6—28053‘ Ze_kj ftT a(s,w) ds(f7 qu)gbj(x)‘ dx dt.
j=1

1%(0,T)

Proposition 2.7. Assuming that a(-) satisfies the conditions (1.2)), for any zo € L?*() that
verifies the first-order compatibility condition, there exists a control u(x,t) € CY/2Y/4(Qr) such
that the solution z(x,t) associated with the linearized system (2.2) satisfies

z2(x, T)=0 in .
Moreover, we have the following estimate for the control u(z,t),
llull1/2,1/4 < C1ll20]l2,
where Cy := C1(Q,w, T, ag, a1, |w]|z) > 0.

Proof. Tt is well known in the context of linear systems that the observability inequality for the
adjoint system resolves the control problem; therefore, it suffices to prove the following estimates:

lo(O)2 < C / / € T T € 120 (2.4)
wi X 07

and
// e 25983\ dar di < C// e 278 pPdudt, Vo' € L*(Q) (2.5)
T w1i X(O,T)

for every o(z,t) solution of the adjoint system (2.3). Let us prove each of the inequalities presented
above separately using similar arguments as in [5] 6].

Proof of ([2.4). For o”(x) € L?*(€), and we denote by ¢(x,t) the solution to the adjoint system
(2.3). We rewrite the function ¢ as

p=p+C
where p(z,t) is the unique solution to the system

—pt —a(t,w)Ap=0 in Qr
p(z,t) =0 on Xp (2.6)
p(z,T) = ¢"(x), in Q.
Thus, the function ((z,t) is a solution to the system
~G - alt wACH Hltw) [ Mgl 06 1) da’ = ~(t,w) [ Mgl p(e' ) ds’ in Qs
Q Q
C(xz,t) =0 on Xp
¢(z,T)=0, inQ.
From the Carleman inequalities for the system (2.6]), that is,
[ et iqamk s mPydzars [[ el ara <t @)
T T

where C' := C(Q,w, T, ag, a1, ||w||z) > 0, we have that the mapping

1/2
¢FHHwTM1:(/y) 6_%TﬂM%Mdﬂ :
w1 X(O,T)

is a norm in L?(Q).
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By the spectral decomposition of the function p(z,t),

+oo
_ Ze—/\j Ji a(s,w) dS(SDT7¢j)¢j(x);

j=1

from Lemma we have N

Ze*RW (0", @) < Clle" IR (2.9)

=1
The observability inequality (2.4) will be a consequence of the two estimates
o7l < © / [ gy el e, voT € 12(@) (210)
w1 x(

and

le(O)lI3 < Clie™ Il Ve € L*(9). (2.11)

We show estimate (2.10]) by contradiction, using the uniqueness and compactness method from
[6]. Assuming that the estimate (2.10) does not hold, we have that for every n € N, we can find
functions @I (x) € L*(Q) such that

L=t >n ([ el P, (212)
wi X (0 T)
where o, (,t) is the solution to the adjoint system (2.3) associated with ¢ (x). This means that
// e 273 pp|Pdrdt — 0, asn — oco. (2.13)
w1 X((] T

Denoting by pp(z,t) (respectively (,(z,t)) the solution to the system (2.6) corresponding to
oT(z) = pL(x) (respectively the solution to the system (2.7) with p(z,t) = p,(z,t)), we have

L=t = [[ e e
UJ1><(0,T)

< 2// e 2573, |2 dx dt+2// e 257¢3|¢, |2 da dt.
UJ1><(07T) UJ1><(0,T)

In the last estimate, we can observe that if

// e 293¢, P dedt — 0, asmn — oo,
OJ1><(0,T)

then we would have a contradiction, since the right-hand side would converge to zero while the
left-hand side is equal to 1.
For the reason mentioned above, we will demonstrate the following result:

G — 0 strongly in L*(Qr), (2.14)

To do this, we need to estimate the right-hand side of the equation (2.7), and use Remark for
the function (,,. We then state that

16w /Ay ) da'|2, . <C, VneN. (2.15)

Indeed, the spectral decompositions of the functions §, Ay and p,, are:

“+o0
)= 3 eI G 016, (a),

j—l

Ag(', 1) ZA e N o0 b (g 66 (o),

j=1

Ze 2l a(sw)dS(QO ,05)¢5(2’).
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Computing the integral Ky ,( fQ A (2, t)pn(a’,t) dz’ we have

Kool =~ | (ZAe-A I3 20 (G, )5 (w )(Ze—*lft () ds (T 1) (o))

_ 7Z>‘k6 e [o as, O)ds =k [T als,w) ds( ¢k>(§0n,¢k)

k=1
It follows that

— / 712 r 2
w) [ AT palal, g = [ 180w K 0) e

T
§M2|Q|/O Ky (1) 2d.

Therefore, using estimate (2.9)), we can conclude that

T
/ Koy () 2t
0

T K +oo
/ ‘Z/\ke )‘kfo a(s,0)ds —Ahft a(s, w)ds( Qbk)(@n;cbk)’

T 4 =
t T
< / ( z :/\i672)\k Iy aodt672)\1¢, /; aodt62Ro\/)\k |(y0, d)k)‘z) ( E 6*230\/)\1« |(¢Z:’ ¢k)|2)dt
0 “k=1 k=1

T  +oo
< [ (X e et e 02 gy B ) (Cl ) e
0

k=1
—+oo
< CT G131 (D2 Apem 2 wenTe2foVe),
k=1

Let us examine the convergence of the series that appears on the right side. To do this, we
recall the behavior of the eigenvalues \g, specifically, A, &~ m?/N as m — +oco. Therefore, for a
sufficiently large mg, there exist two positive constants C; and C5 such that

Cim?*N <\, < C’Qm2/N, VYm > mg.

Then
+00 mo—1
E:)\ie—Q)\kaoTGQRm/)\k 2: )\2 —2XkaoT ,2RoV Ak + 2: )\2 ~2XkaoT ,2RoV Ak
k=1 k=1 k=mg
mo—1 1
< Z )\2 —2XkaoT ,2RoV Ak +02 Z k 2ClaoTk2/N62\/CgRokW.
k=1 k= mo
Denoting

2¢@RO)N/5}’

Mo = max {mo, ( CraoT

it is easy to verify that

> 4 2/N e o 4 2/N e = 2/N
Z L e—2C1a0Tk*/N [2/CaRok N < Z k¥ e 2C1a0Tk*Y [2¢/CaRok N +Chy Z e~ CraoTk™
k=mg k=mg k=mo+1

Since e™" < TN—N' for all N € N, we have that

400 +oo

Y e o 3 N
e < _—
= 2/N\N
k=mo+1 k=mmo+1 (CraoTk/N)
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ClaoT (CraoT)N Z k2

k=rho+
2
ClaoT ( )
We conclude that
T
/0 | Kgn(t)|2dt < C(N, T, a0,m0)|[%ol3 ll¢n I = C(N. T, ao, 1i0)|[7o - (2.16)
Therefore, from (2.16) we obtain , specifically,
2 - _
Hﬂ / Ay pn )dx/HQ,O,T < C(NaTaa(]am07|Q|)Hy0H§' (217)

By Remark applied to the system ([2.7) with ( = (,, and p = p,,, there exists a unique solution
Cn € W where

W= {z e L2(0,T; H(Q)) N L=(0,T; L2(Q)) : 2 € L*(0,T; H&(Q))}

satisfying

HCnHVV < C(M,w,@)”ﬂ(,w)/ﬂA@(m',)pn(ﬂc',) d'r/H2707T
< C(Mawyy) O(Na Ta ao,ﬁ’Lo, |Q|>Hy0”2

Thus, we obtain that the sequence of functions ¢, is bounded in L?(0,T; H}(£2)) and the sequence
of functions ¢; ,, is bounded in L?(0,T; L?(£2)). We can then assume that ¢, (x, t) converges strongly
in L?(Qr) to a function ((x,1).

To conclude the proof, from it would suffice to show that the function ( is equal to zero.
More specifically, using the equation 1, we need to demonstrate that

ﬁ(t,w)/QAy(x',t)go(x',t)dx’ =0. (2.18)

If condition holds, we would have a homogeneous linear system for the function ¢ with
initial data and boundary conditions equal to zero, which would imply that ( is equal to zero by
the uniqueness of the solution.

Indeed, from the estimate , we have

// |son|2dmdt§2// |pn|2dﬂcdt+2// |Ca|? da dt
Qr—s Qr—s Qr—s

< / / e 27€3p, 2 da dt + O 7|12
T

< CsCillenlli + Clignli = Csa.

