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INVERSE SCATTERING METHOD FOR AN INTEGRABLE SYSTEM OF
DERIVATIVE NONLINEAR SCHRODINGER EQUATIONS

MEHMET UNLU

ABSTRACT. We present a method for solving the integrable system of nonlinear partial differen-
tial equations, known as the derivative nonlinear Schrédinger II system (DNSL II system), also
called the Chen-Lee-Liu system. This is done by presenting a solution technique for the inverse
scattering problem for the corresponding linear system of ordinary differential equations with
energy-dependent potentials. The relevant inverse scattering problem is solved by establishing a
system of linear integral equations, which we refer to as the Marchenko system of linear integral
equations. In solving the inverse scattering problem we use the input data set consisting of a
transmission coefficient, a reflection coefficient, and the bound-state information presented in
the form of a pair of matrix triplets. Using our data set as input to the Marchenko system, we
recover the potentials from the solution to the Marchenko system. By using the time-evolved
input data set, we recover the time-evolved potentials, where those potentials form a solution
to the integrable DNLS II system.

1. INTRODUCTION

In this article we present a technique for solving the nonlinear system of partial differential

equations

%Qt +t Gaz qumr 0, (1)
Iy — Ty — Q7T = 0,
where x and t are the independent variables taking values on the real axis R, the subscripts
denote the respective partial derivatives, the dependent variables ¢ and r are complex-valued
functions of x and t. We refer to x as the spacial coordinate and t as the time coordinate.
The nonlinear system is known as the derivative nonlinear Schrédinger IT system (DNLS 1T
system) [11, 3, 41 [12] 3] 17, 23], [30L 31], [32], [33] [34]. It is also known as the Chen-Lee-Liu system. It
has important physical applications in propagation of electromagnetic waves in nonlinear media,
propagation of hydromagnetic waves traveling in a magnetic field, and transmission of ultra short
nonlinear pulses in optical fibers [1} 22].

The nonlinear system is related to the nonlinear system

it + Goe — (@°F)z = 0,

iy = Taw — 1(q7%)z = 0,
which is known as the DNSL I system [T], 4}, 16}, 19] 20} 211, 22, 24], 25} 26|, 27] 28] [29] or the Kaup-
Newell system. We use a tilde to denote the quantities related to . We observe that the linear
parts in (L.1) and (1.2 coincide but their nonlinear parts differ from each other. Both nonlinear
systems (1.1]) and (1.2)) are known to be integrable in the sense of the inverse scattering transform
[6, 211 [25]. The integrability of ( is assured [I}, 2 4 29] by the existence of the corresponding

AKNS pair (X, T), where X and ’T are the 2 x 2 matrix-valued functions containing ¢ and r,
their partial xz-derivatives, and the spectral parameter denoted by (. Similarly, the integrability

(1.2)
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of is assured by the existence of the corresponding AKNS pair ()E' , 7'), where X and X are
the 2 x 2 matrix-valued functions containing ¢ and 7, their partial z-derivatives, and the spectral
parameter (.

The matrix X that appears in the first-order linear system of the differential equations given

by
% {g] X [g} . z€R, (1.3)

where the quantities o and 8 are the two components of the wave function depending on the
independent variable x. The independent variable ¢ in (1.1]) appears in (1.3) as a parameter. The
AKNS pair matrices X and T associated with (1.1)) are

_ [-i¢® Cq
A= [ Cr i+ éqr] ’ (1.4)
_ —2i¢* —iC*qr 2¢3q + ¢ (ige + 3¢°7)
T= [2{37" + ¢ (—irg 4+ 3qr?)  2iC* +iPqr + & (qra — qur) + LPr? (1.5)

Using (1.4) in (1.3]), we write the corresponding first-order linear system as

d o] _ [-i? (q !
— = ) ; ) eR. 1.6
w0 = eVl s (16)
The matrices X and 7 appearing in (|1.4) and (1.5 form the AKNS pair for the nonlinear system
(1.1) in the sense that the 2 x 2 matrix-valued system of equations
Xi—To+XT —TX =0, (L.7)

yields . In other words, by using the matrices X and T, we evaluate the 2 x 2 matrix appearing
on the left-hand side of 7 where each entry is a polynomial in (. Those polynomials identically
vanish for all z, ¢, and { provided that ¢ and r satisfy the nonlinear system .

In a similar manner, the 2 x 2 AKNS pair matrices X and 7 associated with the nonlinear

system are
P [—iCQ C(’i] F_ { —2i¢* —iC?qr 2¢°G + ((igx + ¢°F)

¢ ig? 2037 + ((—iFy + Gr?) 2i¢t +iC3qr
The matrix X appears in the first-order linear system of differential equations given by
d & - &
~ 12l =x1= 1.8
i 5] =*[3) ()

where x is the independent variable, ¢ appears as a parameter, and the dependent variables &
and 8 are functions x and they also contain the parameter t. We write the linear system (|1.8)

explicitly as
d Ta e -1 =
dx[g]:[ ’ CCQ] [g} reR (1.9)

Because of the appearance of the spectral parameter ¢ in X and X, the linear systems (1.6) and
also depend on the spectral parameter (. We refer to ¢ and r appearing in s the
potentials. Since ¢ and r appear in in the form of (g and (r, we refer to the potentials in
as energy-dependent potentials. This is because the spectral parameter ¢ appearing in
has the physical interpretation as energy.

In this article we relate the solutions to the linear systems and through the trans-

formation )
{2] - [(1) E?x)] m ’ (1.10)

where c is an arbitrary constant and E(z) is the complex-valued scalar quantity given as

Ba) = e (5 [ m Ay a(w)r(9)). (1.11)
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The arbitrary constant c is determined by a spacial asymptotic condition when we use a particular
solution. Since the quantity F(z) defined in (1.11)) is in general complex valued, it does not
necessarily have the unit amplitude. From ([1.11)) it follows that

lim E(z)=1, lim E(z)=e"/? (1.12)

T——00 T— 00

where we have defined the complex constant p as

oo
pim [ dwawr). (113
—0o0

Our goal is to analyze the direct and inverse scattering problems for the linear system with
the goal of developing a solution method for the nonlinear system . To present our method
in the simplest way, we assume that the potentials ¢ and r in belong to the Schwartz class
in x € R for each fixed t. We recall that the Schwartz class S(R) consists of functions of x where
the derivatives of all orders exist and are continuous and those derivatives vanish as * — Foo
faster than any negative power of |z|. Although our results hold under weaker conditions on the
potentials, we present our ideas in the simplest form by assuming that ¢ and r belong to S(R).
Since t appears as a parameter in the analysis of the direct and inverse scattering problems for
7 we mostly suppress the t-dependence for the related quantities. For example, we write ¢(x)
and r(z) instead of (x,t) and r(z,t) in Sections [T} On the other hand, we display the argument
t in Sections 5] and [6] for further clarity.

When the potentials ¢ and r belong to the Schwartz class S(R), we have a scattering scenario
associated with . In other words, the potentials ¢ and r vanish as * — 400, and hence

—iC%z
any solution to (|1.6)) for { € R behave as a linear combination of the column vectors [ 0 }

0
and |:6i<2x:|. As indicated in Section , this allows us to use some particular solutions to (|1.6)

known as the Jost solutions. From the spacial asymptotics of the Jost solutions, we introduce
the scattering coefficients that are functions of the spectral parameter (. For { € R, we know
that has only two linearly independent column-vector solutions. The linear system may
also have column-vector solutions that are square integrable in x € R. Such solutions are known
as bound-state solutions to , and they occur only at certain complex values of the spectral
parameter (. At each bound-state (-value, it is possible to have two or more linearly independent
solutions to . The number of such linearly independent solutions determines the multiplicity
of the bound state at that (-value. We refer to the bound-state (-values, their multiplicities, and
the normalization constants associated with each of the bound-state multiplicity collectively as
the bound-state information.