Repeating the previous procedure, we obtain

// |Ap,|? dzdt < Cs o, // |t n|? dodt < Cs 3.
Qr—s Qr_s

Taking the limit in the linear system (2.3)) in Q7_s, we obtain

on — ¢ weakly in L*(Qr_s), V6 > 0. (2.19)
From ([2.13)), let us consider the subset wy x (0,7 — J), thus
||<Pn||2L2(w1x(0,T—6)) = // lon|?dzdt — 0, asmn — oco. (2.20)
le(O,T)

Thus, from (2.19) and (2.20)) we have p(z,t) = 0 in wy x (0,7 — §). Since @ satisfies the equation

—pr — at,w)Ap = —B(t,w) /Q A2, t)p(x’ t)dz’  in Qr,
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in particular, it holds in wy x (0,7 — §). Since B(t, w) fQ Ag(x',t)p(a',t) dz’ is independent of the
spatial variable, it means that

ﬁ(t,w)/ Ay(z' t)p(x' t)dz' =0 inte (0,7 —9). (2.21)
Q
Thus, ¢ satisfies the equation —p; — a(t, w)Ap = 0, which implies that

=0 inQrs.
Since the function ¢, converges in L?(Q7), it is therefore bounded in L?(Qr). Thus,

T 2
J86) [ A7 o0 < [ 1800 ( [ 1876 011G 0l ') 1 e

< M9 ||?H2L<>O(O,T;H2(Q))HCn”%,o,T
< C(M, 1QDIY11F o 0.7 12(02)) -
From ([2.15) and the previous result, we obtain

5600 [ AT, douts’ Y

<1136 w0) [ AT o'+ 8C,0) [ A e

< CO(N, T, ag, mo, |2 Yo ll2 + C(M, [QDTl L= (0,712 (2))-
It follows that

5ew) [ AT Jonlal)da’ = 0() weakly in L2(@r).
Q
From ([2.21)), we can deduce that
5w) [ Ag(a!, Jonla')da’ =0 weakly in L*(Qr),
Q

and consequently, the estimate (2.18)) holds. O
Estimate . First, by applying the energy estimates to the system ([2.6]), we have that

Ip(O)II3 < Ilp(®)lI3, ¥t € (0,T).
Using the Carleman inequality (2.8), we obtain

3T

2 a4 90
PO < 7 [ e s [[ L eepr el e
T X

a4

Secondly, applying the energy estimates to the system (2.7]), we have
_ 2
||<(0)||§ + ||C||§,O,T < CHﬂ(f,UJ) \/(; Ay(x/,t)p(x/,t) dJ?/Hz’O,T. (223)

By performing a procedure analogous to the proof of the estimate (2.15)) on the function ((z,t),
we conclude that

1S3 + 11<1Z2(gr) < Clle™ - (2.24)
Finally, since we have the relation ¢ = p + ( it suffices to combine the estimates (2.22) and (2.24)
to obtain the estimate (2.11]). This concludes the proof of the observability inequality (2.4). O

Proof of £3). From (28), [£:23) and (2:24), we have

// 6_25”§3|<p|2dxdt§// 6_28”§3|p|2dxdt+// 6_280€3|C|2 dx dt
Qr QT Qr

< Cle™ I+ Clcl 0
_ 2
< ClleT I +Cl8Cw) [ AT ). do

< Cle™ 3.
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This concludes the proof of the Carleman inequality (2.5)). O

Let us prove the regularity of the control v(z,t) using similar arguments as in [I0]. For each
€ > 0, we consider the functional F, : L?(Q) — R defined as

1
Ry =g [[ oo glePosdedi+ Tl + [ sole)p(e0)da,

where ¢ € L?(Q) and 2, ¢ are the solutions of systems (2.2)) and (2.3).
It is clear that F¢ is strictly convex. Let us show that F¢ is lower semi-continuous. Indeed, let

(ol ,en be a sequence in L2(€2) such that ¢ — T with T € L2(Q). Denote ¢,, as the solution
of the system (2.3)) with initial data ¢X € L?(€2). By Proposition we have ¢, € W with

lenlli < Cllenllz-
Thus @, — ¢ in W N C([0,T]; L*(Q)). Then

en(0) = ¢(0) in L*(Q) <= /an(x,o)cb(l“)dz—>/Q<P($70)¢(33) dz, V¢ e L*(Q).

Therefore J (o) < liminf J.(p2).
Let us show that J. is coercive. Indeed, we have

|/QZo(x)sO(x,0)dx\ < [lzoll2ll(0)[l2

2 3 2 1/2
<l (€ f[ - emreipparar)
wx(0,T

1 —2s0
< 7// 27320, du dt + Cz03-
4 Qr

Then
1 — 480
) 2 g [ ool osdude s dle e~ | [ sale)ete.0)dal
Qr Q
1 — 480
>3 [ ereeielasdad s - Ol
Qr
> o2 ~ Cleolly.
Therefore

lim  F. (o) = +oo.

o™ ll2—+o0

Thus, since F. is strictly convex, lower semicontinuous and coercive, there exists a unique ¢! €
L?(Q2) such that
F(eI)= min F.(o").
e(e) iR (¢)

Now, let us show that F, is differentiable. Indeed, given o yT € L2(Q), we have
AN T —so¢2 —so¢2 ¢T T
(F((y7),07) = (6 §21,e 5’-’90) +€(m790 ) + (20, ¢(0)).
Then, since ¢! is the minimum of F,, we have that either ¢! = 0 or

(Fl(pD), ") =0, Vo' e L*().

Assuming that ¢! # 0, we obtain

T
J oo s ([Hm ) + Goe) =0, VT e, (229)
Qr e ll2

where ¢ (z,t) is the solution of the adjoint system (2.3) corresponding to 7 (z) = oI ().
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Defining u(z,t) = e=257@D 3 (x t)p.(x,t) 0, (2) in the system (2.2)), and denoting by z(z, 1)
the state associated with the control u., from the estimate (2.25)) we have

| (oD + et @) @ da =0, v € @),

which implies that

lze( )]l = || - Hwinﬁzug —e. (2.26)

From estimates (2.25) and (2.4) (observability inequality), we have

/ / 25732 da dt + T |12 < [|2oll2l0e(0) ]2
wx(0,T)

—250 ¢3 2 1/2
< ||Zo||2(0// e 2783 o | dmdt) .
wx(0,T)
2 3 2 1/2
(f[ e elepazar)” <ol
wx(0,T)

1/2
2,0, = (//Q 625"«5_3|u5|2dxdt)

1/2
_ (// 6_25(’§3|cp6|2dxdt> < Clzolla,
wx(0,T)

where C' := C(Q,T,ap,a1,||w||z) is a positive constant. For each ¢ > 0, the function ¢, is a
solution of system (2.3) with initial data ¢! € L2?(2). Therefore, by Proposition we have
pe € W with

Then

Thus

le*7¢= 2|

(2.27)

leelli < Cllet ll2,
and the function z is the solution of system ([2.2)) with control u. € L?(Q7). Thus, by Proposition
we have z, € W with

el < € (lluelloor + 120]12) < Cllzollo.

Since € — 0, we conclude that

Ye = ¢ in W,

Ze =~z In w.
Thus, z is a solution of the linear system and ¢ is a solution of system with initial data
©(T). Therefore, defining u(z,t) := e~ 27@N 3 (2, #)p(x, t) 0 (2), We obtain

es"f_%u6 — esgf_%u in L*(Qr).
Taking the limit as € — 0 in system with z., we obtain
ze(,T) = 2(-,T) in L*(Q),

(2.28)

Cllullzor < €276 2ull2,0,r < liminf €576~ 5 u,

Thus, from (2.26) and (2.28), we conclude that z(z,7") = 0 in €.
The last step will be to prove that u(z,t) € C/21/4(Q;). To this end, we will rely on the
theory of second-order linear parabolic PDEs. The following lemma serves as a starting point.

Lemma 2.8. For eachr > 1, g € L"(Qr), b7 € C*Y(Qr), ¢ € C(Qr) and d € C(Q), where
b =bt (i,5=1,...,N), and for some constant yu > 0:

2,07 < Cllzo][2-

N
Z bl)J(l'vt)d)zqu 2 ,U,|¢|2, V(l’,t, ¢) = (l’,t, ¢17 <. '7¢N) € QT X RN'

i,7=1
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Then, the linear parabolic PDE

N N
ur = D Vg, + Y Jug, +du=g in Qr,
i,j=1 j=1

u(z,t) =0 on Xp,
u(z,0) =0 in Q,
admits a unique strong solution u = u(x,t) with

ue WHQr) = {u e L™(Q): DyDiju e L"(Qr), || <2 and s < 1}.

Moreover, there exists a positive constant C := C(Q, T, u,7) such that

N N
lullwz ey < Coxp [CO+ 32 WIS L + D 16 S 0.r + e 0.0)] lglro.z
i,j=1 j=1

For a proof of the above lemma see [I7, Chapter 9, Section 2, Theorem 9.2.5] Also we have the
following result about the immersion of the space W1 (Qr) with r > 1.

Lemma 2.9. The following continuous tmmersion holds:

(1) If N +2 > 2r, then W21 (Qr) — L™ (Qr), where r* = J@SE);T
(2) If N +2 = 2r, then W2Y(Qr) — L*(Q7) for any s > 1.

(3) If 0 =2 — 22 s not an integer, then W2'(Qr) — C%5(Qr).

For a proof of the above lemma, see [9, Chapter II, Lemma 3.3, page 80]. Let 6 > 0 and consider
(0k)ken as an increasing sequence, such that
S

0<6, <6< 5 Vk € N.
Let us introduce the notation
1 4
&o(t) = ok o (t) = r;lgé(a(x,t) with o*(t) < ga(x,t) for A> 1,

up(x,t) = e~ TR O (t)p(a, 1).
Thus, for every k > 1, the function u(x,t) satisfies the following system
—ugs — o(t,w)Au, = g in Qp,
ug(z,t) =0 on X, (2.29)
ug(z, T) =0 in Q.
From equation 1, let us denote

g = —A(t,w)e g ( / A, tela’ 1) da’ ) — (77 )

We can verify that

|0'2<| S 0687 |€0,t S nga
—(s+3)0" ¢3 x—(s+0k)0™ ¢3 —(s+6x)0" ¢2 (2.30)
(e * 50),5 = —(s+d0x)oje M7 €y + 3e M7 Eo8oe-
When k = 1, the function uq(z,t) is the solution to the system
“uns = altyw)du + At w) [ AR D 0ds =31 i Qr.
Q
ui(xz,t) =0 on Xr, (2.31)

ui(z,T)=0 1in Q,

where §; = f(e’(”‘;l)"*fg)tcp.
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From Carleman’s inequality (2.5)) and (2.30)), it follows that
alor<c [ eelppdsa,
w1 X(O,T)
and, using the estimate (2.27)), we have that
191113, < Cllz0]l3- (2.32)
Thus, u; € L2(0,T; HE(£2)), and from estimate (2.32)) we can deduce that

[tz 0,758 (2)) < Cll2oll2-

Now, taking
g = —ﬂ(t,w)/ Ay(2', tyuy (2, t)dz + g1,
Q

we conclude that

g1l2,0,7 < C|l20l2-
Using Lemma and estimates (2.27) and (2.32)), we can see that the function u; € W' (Qr).

Furthermore,
fusl22:1 g,y < Clz0ll3:
where C := C(€, T, ag, a1, || z) is a positive constant. By Lemma[2.9] for
2(N+2)
=) N2 N > 2,
s>1, N2

we have the following continuous embedding Wy (Qp) < L™ (Qr) with

lutllr 00 < Cllzo]|2-

The next step is to find estimates for the functions g, and us. Note that
32 = = w)e 7 ([ Ayl e ) de') - (7)o
Q

Similar to the previous step, we obtain tha

192]lr 0.7 < Cllz0]]2-
And once again, by Lemma we have that the function uy € Wfl’l(QT) and that

luzllwz1(gr) < Cllzoll2-
By Lemma [2.9] for

N+2—-2ry?

a2 N 4227 >0,
7’ prnd
2T s>, N+2-2r <0,

we have the following continuous embedding W2(Qr) < L™(Qr) , from which we can conclude
that:

[uzllry 0,7 < Cll20]l2-

By repeating the procedure, we can obtain the sequence (ry)ren of positive integer numbers such
that

me(NH2) N L9 9n S ()
TE41 = {N+22rk’ + Tk )

s> 1, N +2—2r, <0.
1 1 _ 2

_ E_Tk+1 = Nrf2» N+2—2Tk>0,
s> 1, N +2—2r, <0.

By Lemma we have the continuous embedding W2'(Qr) — L™+ (Qr).
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Since N is a fixed positive integer, there exists a positive integer £* such that N +2 —2rg- < 0.

Thus, rg«y1 = s for any s > 1. Considering rg«41 = W, by Lemma we can obtain that
W2l (Qr) = CY2V/A(@Qy), with

[k +1ll172,174 < Cll2o]|2- (2.33)
Finally,

w = 67250534,0 — 672sa§3 (e(s+5k*+1)a g()_guk*—i-l) — (672sa£3e(s+5k*+1)0 fo_?))uk*-&-L
Since dx+41 < 5, we obtain that

3 3
6—230€3e(s+6k*+1)a*€63 < e—%sa*e(s+5k*+1)a* (é) < e_(%_(sk*Jrl)a* (é) <C

€o o/
Then
[ll1 /2,12 = lle 27 €3eTor 400" e By 1|y o170 < Clltg41l1/2,1)a- (2.34)
From estimates and , we have
l[ull1/2,1/a < Cllz0ll2; (2.35)
where C' := C(Q,T,ap,a1, M, ||w||z) is a positive constant. Therefore, there exists a control

u(z,t) € CY214(Qy) that satisfies (2.35), such that the associated state z(x,t), which is solution
of the system ([2.2)), satisfies

z(x,T) =0 1in Q. (2.36)
Thus, Proposition [2.7]is proven. O

2.2. Null local controllability of the nonlinear system (2.1)). In this section, we will conclude
the proof of Theorem Recalling the definition of the space Z = C11(Q7), we will define the
spaces

W= {(u2) :ue CV34@Qp), 2 € C2THTE @)},
K= {2eC*2"1(Qy) : 12243042 SR} CZC L*(Qr).
We will introduce the mapping A : K — 2K as
Alw) := {z = Zu,w,z € K 1 (2,u) is the state-control solution of system (2.2

with (u, z) € W satisfying estimates (2.35)) and ([2.36) }

The multi-valued mapping A satisfies the hypotheses of Kakutani’s Fixed Point Theorem. Let us
examine each of these conditions.

Lemma 2.10. The mapping A is well-defined, and for every w € K, A(w) is non-empty.

Proof. For each w € K C Z, by Proposition there exists a solution z(x,t) € C2t21%3(Qy).
According to Proposition there exists a control u € CY/21/4(Qy) such that z(z,T) = 0 in
Q. Thus, the pair (u,z) € W is a solution to the system satisfying the estimates and
(2-36). Therefore, z = A(w) € C2+ 2143 (Q).

If ||z0l24 1 is sufficiently small, by Proposition [2.2} we have that

l2llos st < CUwllz) (zollag g + luliongs) < CRNIzollas y < B
Thus, z € A(w) C K. Therefore, A is well-defined and A(w) is non-empty. O

Lemma 2.11. K is convex and compact.

Proof. Tt is clear that in a normed space, closed ball are convex. Therefore, K is convex. Now,
we show that K is compact. Let (2,)nen C K, meaning ||2n||2+%,1+% < R. Thus, the sequence
2, is bounded in C2+2:1%%(Q,). By the compact embedding of C2+21+%(Q,) < L2(Qr), there
exists a subsequence 2, that converges in L?(Q7). Therefore, K is compact in L*(Qr). O
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Lemma 2.12. The mapping A(w) is convez.
Proof. Let 21 = Zuy w.z9> 72 = Zus,w,zo € Aw), and let A € [0,1]. Thus, z; are z2 solutions of the
linear system with controls u; and us, respectively, satisfying
z1(x,T) = z9(x, T) =0 in Q,
||Zl||2+%,1+i <R, ||Z2H2+%,1+ﬁ <R,
[ull1/2,1/4 < C([[wl[2)]|20ll2 < C(R)[|zo0]l2,
l[uzlli/2,1/a < C(lwl2)llzoll2 < C(R)[[z0]l2-
Since the system is linear, we have that A\z; 4+ (1 — A)22 is a solution of the system with
control Auj + (1 — Nug € CV/21/4(Q;). Thus, we can conclude that
A1 + (1= N)2o) (2, T) = Az1(2, T) + (1 = N 2o(z,T) =0 in Q,
1Azt + (L= Nzl gy < Mtlassars + (0= Nlizallayy s AR+ (11— NR=R,
[Aur + (1 — Nuall1/2,1/4 < Muallijz,174 + (1 = Nlluzlli/2,1/4
S AC(R)|zoll2 + (1 = N)C(R) 20|
= C(R)|z0ll2-
Thus, Az; + (1 — A)za € A(w). Therefore, A(w) is convex. O
Lemma 2.13. The mapping A(w) is compact.

Proof. By Lemma we have that A(w) C K. By Lemma K is compact; it remains to
verify that A(w) is closed in order to conclude the proof.

Let z € A(w), which means there exists a sequence (2,)nen = (Zu, w0 )nen C A(w) such that
2zn, — z in K. Thus, 2, is a solution of the linear solution with control u, € CY/>Y/%(Q;)

such that z,(x,T) = 0in Q and
[unllij2./a < C([lwllz)ll20lla < C(R)|20]l2-

Thus, we have
lun 2,0 < C(R)||20]l2-

Without loss of generality, we can consider the sequence u,, itself such that u,, — u in L?(Q7) in
the weak sense, with

[ull2,0,r < liminf [[un 2,07 < C(R)||20]|2-

Taking the limit in the linear system (2.2]) with the state-control pair (z,,u,), we see that the
function z is a solution to the linear system (2.2)) with control v € L?(Qr). Now, by Proposition
we can regularize the control to ensure that u € C1/21/4(Q;) such that z(z,T) = 0 in Q and

l[ulli/21/2 < Clwllz)lz0ll2 < C(R)]20]l2-
This shows that z = 2y 4,2, € A(w), meaning that A(w) is closed. Therefore, A(w) is compact. O
Lemma 2.14. The mapping A has a closed graph in K.

Proof. We recall the definition of the graph of a mapping:
Graf(A) := {(w,2) e K x K : z € A(w)}.
Let (w, z) € Graf(A), meaning there exists a sequence (wy,, z,) € Graf(A) such that
(Wn, 2n) = (w,2) in K x K.

Thus, we have that 2z, = 2y, w, 2, € A(w,) satisfies the system

Znt a(t, wn)Azn + ﬁ(t, wn) (/ Zn(x/7 t) dx')A@ = Up0w in Qr,
Q
zn(z,t) =0 on X,

2n(2,0) = zo(x) in Q,

(2.37)
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with (un, 2,) € W such that [Jun|1/2,1/4 < C(R)|[20]]2 and z,(2,T) = 0 in 2. We can take the
limit in the system (2.37)) to obtain the new system

a—alt )bz + 6t w) ([ 20 d)A7=ue. in Qr.
Q

2(x,t) =0 on X7,
2(x,0) = 20(x) in Q,
where the function z satisfies z(x,T) = 0 in  and the control satisfies
llull1/2,1/4 < lminf |lunll1/2,1/4 < C(R)[20]|2-
Thus, we conclude that z € A(w). Therefore, Graf(A) is closed in K. O
By Lemmas [2.102.14] the hypotheses of Kakutani’s Point Fixed Theorem are satisfied. There-
fore, the mapping A has at least one fixed point, which we shall denote by z(z,t). Clearly, z(x,t) is

the associated state with control u(z, t) such that estimates (2.35) and ([2.36)) hold. This completes
the proof of Theorem

3. PROOF OF THEOREM [L.7]

Let the target trajectory g(x,t) be the solution to system (1.3]) with control T and initial data
Y, sufficiently regular and sufficiently small. We will complete the proof in three steps as shown
in Figure

y(t)
e local
stabilization control

Yo ¢

(y: )

(v:

FiGURE 1. Trajectory of state-control in blue. Target trajectory in red.