The direct scattering problem consists of the determination of the scattering coefficients
and the bound-state information when the potentials ¢ and r are known. On the other hand,
the inverse scattering for consists of the determination of the potentials ¢ and r when the
scattering coefficients and the bound-state information are known. When the scattering coefficients
and the bound-state information contain the parameter ¢ compatible with the AKNS pair matrix
T appearing in , the solution to the inverse problem for yields the potentials ¢ and r
that also contain the parameter ¢. In that case, those time-evolved potentials ¢ and r satisfy the
nonlinear partial differential equations given in (1.1)).

This article is organized as follows. In Sectione present the four Jost solutions to and
briefly describe their relevant properties. Using the relationship , we relate the Jost solutions
to to the Jost solutions to the linear system given in (1.9). As indicated in Theorem [2.1} we
determine that the potential pair (g, r) appearing in is related to the potential pair (g, 7) as in
(2.8]). This helps us to determine the properties of the Jost solutions and the scattering coefficients
for in terms of the known properties [12, [13] of the corresponding quantities associated with
. In Section [3| we present the relevant properties of the bound-state information for ([1.6))
by exploiting the connection between and established in Section 2| In Section
introduce a Riemann—Hilbert problem related to the inverse scattering problem for . This is



4 M. UNLU EJDE-2025/97

done by relating a pair of Jost solutions to to another pair of Jost solutions, where the func-
tional relationship involves the scattering coefficients for . With the help of the appropriate
properties of the Jost solutions and using a Fourier transformation, we derive a Marchenko system
[, [8, @ 10, 1] 14} 5] of linear integral equations associated with . We then show how the
potentials ¢ and r in are constructed from the solution to the Marchenko system with the
input data set consisting of the scattering coefficients and the bound-state information for .
In fact, we show that it is sufficient to use the right scattering coefficients in our input data set
as the left scattering coefficients are uniquely determined by the right scattering coefficients. In
Section [5| we obtain solutions to the nonlinear system with the help of the solution to the
Marchenko system with the time-evolved input data set. Finally, in Section [6] we illustrate the
solution method of Section [ with two explicit examples.

2. THE DIRECT SCATTERING PROBLEM

In this section we study the direct scattering problem for the linear system associated with
the Chen-Lee-Liu system . We recall that for each fixed ¢ € R, the potentials ¢ and r in
belong to the Schwartz class S(R) in 2 € R. As already indicated, we suppress the dependence on
the parameter t in the quantities related to and (1.9 .

We first introduce the four Jost solutions, Wthh are the particular column-vector solutions to
, denoted by (¢, z), ¥(¢, z), ¢(C, ), gz_ﬁ((,:c), respectively. We use the subscripts 1 and 2 for
the first and second components of the Jost solutions, respectively, i.e. we let

v = [ e = [ (21)
otc.a) =[] aca = [0, ©22)

The Jost solutions to (1.6 are those solutions that satisfy the respective spacial asymptotics

362] [ ] <o
[&%g}{(wi$mmu’mﬁ+% (2.4)
e I ) .
[iég ig] - [ei@w [01(1)0(1)}1 T oo (2.6)

We remark that in our notation, the bar over a quantity does not denote complex conjugation.
We introduce the auxiliary spectral parameter A in terms of the spectral parameter ( as

A=C2 =V, (2.7)

where the square root denotes the principal part of the complex-valued square root function. We
use C to denote the complex plane, Ct for the upper-half complex plane, C~ for the lower-half
complex plane, and we let C+ :=Ct*UR and C— := C~ UR.

In the next theorem, we describe the relevant properties of the Jost solutions to (|1.6) concerning
their existence and their domains of analyticity and continuity in (. Since we analyze those
properties for each fixed ¢ € R, we do not separately mention that the properties hold for each
fixed t € R.