Step 1: Stabilization of (y —¥)(x,t) system. Let 7 > 0 be a fixed constant, and consider
T > 7 sufficiently large. Over the time interval [0, 7 — 7], we can control the function y(z,t) using
the control v = 7.

We have the stabilization property in C2%3 over the time interval [0,T — 7], that is,

ly(®) = GOz < Ce™Mllyo — Gollmagey, V€ [0,T 1), (3.1)

where the constants C, A are positive. A does not depend on 7.
For N < 3, we have the following continuous embedding

H™(Q) < "= 2+3(Q),  with 2m > N.
Therefore, for m = 4 it works, so in fact we will show the following
ly(t) =)l g2) < Ce M lyo = Vollmsy, VYt €[0,T —7], (3.2)
Subtracting the system (1.3]); from the system (1.1); we have

(y—?)t—a(/gydm’)A(y—y)— [a(/ﬂydx’) —a(/ﬂydﬂc’)]A§=0 (3.3)
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Estimate I. Multiplying (3.3) by (y —¥) and integrating in €2, we obtain

33 (v =713) +a [ ya) [ [W-pP iz

:—[a(/ﬂydm’) —a(/ﬂ@dm')]/ﬁV@-V(y—y)daz.

Using the conditions on the function a(-) in (1.2)) and the Poincare inequality || - [[2 < C(Q)||V - |2,

we deduce that
Ha(/ﬂydw’) —a(/ﬂ@dm’)}/ﬁV@-V(y—@)dx‘
<v( [ w=sar)( [ 13190~ ds)

< MIQ"2([(y = DO IIVTE) 21V (¥ = D) ()2
< MIQ"2C@Q)IV(y = 7)OllAVTE) 21V (1 — 7)(@)]l2
< M|Q|1/QCQ||?||Loo(o,+oo;H1(Q)) IV (y—7) )3

where constants M and Cgq were defined in (1.2]) and (1.4) respectively.
Combining the previous results and the estimate from ((1.4)), we obtain

37 (16 =DOI) + a0l ¥ -TOIE < IV - DB

Then J
7 Ity =7 @3) + a0l V(y —7)(®)]I5 < 0.

Thus

d _ 2 ap _ 2

P Iy =) ®)1I3) + WH(Q -yl <o0.
Integrating over the time variable from 0 to ¢, with ¢t € [0,T — 7], we have shown that

ly(t) = g()ll2 < e Mlyo — Toll2s  VE€[0,T -], (3.4)

where A = 5% > 0.

2[C()]?
Estimate II. Multiplying by —A(y — %) in (3.3) and integrating in {2, we obtain

Jo=miat-mde+a( [ yar) [ Ap-maw-7)ds

:—[a(/gydac/) —a(/@@dw')}/ﬂAy Ay —7) dz.

Using the conditions on the function a(-) in (1.2)) and the inequality | - |2 < [C(Q)]?]|A - ||2, we

can deduce that B
Ha(/gydx') —a(/ﬂ@dw’)}/ﬁA@A(g—ﬂ)dw‘
<v( [ w=sa)( [ 1871a0 - ) ds)

< MIQIY2([(y =9 O ll21 AT |21 Ay — 7))l

< MIQPMCOQP A = D)D) A7) [21A (Y = 9) (D)2

< MQ2Co|l o (0, +00s12) | Ay — ) (B)][3-
Combining the previous results and the estimate from , we obtain:

1d _ _ a _
57 IV =DIE) + aollAly =913 < 1AW~ DI

Then J
7 (IV(y =) @®)3) + aollAly —7)@®)]3 < 0.
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As [V - [la < C(DQ)|A - |2, thus

& 9w =D O1) + gl V- D01 <0

Integrating over the time variable from 0 to t, with ¢ € [0, T — 7], we have shown that
IV =) @)z < e MV (yo —Tp)ll2,  VE€[0,T —7].
Applying the operator A in (3.3]) we obtain

Aly—7)t—a /ydm’ A%y —7) — |a /ydx’ —a /@dm’ A% =0.
ol fp) o fyp) o f )]
Note that from the equation (L.1]);, for all ¢ € [0, 7] we have

a(/ﬂy(x',t) d:z:’)Ay(-,t) =y (o) — v(-, D)ou() =0 in O

Then Ay(-,t) = 0 in 0Q. Analogously Ay(-,t) =0 in 0NQ.
Estimate III. Multiplying (3.6) by A(y —¥) and integrating in 2, we obtain

[ Aw=niaw-ndeta( [ yar) [ (FAG-9)TAG-D)ds

:—{a(/gydx’) —a(/ﬂydx’)] /Q(VAy)(VA(y—y))dx.
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Similar to Estimates I and II, using the conditions on the function a(-) in (1.2)) and the inequality

| ll2 < [CQPVA - ||2, we deduce that

d B _
= (1A =)@)13) + a0l VAW =) (#)]13 < 0.
A A2 < CO)VA- s , thus

G 18 =DOI) + Fgml AW -T)O <0

Integrating over the time variable from 0 to ¢, with ¢t € [0, T — 7], we have shown that

1A =7 O]z < e[ Ao ~To)ll2e  VE€[0,T —7].

Estimate I'V. Multiplying (3.6) by —AZ2(y — %) and integrating in , we obtain

[ Faw=n0vAG-D) o+ [ vir) [ (@20 -p)a-7)ds

:—[a(/ﬂydx') —a(/ﬂydx')} A(A?y)(A%y—m)dm

Similar to Estimates I and II, using the conditions on the function a(-) in (1.2)) and the inequality

[ ll2 < [C()]*|A2 - ||2, we deduce that

L1980 - TOIR) + a0l Ay -7 < 0.

As [[VA - ||z < C(Q)||AZ - ||2, thus

& (VAW =DOI) + ZigmI VAW - DO <0

Integrating over the time variable from 0 to t, with ¢ € [0, T — 7], we have shown that
IVA®Y = 9)(B)ll2 < e M VAo = To)ll2s V€ [0,T — 7).
Applying the operator A% in (3.3)) we obtain

A2(y—y)t—a(/ﬂyda€’)A3(y—y)— [a(/ﬂyd:v') —a(/ﬂydx’)}A?’gzo.
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Note that applying the operator A to the equation 1, for all ¢t € [0,T] we have
a(/ﬁy(x’,t) d:z:’) A?y(-,t) = Ay (-, 1) — A(w(-, 1) ow(-)) =0 in ON.
Then A?y(-,t) = 0 in 9. Analogously A2%%(-,t) = 0 in 9.
Estimate V. Multiplying by A%(y —7) and integrating in €2, we obtain

| 2= 82 =ndetal [ yar') [ (a2 -9)(TAG-5) o

=—[a( [ var') =a( [ 5a)] [ (va%p) (VA - 7)) da

Similar to Estimates I and II, using the conditions on the function a(-) in (1.2)) and the inequality
|- ll2 < [CQ)P|VAZ- |2, we deduce that

d _ _

- (1A% =) @)]3) + a0l VA (y = 7) ()13 < 0.

As ||AZ - [|s < C(Q)|[ VA2 - |2, thus

G186 =0)O1) + 1A% = DOl <o

Integrating over the time variable from 0 to ¢, with ¢ € [0, T — 7|, we have shown that
1A%(y =9) ()2 < e A% (o = Fo)ll2, Wt € [0,T — 7. (3.10)

Now, adding the estimates (3.4)), (3.5, (3.7), (3.8) and (3.10), we obtain estimate ([3.2)).
As H4(Q) — C?*2(Q), we conclude that

ly(T =) = (T = Dllary < e Ty —Jollmay,  where A> 0. (3.11)

Step 2: Local control for the y(x,t) system. We will construct the local control at the final
time ¢t = Ty, where Ty > 0 is sufficiently large. From (3.11)), we have that for each ¢ > 0, there
exists a Ty := Tp(e, 7) > 0 with

In ( llyo—Yoll gra () )

Ty > £ )
0 h\ +7

such that
ly(To = 7) =y(To = 7)lla4 1 < e M lyo — ol ragay < e.
We can consider y(-, Tp—7) as a new initial datum and 7(z, t)|ox (1, —r,7,) @S @ new target trajectory
with control T(z,t)|ox (1,—r,1y)-
By Theorem there exists a control & € C1/21/4(Q x [Ty — 7,Tp]) with
<CQ,M,7)y(To — 7) = 5(To — 7)l2,

17 =7t @imy ey
ly(To —7) = Y(To — 7)l242

)|
< C(Q, M, 7)|
< C(Q,M,T)e,

where the associated state y(x,t) satisfies y(z, To) = g(z, Tp) in Q.
Taking € = m > 0, we obtain that Ty := To(n, 7) and
1
5
By decomposition ¥ = (0 — T) 4+ U, we can conclude that for all (x,t) € Q x (Ty — 7, Tp),
o(x,t) > —|o(z,t) — v(x, t)| + 0(x, 1)

10 =Tl g1r20/8@u gy —rm0)) <

v

—|lo = f”cl/z*l/‘L(ﬁX[T()*T’TOD +(z,t)
n n

—— =_->0.
2 7173

Y
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Step 3: Global control construction. Finally for T > Ty = Ty(n, 7), it is natural to define

the desired control over (0,T) as
T(x,t) inQx(0,Ty — 7],
v(x,t) == ¢ 0(z,t) in Qx (Ty —7,To),
0 in Q x (Ty, T)

and thus we have completed the proof.