Theorem 2.1. Assume that the potentials ¢ and r in (1.6 belong to the Schwartz class S(R) in
x € R. Let the spectral parameter ¢ be related to the parameter X as in (2.7). Then, we have the
following:



EJDE-2025/97 DERIVATIVE NONLINEAR SCHRODINGER EQUATIONS 5

(a) The Jost solutions ¥({,x), and ¢((,x) to exist, are analytic in the first and third
quadrants in the complex (-plane, and are continuous in the closures of those quadrants for each
fized x € R. Similarly, the Jost solutions ¥((,x) and ¢((,x) to ezist, are analytic in the
second and fourth quadrants in the complex (-plane, and are continuous in the closures of those
quadrants for each fized x € R.

(b) The four Jost solution components V1 ((,x), ¥2(C,x), ¢1(¢,x), and ¢o(C,x) are odd in ¢
whereas the other four Jost solution components 11 (C,x), 1a(¢, ), ¢1(¢, ), and ¢o(¢,x) are even
in (. Furthermore, for each fized x € R, the four scalar functions ¥1(¢,2)/¢, ¥2(C, ), ¢1(¢, x),
$2(C,x)/C are even in , and hence they are functions of A. As functions of A, those four scalar
quantities are analytic in X\ € Ct and continuous in X € C+. Similarly, for each fized x € R,

the four scalar functions ¥1(¢,x), ¥2(¢,2) /¢, ¢1(C,x) /¢, ¢2(C,x) are even in ¢, and hence they
are functions of \. As functions of A, those four scalar quantities are analytic in X € C~ and

continuous in A\ € C—.

Proof. The proof is obtained by proceeding as in [I2, Theorem 2.2], where the corresponding
results are obtained for the linear system (L.9)). O

In the next theorem, we present the relationship between the potential pair (¢, r) in (1.6) and
the potential pair (¢, ) in (1.9), when the solutions to (1.6) and to (1.9) are related to each other

as in ((1.10]).

Theorem 2.2. Assume that the potentials ¢ and r appearing in (1.6]) belong to the Schwartz class
S(R) in x € R. Further assume that solutions to (1.9) are related to the solutions to (1.6 as in
(1.10). Then, the potential pair (q,r) is related to the potential pair (G,7) as

¢(x) = E(x)"'q(z), r(x) = Bx)F(2), (2.8)

where E(x) is the quantity defined in (1.11). Consequently, the potential pair (q,7) also belongs
to the Schwartz class S(R).

Proof. Taking the x-derivative on both sides in (|1.10)), we obtain

5= pt) [ o) [ »

where we recall that ¢ is a constant independent of x but may depend on the spectral parameter
¢. Using (|1.6]) on the left-hand side of (2.9) and using ([1.9) on the right-hand side, we obtain

P ot I ] e i I R e e CEED
Next, using on the left-hand side of (2.10)), we obtain
|aty i f%)r(x)} B 5o) {Z] ~
- [8 E?@] [2‘} e [<f<x§§f<x> Z.ggg@)} [Z] |
Since ¢ {%} is an arbitrary solution to (L.9), from we obtain
[—z‘c? Cq()E(x) } _ [@: —ic? ¢q(x) ] . (2.12)

(r(z) iC*E(z) + L q(z)r(z)E(x) (x)E(x) E'(z)+i*E(x)
By taking the z-derivative of both sides of (|1.11) we have

(2.11)

E'(x) = %q(m)r(m)E(w) (2.13)

Comparing the individual entries of the matrix equality in (2.12)), with the help of (2.13)), we
observe that (2.8)) holds. With the help of (L.11]) we confirm that the potentials ¢ and 7 belong
to the Schwartz class S(R) when the potentials ¢ and r belong to S(R). O
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As indicated in Theorem the potential pair (g, 7) appearing in belongs to the Schwartz
class S(R) when the potential pair (g,r) appearing in belongs to S(R). We introduce the
Jost solutions to in the same manner the Jost solutions to are introduced. For the
Jost solutions associated with (I.9), we use the notation U(C,x), ¥(C z), ¢(C,x), and @(C, x) by
requiring that those solutions satisfy the respective spacial asymptotics