4. PROOF OF THEOREM [L.8
As yo # Ty in , let us denote
Qo :={z € Q:yo(x) =Yo(2)},
Q) = {x € Qs yol) < To()},
Qo == {z € Q:yo(x) > Yo(x)}.
So, we have that || =0, and [©2;| > 0 or |Q2| > 0. Let us divide the proof in two cases.

Case 1: yg £ Ty in Q. This means that there exists Q5 C Qg with [Q25] > 0, in other words,
Yo(x) > Yo(x) in Q5.
Considering the function ¢o(z) := 1oz (z) € L*(Q), we have

(Yo — Yo, o) = /Q(yo —Yo)(@)po(z) dx = /

o (yo(x) - ﬂo(x)) dx > 0.

Let us denote z := z(x,t) as the solution to system

zt—a(/z(x',t)dx’>Az=O in Qr,
Q

z(xz,t) =0 on X, (4.1)
z(2,0) = yo(z) in Q.
As 7, and T are regular enough, by Proposition we have that
z—g e C* N (@Qr) € C([0,T); L*(9))
and as (2(0) — 7(0), o) = (Yo — Yy, wo) > 0, then there exists 71 > 0 such that
(z(t) —g(t),p0) >0, Vtel0,T1). (4.2)

Claim 1: T,,;, > Ti. Suppose by contradiction, if Ty,;, < T4, then there exists a T, € A with
T, < Ty, in other words, we have T, € (0,71) and a control v € L*®(Qr,) with v > 0 em Qr,
such that y = y(z,t) the solution to system with control v and initial data yq satisfying
y(. Ti) =y(-, T%) in €.

By the comparison principle, we have y > z in Qp,. Then, as the function ¢( is nonnegative

and from (4.2)), we obtain

(W(T%), v0) = (2(T%), o) > (Y(T), po)-
Hence y(-, Tx) # y(+, Ty) in Q. So, T, ¢ A and we have a contradiction. Therefore, Ty, > T7 > 0.

Case 2: yy < Yy in . This means that ; = §, then |1| > 0, in other words, yo(z) < Fy(x) in
Q1 = Q. Then

%o — volls = /Q T (z) — yo(a)] dz = /Q (o (x) — yo(x)) di > 0.

We consider z = z(z,t) the solution to system (4.1)). As yo € Hg(2) N H?(Q), by [L, ], we have
that z € C([0,T], L?(2)).
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Denoting £ = y — z, we have that the function £ = £(z,t) is a solution to the system

& = a(t.)AE— Aty ) [ € dr)Az = oo, n Q.

&(z,t)=0 on X, (4.3)
€(2,0)=0 inQ,
where
a(t,w) = a( [ b dr),
0
) 1
B(t, W, ®) = / a/(/ ()\\Il(x’,t) (- A)@(x/,t)) d:c’)d)\.
0 0
As v € CV/2V4(Qr) — H'(0,T; L?*(Q)), we have that £ € C([0,T); L*(Q)).
Denoting £ = 3 — z, we have that the function £ = £(z,t) is solution to the system
- at,)AT - Beg.9)( [ € dr) Ay —ve. in @,
0
&(x,t) =0 on Y, (4.4)

&(z,0) =7o(z) — yo(z) in Q.
As T e CY2Y4(Q,) and 7, — yo € C22(Q), we have that € € C([0,T]; L2(2)).
Claim 2: There exists T» > 0, such that, for any T' € (0,7%) and for any v € L>®(Qr) with v > 0
in Qr, we have £(-,T) # £(-,T) in Q.

Suppose by contradiction, for any 7' > 0 there exists T € (0,7') and a control v € L*(Qr,)
with v > 0 in Qr,, such that (-, T%) = £(-, Ty) in Q. Let us define the adjoint system to (4.3)) as

~or—alt g+ ey ) [

p(a ) Ax(' 1) da') =0 in Qr.,
Q

p(z,t)=0 on Xp,, (4.5)
o(x,T,) = o™ (z) inQ.
By duality results in systems (4.3]) and (4.5]), we obtain
(€(TL), ™) = / / voup da dt. (4.6)
wXx (0,T%)

Let us conveniently construct an initial data ¢« (-) for the system (4.5)).
Let ¢1 be the first eigenfunction of the Dirichlet Laplacian in 2. We know that ¢; > 0 in 2
and ¢1 € HE () N H?(Q). For any r € (0,+00), we define the sets

E, :={zx € Q\w : dist(z, dw) < 7},
E¢ = {x € Q\w : dist(z, 0w) > r}.

Then Q2 =wU E,. U E¢ for any r > 0.
We consider a constant € > 0 such that

| o0t —myar < -0 <0,

dist(Ow,0)
2

where d := , and we define the constant Cy := > 0. Let us define as

cut-off function ¥ € C*°(Q) as

-6
3llé1lle 170 —vollr

, r € Ef,
Y(z) = q -1 <9(x) <Cy, z€Fy,
Cy, T E w,
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with § > 0 small enough. So, we can define T (z) := 1 (z)¢1(z) (see Figure , where

0 K, ~
" () = Coopr1(z) > =0>0, Vrecw.

~ 3ll¢allecllTo — yolla

FIGURE 2. Initial datum ¢’ in Q.

We will arrive at a contradiction with equation (4.6)).
(a) We will prove that (£(T%),»™*) < 0 for T* € (0,T3). Indeed, take T\ > 0 arbitrary:

[ €0 @ e = [ (5= )™ do
= / (To — yo)p™* dx + /E (To — yo)p™ dx + / (To — Yo)¢™™ da.
5 s w

Considering § > 0 small enough, we obtain the following estimates:

[ @y da = / (50~ (-6 dz < [ @~ m)(~o1)dr < -6 <0,

q
|/ )™ dx\</ o — voll$ln de
Es

< C(0) 150 — voll 611 B

0 0
< —|Es| < —.
< C0) g5 |Esl <

_ _ _ 0
‘/(yo —yo)p'* d1’| = |/(il/0 —0)Codr d96| < Collgo — woll1llé1lloe = 3

Then
€0).6™) = [ o= m)e™ do < 5 <0,
As € € C([0,T]; L*(Q)), for T = T3 > 0 small enough, we can conclude that
(), ") <0 forallt €[0,Ts).
In particular, taking T, € (0,T3),
(E(T.), ™) <. (4.7)

(b) We will prove that ¢_ = 0 in w x (0,T4) for some Ty > 0. Indeed, by Remark as
o7 € H}(Q) N H2(Q) we have

p € L2(0,T; H(Q) N Hy(Q)), e € L*(0,T; Hy()).

0
By continuous embedding, ¢ € C([0,T7; HQ(Q)) As N < 3, we have ¢ € C([0,T];C(Q)) =
C(Q % [0,T]) = C(Qr). Then, as ¢(-,T) = 9T (-) > 6 > 0 in w, by continuity of the function ¢,
taking T' = T > 0 small enough, we have that

©>0>0 inwx(0,Ty).
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Thus, p_ =0in w x (0,T}y).
In particular, taking T5 = min{75, T4} > 0, as T\ € (0,T5):

p- =0 inwx(0,Ty) (4.8)
Substituting (4.7)) and (4.8)) in (4.6)), we obtain

0>(§(T*),90T*):// voup dr dt > 0.
wx (0,Ty)

This is a contradiction.

From Claim 2, there exists T» > 0, such that £(-,T) # £(-,T) in €, then y(-,T) # 5(-,T) in Q.
Therefore Tynin > To > 0.

Finally, for any case, we obtain Ty, > T > 0, where Ty = max{Ty,T>}.

5. APPENDIX

5.1. Proof of Remark We will need a classical result from the theory of linear parabolic
equations.

Lemma 5.1. Assume that o > 0, the functions b7, ¢, d € C*%(Qr) and the boundary 0 is
sufficiently regular (more precisely, of class C*T<), and for some constant u > 0,
N
Db (@, )00y > plof?, V(w,t,0) = (,t,01,...,0x5) € Qr x R,
ij=1

Then, for every g € C*%(Qr), ¢ € C?>T(Q) and ® € C*+1+35 (1), satisfying the compatibility

condition of order {% + ﬂ, the linear parabolic system

N N
Ut — Z bijul‘ixj + ZCJ’U@] +du = g n QT)
i,j=1 j=1
u(z,t) = ®(x,t) on T,
u(@,0) = (z) in Q,
admits a unique solution u € C*T*1+5(Qr) and we have the estimate

lullzsass < OO, d) (Ilva + 18l garanrs g,y + lollars ).

For a proof of the above lemma, see Ladyzhenskaya’s book [9, Theorems III. 12.2 and IV. 5.2].
We will divide the proof of Remark [1.2]into two parts.

Proof of existence. We apply the fixed-point method, introducing the map Ao : ctl(Qr) —
CY1(Qy) such that Ag() = y, where y(z,t) is the solution to the system

Yt — a(/ﬂyj(x’,t) dx’)Ay =v inQr,
y(z,t) =0 on Xp,
y(x,0) = yo(z) in Q,

with [[v]l1/2,1/4 < [[golla4 1 - Forevery u € CYY(Qr), the functions a( [, u(a’,t) da') and o’ ( [, u(a’, t) da’)
depend only on the temporal variable ¢, so we can denote them as a,(t) and al, (), respectively.

Remark 5.2. Given the functions uy,us € C%(Q7), let us consider ¢ € [0,T]. By Remark

we have
(e, () — au, (8)] = ‘a(/gul(a:’,t)dx/) fa(/QUQ(:c',t) da:’)

< M/ |y (2',t) — ug (2, )| da’
Q

(5.1)

S M/ ||'LL1 —UQHO’Od.’bI
Q
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< MQ[Juy — a1
By the Mean Value Theorem, we have

Ay (1) — @y, (t) = a(/ﬂul(x’,t) dw’) — a(/@uz(ac’,t) dx’)
— o /Q (000 + (1 = 0(0))ua) (1) ) /Q (1 — o) @' 1) o’

= aéu1+(1_9)u2 (t)A (ul - U2)(l‘/7t) dx/

= alg,uh,UQ (t) /Q (u1 — uQ)(a:’, t)da’,
where () € (0,1).
Lemma 5.3. For every u € CY1(Q7), we have that a,,al, € CY/>Y4(Qr).
Proof. Taking t1, to € [0,T] with t; # to. By Remark we have

lau(ts) — au(ta)| _ 'a(/ﬂu(x’,tl)dl") —a(/ﬂu(:c’,tz)dx')\/ltl —taf!/!

|ty — to|1/4
- M [ |u(a’ t1) — u(2’, t2)] da’
- |t1 _ t2‘1/4
< M/ lulli)2,1 /4 dz’
Q
< M[Q[[ull1/2,1/4 < +o0.
Thus, a, € C*/4([0,T]). We can conclude that a, € C'/>1/4(Q;). Analogously, we can verify

that | /(t) /<t )|
a 1) —Q 2
TNz 12 ull1 /2,14 < +o00
We can conclude that a!, € CY/2Y4(Q,). -

Claim 1: The mapping A is well-defined. Indeed, since § € C*1(Q), by Lemma we have

that
ag = a(/ 9(z',t) dx') € i@,
By Lemma applied to the system , we have
o) =y € C*H1H(@Qq) € CV' (@)
satisfying
HAO(Q)”2+%,1+% = ||y||2+é,1+%

< C(M, ag,ar, 9,9) (llgollas 3 + 0l 5.1)

< 2C(M. ag, a1, |9,9)[oll+ 1.
where C(M, ag, a1, |9, 9) :== C(M, ap, a1, |, ||Zl7||1/2,1/4)~

Claim 2: The mapping Ay is continuous. Let us consider a sequence (§,) C C1'1(Q) such that
Gn — 9 in C11(Qr). Denoting Ag(9,) = yn and Ag(§) = y, we have that the function y,, —y
satisfies

(v = )t = @A — ) = (a5, (t) = a5(t) ) Ay in Qr,
(Yn —y)(z,t) =0 on X, (5.2)
(yn —y)(2,0) =0 in Q.
By Claim 1, since the functions §, g, € C11(Q7), we have that
y,yn € C7T2I(Qp).
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Thus, we can verify that Ay,, Ay € CY/>Y4(Q,). Now, by Lemma we have that
ag,,a; € C/2V4Qy).
We conclude that
(a5, — a3) Ay € CY2A@Qy).
Applying Lemma to system (5.2)), we obtain that
[Ao(Fn) — Ao (F )||2+;,1+1 = llyn — y||2+§,1+i
S C(M7 ap, a1, ‘Q|’ Q)H (a’gn - a?)>AynHl/2,l/4-
Let us estimate the right side of the last inequality. Given (x1,t1), (z2,t2) € Qp with (z1,t1) #
(z2,t2), we have
[(ag. (t1) = ag(t1)) Aya(z1, 1) = (ag, (f2) — ag(t2)) Aya(@a, t2)|
|$1 — $2|1/2 + |t1 — t2|1/4
< ‘ayn (t1) — a@(h)HAyn(Il,tl) — Ayn(»’B27t2)|
> |x1—m2|1/2+\t1—t2|1/4
[(ag, (t1) = ag(tr)) — (ag, (t2) — ag(t2)) [|Ayn(za, t2)|
|21 — 22|12 + [t; — ta| /4

= Ly + Lo.
Let us examine the estimates for L1 and L. For L;, we use Remark and Lemma [5.3] thus

|Ayn(21,t1) — Ayn (a2, t2)]
| — @0|Y/2 + [ty — ta|H/4

< M| Ngn = dllrallynllogs 2

2°4

< OMIQ ||gn — 17\\1,1(||yO||2+% + HU||1/2,1/4)
< 2CM|Q (|9 — 9ll11l1yoll241-

For Ly, we consider two cases: If t; = to, then Ly = 0. On the other hand if ¢; # ¢35, we use
Remark and Lemma [5.3} thus

L < ’a@n(tl) —ag(ty)

[, .5,.0(11) Jon = ) (1) da’ — dp, 5, 5(t2) Jo (G — 9)(t2) d2'|
Ly < st TErE [Ayn (w2, 22)|
1y 5000) =, 5,5(02)) o]
= |t1 —t2|1/4 y’ﬂ 2,02
06, 0.52) Jo (G = D@ 0) = (G0 — ) (@, 12) ) do'| R
,t
|t1—t2|1/4 |Ayn (22, t2)]

|96,,.5,..5(t1) — af, 5. 5(t2)]

< PRSTRITE | 1 =) )] da’) | Ay (s, t2)]
(G = 9) (@’ tl) (n — 9) (@', t2)]
"" A9, 90,5 (t2)] / Ity —t2|174 d$/>|Ayn($2,t2)|

< MIQIC)u + (1~ 8,311, /Q 50— 300 2" ]2

M ([ Wi =l 200" 2o

< MIQIC(gnlla + 1311.1) (1200150 = 30110 lynllosg 1z

+ M (Cl2 g — 5

) lwmllosg et

gMC(

) = Flallynlary 1ey
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< M (190 19011 ) g = 31 (Iwollar g + 072174

< 2MC (10, 191.1) 19 = Tt 9o o 5
Since L1, Ly — 0, we conclude that
Yo —>y in C2H2ITI(QL).
It follows that Ag is continuous in C11(Qr).
Let K := {§ € C= 5 5(Qp) : [l 142,141 < R}
Claim 3: The set K is compact. Indeed, let us first see that Ag(K) C K. For any § € K, from
system ((5.1) we have

||AO@)||2+%,1+

1
4

< € (M,a0,01,190,9) (Ioollas y + ol )
<2 C(M,ag,as, |Q\7R)||ZIO||2+%'

If we consider [|yollpy1 < we have that Ag(9) € K. From de compact immersion

CH21+3(Q,) < C11(Qy), we conclude that K is compact.

Thus, from Claims 1-3, by Schauder Fixed Point Theorem, there exists a function y € K such
that Ag(y) = y. This means that there exists a solution y € C2t2:1+1(Qy) of the system
satisfying

1Wllos 343 < COM, a0, ar, 120, ) (llolla g + llellays)-
O

Proof of uniqueness. Let y1,y2 € C2Y2:173(Q;) be two solutions of system (1.1, then we have
that y := y1 — yo € C2T2:1+5(Q,) is solution of the system
Yt — Qyy Ay = (ayl - ayz) Ay? in QTa
y(z,t) =0 on Xp, (5.3)
y(xz,0) =0 in Q.
Thus, by the results shown in the existence part (specifically Claim 2),

||y||2+%,1+% = [lyx —y2‘|2+§,1+i
< C(M» ag, a1, |Q|7R)H (ayl - a’?ﬂ) Ay2||1/271/4

< C(M,ao,ar, 9, B) (Jlyn = well 1. ly1 ()] 3)
< (€M, a0,a1, 12, B) ol 3 ) Iyl
< (C(M, a0, 01,120 B)olla3 ) Wl 3,143

If we consider [|yo[lo11 < m, we conclude that y = 0in Qp. Thus y; = y2 in Qp. O

11

5.2. Proof of Proposition Recall that the system (2.2)) is

2z — at,w)Az = —f(t, w)(/ 2(2't) dx’) AY +ug, in Qr,
Q
z(xz,t) =0 on X,
z(x,0) = zo(x) in Q,

where w € Z := CH1(Qy) is fixed, and

a(t,w) = a(/Q <w(m',t) —|—§(x’,t))dm’),

B(t, w) == /01 a’(/Q (Aw(m’,t) +§(x',t)>dx’)d)\.

(5.4)
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Remark 5.4. From the notation in Appendix we have

1
a(taw) = aw+ﬂ(t)7 ﬁ(t,’LU) = /(; a/Aery(t)d)‘-

Lemma 5.5. We have that o(-,w) € WH*(Qr).

Proof. By Remark and condition (1.2]) on the function a(-), for every ¢ € [0,T] we have
a(t,w)| = ‘a / w(a' t) + (2, t) ) da’ ) < aj.
att.w)l =a( | (w ))da)

Therefore, a(-,w) € L>*(Qr). Now, we will verify that a;(-,w) € L>*(Qr). Indeed, since w €
Z := CY(Qy), we have that

a’(/Q (w(x’,t)—i—y(m',t))d:r')

< [ (uila 0] + g’ )
Q
< M(llwllz + 1F¢llo,1.0.7) < +00.
We conclude that a(-,w) € WhH(Qr). O

| (- w)| =

’A(wﬂx’,t)—i—@&x’,t))dw’

Lemma 5.6. We have that 5(-,w) € L= (Qr).
Proof. By Remark and condition (1.2]) on the function a(-), for every ¢ € [0,T] we have

1 1
|B(t, w)] §/0 |a')\w+§(t1)\d)\§/0 Md\ = M < +o0.
Therefore, 8(-,w) € L®(Qr). O

We divide the proof of Proposition [2.1] into two parts.
Part I: Proof of existence. Once again, we apply the fixed-point method. Denoting the Banach
space Z = L>(0,T; L'(Q)), we define the mapping Ay : Z — Z by Ag(2) := z, where z(z,t) is
the solution of the system

2z — a(t,w)Az = —f(t, w)(/Q 2(2',t) dac’) Ay +ug, in Qr,

z(xz,t) =0 on X7,
z(z,0) = zo(x) in Q.

(5.5)

For each 2 € Z, let us denote W, s(t) = —B(t,w)( [, 2(z', t)da’).
Lemma 5.7. For every 2 € Z, we have that U, Ay € L3(Qr).

Proof. By Lemma [5.6] we have
T
190 28T qry = [ 10w O IATOIS

T 2

< [ 1ot ( [ eolar) oz
0 Q
T

< / M2 52 [Tz

T
<M el [ 150
= M? H2H2Z ||y|‘%2(O,T;H2(Q)) < 4o00.

Therefore, ¥, :AY € L*(Q7). -
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Claim 1: The mapping Ag is well-defined. Indeed, for 2 € Z, by Lemma we have that
W, s Ay € L*(Qr). We also have that ug, € L*(Q7), thus
Wy s A7 + ug, € L*(Qr).

We have the initial data zg € L?(Q2). Therefore, by Lemmas and we can apply classical
results of existence and uniqueness to the system . Thus, we have that A (2)=z¢€ W C Z,
where

W= {z € L*(0,T; Hy () N L=(Q7) : z € L*(0,T; H(Q))}.
Moreover, by Lemma [5.7 we have

Aol = Nzl

< C(M, ag, 1,12, w,7) (202 + |1

2,0, + H‘I’w,éA?HQ’QT) (5.6)

< C(M, ag, a1, 9], w,7) ([20ll2 + lull2.02 + 17l 20,7520 || 2]] 5) -

where C(M, ag, a1, |Q|, w,7) := C(M,ag, a1, |Q, |w| z, |T;llcc.0r) > 0. Thus, the mapping A is
well-defined.

Claim 2: The mapping Ag is continuous. Let us consider a sequence (Z,) C Z such that 2, — 2
in Z. Denoting by Ag(2,) = 2z, and Ag(£) = z, we have that the function z,, — z satisfies

(zn — 2)t — a(t,w)A(z — 2,) = Uy 5, Ay in Qr,
(znn — 2)(x,t) =0 on Xp, (5.7)
(zn — 2)(2,0) =0 in Q.

Remark 5.8. In system (5.7)), we use the linearity of the function ¥, ; with respect to the
variable 2.

From the estimate (5.6) applied to the system ({5.7)), we have
lR0(2n) = Ro(®)lyy = ll20 — 2l < C(M, ao, av, w, B)[Fll20,7:2 0 |20 — 2 5-
Thus, Ag(2,) — A¢(2) in Z. Therefore, the mapping Ag is continuous.
Let K :={zeW: |y < R}.
Claim 3: The set K is compact for some R > 0. Let us first see that Ag(K) C K. For any % € K,
from system ([5.5) and (5.6) we have

HAO(é)HW < C(M’ ap, a1, |Q‘7wvy) <||ZO||2 + ”u

201 + G20z l|2]z) - (5:8)
If we consider R > 0 (sufficiently large) such that
SC’(M, ag, a1, |2, w,)||zo0ll2 < R, 36'(M, ap, a1, |, w,7)|lull2,0r < R,
2w < R, 3C(M, a0, a1, |2, w, 97l 20,7:m2 00 12l 7 < R,
then, from , we obtain

i

oot
ot

1Ao(D)lly < 5 + 3+t3= R.
This is, /~\0 (2) € K. From the compact immersion W Z , we conclude that K is compact with
R > 0. -
Thus, from Claims 1-3, by Schauder Fixed Point Theorem, there exists a function z € K such

that Ag(z) = z. This means that there exists a solution z € W of the system (T.1)) satisfying

el < COM; a0, 1,100, w,) (Izolla + ullsoz + 1712 mman I122) - (5.9)

We can simplify the expression by using the condition on the trajectory ¥, that is, assuming
that [Flla 1142 < 1.

We define the function P(+) := C(M, ag, a1, ||, w, ), it is clear that P is positive and increasing.
So, for some s << 1, we have that P(s)s < % Indeed,

e If P(1) < 1, taking s < 3, then s < 1 and P(s) < P(1) < 1. Thus, P(s)s < 1.
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o If P(1) > 1, taking s < #(1)’ then s < 2 <1 and P(s) < P(1). Thus, P(s)s < 1.
In particular, for so = [[y[lo41 111, we have
1 < 1 _ 1
2P(s0) = 2P([llsc0r)  2C(M, a0, a1, (2, w,7)

19l 20,72 (02)) < S0 <

So,
Izllyy < C(M, ao,a1,19], w,7)(ll20ll2 + llull2,0,7).- (5.10)

Part II: Proof of uniqueness. Let z1,25 € W be two solutions of the system (5.4]), then we
have that z = z; — 29 € W is solution of the system

2z —o(t,w)Az =V, ,AY in Qp,
z(xz,t) =0 on X, (5.11)
2(2,0) =0 in Q.
Thus, by applying to system (5.11)), we obtain that [|z||;;; < 0. Therefore, we conclude that

2z =01in Qp, or equivalently, z; = 25 in Q.

5.3. Proof of Proposition The proof follows the same reasoning as in Appendix [5.1] and
Recall that system (2.2) is

2z — a(t,w)Az = —B(t,w) </ 2(z',t) dx’) AY +ug, in Qr,
0

z(xz,t) =0 on X, (5.12)
z(x,0) = zo(x) in Q,
where w € Z := CH1(Qy) is fixed, and
a(t,w) = a(/Q <w(:v’,t) +@(sc',t))dx’),
1
B(t,w) == / a (/ ()\w(sc',t) +y(x’,t))dx') dA.
0 Q
By Remark we have
1
at,w) = awigy(t), Blt,w) = /0 Ay ()N (5.13)

Lemma 5.9. We have that a(-,w) € CY/>Y4(Q,).

Proof. Since w,j € CH'(Q7), it follows that w +7 € C'(Q7). By Lemma and (5.13)), we
have that a(-,w) = a4y € CY/*Y/4(Qy). Furthermore,

lae(, w)l < MQUC(lwllz + [7ll1/2.1/4)- O

= llawszlly.
Lemma 5.10. We have that (-, w) € CY/21/4(Qr).

11 1
2°4 1

Proof. For each A € [0, 1], since w,7 € CH1(Q7), it follows that Mw +73 € C11(Qy). By Lemma
we have that @), 5 € CY2Y4(Qr). From (5.13), for any ¢y, to € [0, T] with t; # t2, we have

|B(t1, w) — Bltz, w)| < /1 a1 (1) — Ahppig(t2)]
0

dA
|t1—t2|1/4 |t1—t2‘1/4

1
< /0 |\ 1gll1/2,1/4dA

= Hal)\w-i-§||l/2,l/4
< C(M, Q) [|Adw + 712,174 < +o0.

Thus, we conclude that [|3(-,w)]|1/2,1/4 < C(M, |, w, 7). Therefore, B(-,w) € CY/>¥/*(Q). O
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We will divide the proof of Proposition into two parts.

Part I: Proof of existence. Once again, we apply the fixed-point method. We define the
mapping Ag : Z — Z by AO( ) := z, where z(x,t) is the solution of the system

2z — alt,w)Az = —,B(t,w)(/ 2(2',t) d:c’) Ay +uo, in Qr,
Q
z(x,t) =0 on X,
z(z,0) = zo(x) in Q.
For each Z € Z, by Appendix we have that U, () = —5(¢, w) (fQ 22 t)da! )

(5.14)

Lemma 5.11. For every 2 € Z, we have that ¥, ; € CY/>Y4(Qy).
Proof. Taking t1,ts € [0,T] with ¢; # t>. By Remark [I.I] and Lemma [5.10} we have
(W 2(t1) — Wy 5 (£2)] ’B tr,w)( fq 22, ty) da’) — B(ta, w)( [, (2, t2) da’) |

|t1 —t2|1/4 |t1 —t2‘1/4
|2(2', 1) — 2(2", t2)|
< t d
‘ﬂ 1, W |/ |t1 —t2|1/4 X
|ﬁ(t1a t27 |
+ \tl—t2|1/4 \ 2(x ta)| da’

< M2+ 186 ) zaa( [ 1Eloodr’)

< M| 2llz +18C,w)ll1/2,1/4190 12l z < +o0.
Thus, we conclude that [ Wy, || /2,1/4 < C(M, ||, w,7)||2| 2. Therefore, ¥,, ; € CY/2V4(Q,). O
Lemma 5.12. For every 2 € Z, we have that ¥, :Aj € CY/>Y4(Qr).

Proof. Given (x1,t1), (x2,t2) € Qr with (x1,t1) # (22,t2), we have
W,z (1) AY (21, 81) — o 2(t2) AY(22, 12)|
|5L‘1 — CL‘Q|1/2 + ‘t1 — t2|1/4
o W (@)IIAY(21, 1) = AY(z2,t2)| | [Wuw,z(t) = Y,z (2)[[AY(22, T2)|
> |x17x2|1/2+\t17t2|1/4 |3:17x2|1/2+|t17t2|1/4
=V 4+ U,
Let us examine the estimates for ¥y and ¥y. For ¥y, we use hypothesis about the function a(-)

(1.2) and Remark thus
A t1) — A t
U, = |B(t,w /| o )| de )|| y(z1,t1) Y(z2,12)|

x1 — 22|24 [ty — to|/4
< /Q o0 dz’) 1ATl 2,14

< MIQ| 12z [Flla4 1142 < +o0.

For ¥y, we will consider two cases:
o If tl = tg, then \IIQ =0.
e If {1 # t5, we use Lemma [5.11] thus
|\I/w z(tl) \I]w Z(tQ)

Wy < —t2|1/4

| Ag(n, 1)

< W,
S ||\ij,2

%’1+% < +00.

We conclude that
W,z AY[l1/2,1/4 < C(M, Q] w)[[Fllo4 1 14212l
Therefore, U, ;A7 € C/21/4(Q). =
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Claim 1: The mapping Ag is well-defined. For 2 € Z , by Lemma we have that ¥, ;Ay €
CY/2Y4(Qr). We also have that vo,, € C*/21/4(Qy), thus
U, A + v, € C25(Qr).
We have the initial data zg € C'/2Y/4(Qr). By Lemma5.1]applied to system (5.14), we obtain
Ro(2) =z € C*2 144 (@Qp) € 2,
satisfying
||A0 H2+;,1+}l = ||Z||2+;,1+4
< C(M,ap, a1, [, w,7) (||ZO||2+% +vll/2,1/a + ||\I’w72AyH1/2 1/4)
< C(M, ap, a1, (9, w,7) (||ZO||2+1 +lollyza + 170241141120, )

where C(M, ag, a1, |, w,7) := C(M,ag, a1, |9, ||w| z, [|7ll1/2,1/4). Thus, the mapping Ag is well-
defined.

Claim 2: The mapping Ay is continuous. Indeed, let us consider a sequence (%,) C Z such that
2, — 2z in Z. Denoting Ao(én) = z, and Ao(é) = z, we have that the function z,, — z satisfies

(zn — 2)t — a(t,w)A(z — 2p) = Uy 5, Ay in Qr,
(zn — 2)(2,t) =0 on X, (5.15)
(zn — 2)(2,0) =0 in Q.

In system ([5.15)), we use the linearity of the function ¥, ; with respect to the variable 2.
From Lemma applied to the system ([5.15), we have that

||Ao(5n) - A0(5)||2+%,1+% = [lzn — Z||2+%,1+%
< C(M,ap,a1,w0,9)||Vuw,z, - A7]1/2,1/4-
Using Lemma [5.12] we conclude that
||A0(2n) - A0(2)||2+§,1+i < C(M, ap, a1, |Q|vwa?)\@”2+é,1+i 12 — 2] 2.
Thus, Ag(%,) — Ag(2) em Z. Therefore, the mapping Ag is continuous.
MH@=&€W%”%@ﬂHﬂ%pw<R}

Claim 3: The set K is compact for some R > 0. First we show that Ag(K) C K. For any % € K,
from system ([5.14) we have that

1A0() s 3143 < COM, a0, 0,190, w0,5) (20l y + ellayo/a + 1Tl 3041 1211 )-
If we consider R > 0 (sufficiently large) such that
3C(M, ag, ax, |9, w, 920103 < R,
3C (M, ag, a1, |2, w,7)||v][1/2,1/4 < <R,
3C (M, ag, ar, |2, w, G)[[Fll24 1, 1+1||Z|| <R

Thus, we have Ag(2 ) € K. From the compact immersion C2+21%3(Q,) < Z, we conclude that
K is compact with R>0.

Thus, from Claims 1-3, by Schauder Fixed Point Theorem, there exists a function z € K such
that Ag(z) = z. This means that there exists a solution z € C2+2:1+3(Qy) of the system
satisfying

||ZH2+%,1+% < C(M,agp,az, |Q‘»w7§)(||20||2+% + [lulli/2,1/4 + ||y||2+%,1+% H2||Z> (5.16)

We can simplify the expression (5.16)) by using the condition on the trajectory ¥, that is, assuming
that ||?||2+%,1+% << 1.
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We define the function P(s) := C(M, ag, a1, |Q|,w, s) for all s > 0, it is clear that P is positive
and increasing. So, for some s << 1, we have that P(s)s < % Indeed,

o If P(1) < 1, taking s < 1, then s <1 and P(s) < P(1) < 1. Thus, P(s)s < i
o If P(1) > 1, taking s < #(1), then s < 2 <1 and P(s) < P(1). Thus, P(s)s < i
In particular, for s = H§”2+%,1+%7

D ~ 1
= P(||7ll1/2,1/4)50 < P(s0)s0 < -

C(MaGOaala|Q‘7w7y)”y”2+%,1+ 2

1
1

So,
I2lla4 3104 < COM,ag,a1,0,5) (1120l g + lullj21/0)- (5.17)

Part IT: Proof of uniqueness. Let z;, zp € C?73:1%3(Q,) be two solutions of the system (5.12)),
then we have that z = z; — z, € 022171 (Q;) is solution of the system

2z —oa(t,w)Az =, ,AY in Qp,

z(xz,t) =0 on X, (5.18)

z(z,0) =0 in Q,
Thus, by applying to system , we obtain that ||z||2+%’1+% < 0. Therefore, we conclude
that z = 0 in Qp, or equivalently, z1 = 23 in Q7.
5.4. Proof of Lemma For each w € Z, we consider the system

—pr — a(t,w)Ap =0 in Qr
p(r,t)=0 on Xp (5.19)
o(x,T) = f(z) in Q.

Then, we have the following Carleman inequality for system ,

J[ efppavazc [ erogippasa (5.20)
QT le(O,T)

where Cy := Cy(Q, ag, a1, |w|| z, |[7]| z) is a positive constant. From the spectral theory applied to
the solution of the system (5.19)), we obtain

+oo
pla,t) =S e N Ll alwlds (1 66, (x),
j=1

400 r
lplly =D e Jealemrdsi(f )2,

j=1

The Carleman inequality ((5.20]) becomes

T +o0
[T a(s,w) ds— 2 S —4so
/ Zefzxj Ji as,w)d T9t|(f7¢j)|2dt <Cy // e 257 ¢3)p|? dx dt.
0 jfl w1 X 0

)

Then

io [(/T e—2hja1(T—t)—
0

i=1

Co ~ —2s0
o) |(.0,F] < G [ o &l (5.21)
w1 X (0,

C
We will approximate the integral I = fOT e 2N (T=t) =72 gy using the Laplace method. To do

this, we make the following change of variables s = T — ¢, so the integral becomes

T -
1 :/ e 2Aas= 5 g,
0
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o for all s € [0,T], then

Co
(5)=0 e 2\a1 — 2 =0 <= 5=
g (s)=0 a1 = 3 0 s Doy’

2C
g"(s) = 70 > 0.

We define g(s) = 2)\jays + <

The point sg = 4/ 25—‘;1 is a minimum for g(s). Applying the Taylor expansion (Taylor polynomial)

to the function g(s) at the point sg, we obtain
g// s

9(5) = 9(s0) + o (s0)(s — 30) + L0 (5~ 50)? 4 O((s — 50)").

Performing the calculations of the terms of the polynomial

C [ C C
g(SO) = 2)\1@150 —+ =0 = 2>\ja1 2\ »O + g
50 31 2)\3'00«1 g/(SO) = 07

= \/2/\]'@100 + \/2)\]‘&100 = 2\/2)\]'(1100,

§(s9) = —2C0__ _ 2V/Aa)
(y/72)° =

Thus,
2M\ear)3
g(s) = 2+/2X;a1Cy + %(s —50)%+ O((s — 50)*).
0

We can approximate the integral I as

T T (2Xja1)3 2)
—2./2x:a:C, LAjer)” o
I:/ e_g(s)ds%/ e ( ja1Co+1/ —&;—(s—s0) ds
0 0
T (22 ja1)3 2
:e—z,/zxjalco/ VT s
0

To do this, by making the substitution

[ (2X; a1> 30)2 C 4\/ @2 L) (T—s0) _52 5
ds = 2)\ VAT ds.
a1 \/ 1 S0

Since Aja; — 400, we have

T
I—/ —2); al(T t) td
0

—+oo
:/ e 9 (s) ds ~ ¢ —24/2X;a1Co 4 / 7§2d§,
0 2)\ al

4
I ~ <7TQC’O Y 6*2\/ 2CoAjay
( ) '

2)\j(l1 3

Let us calculate the integral on the right-hand side

~ __ 4 (2)\/(11)3 .
§ = /=& (s = 50), we obtain

Thus, we deduce that
T
/ e~ (T=D=2 gy < @1 ~2Roy/%;
0

where Ry := v/2Cpa;. Substituting the last inequality into the estimate (5.21]), we can conclude

the proof of Lemma [2.6]
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