~1 , T o(1)

mggw;] N [e“% [1 + 0(1)]1 . @ — +oo, (2.14)
B¢ _ [ i ot
L;z(éam)] a [ 0[(1) H , T — 00, (2.15)
~1(C,.T) 6_1(2:” 1)
e - [0l s

61(C,x) o(1)
[}EM)} - [@“2”[1 +0(1)ﬂ , T —00, (2.17)

which are the analogs of (2.3))-(2.6), respectively. We refer the reader to [12} [I3] where it is shown
that the Jost solutions to (1.9) have the same properties listed in Theorem and satisfied by

the Jost solutions to (|L.6]).
In the following theorem, we show the connection between the Jost solutions to (1.6)) and the
Jost solutions to (|1.9))

Theorem 2.3. Let the potential pair (q,r) in and the potential pair (¢,7) in (1.9)) are related
to each other as in , where E(x) and u are the quantities appearing in and ,
respectively. Assume that the potential pair (q,r) belongs to the Schwartz class S(R). Then, we
have the following:

(a) The Jost solution (¢, x) to (1.6) is related to the Jost solution z/?((,x) to (1.9) as

mggiﬂ = {(1) E?x)} mggzﬂ : (2.18)

@here 1[)1 (¢,z) and ’(/32((,([;) denote the first and second components of the Jost solution
¥(¢,x) in a manner similar to the first equality of (2.1)). )
(b) The Jost solution (¢, x) to (1.6) is related to the Jost solution ¥(¢,x) to (L.9) as

where 7,[111 (¢, x) and '(ZQ(C,:U) denote the first and second components of the Jost solution
¥(C,x) in a manner similar to the second equality of (2.1)). )
(¢) The Jost solution ¢(C,x) to (1.6]) is related to the Jost solution ¢(C,z) to (1.9) as

@;Egiﬂ - Ll) E(()x)} {Z;Egiﬂ ’ (2.20)

where cﬁl((,x) and &Q(C,z) denote the first and second components of the Jost solution
o(¢,x) in a manner similar to the first equality of (2.2)). )
(d) The Jost solution ¢(C,x) to (L.6) is related to the Jost solution ¢(¢,x) to (L.9) as

)=l st) [?Eﬁiﬂ ’ (221)

where qlﬁl(C,x) and qZ:)Q(C,:z:) denote the first and second components of the Jost solution
(¢, ) in a manner similar to the second equality of ([2.2)).
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respectively, and in each case we determine the specific value of the constant ¢ appearing in ((1.10
for each pair of the Jost solutions. For example, to establish 1l we proceed as follows. We
write ([1.10) by using the corresponding Jost solutions z/J(C, x) and ¢((, z) there. This yields

= . 2.22
el =elo s [ e 22
By letting # — +oc in (2.22)), with the help of the asymptotics in (2.3) and (2.14) and the second
asymptotics in (T.12)), we obtain ¢ as e~*/2, The relationships presented in (b), (c), and (d) are

obtained in a similar manner with the help of the spacial asymptotics in (1.12)), (2.4)—(2.6]), and
U

£ &1,

In the next theorem, we present the large (-asymptotics of the Jost solutions to (1.6)). In the
theorem, those asymptotics are expressed in terms of A, which is related to ¢ as in (2.7

Proof. We apply the relationship to (L.10]) to the corresponding Jost solutions to (1.6 and (1.9)),
1.10)

Theorem 2.4. Assume that the potentials ¢ and r in (1.6) belong to the Schwartz class S(R).
Let the parameter A be related to the spectral parameter ¢ as z'n . Then, for each fized x € R,

as A — oo in CT the Jost solutions ¢(C,x) and ¢((,x) to appearing in and .,

respectively, satisfy

W = ¢ie [% + O(%)} (2.23)

Ua(Cow) = e 14 BEEE al / dy q(y)r'(y) + O( 2] (2.24)
81(¢2) = e B )[1+5/ dyaly)r <>+0( 2] (225)
¢2(g’x) = e T E(z) [zg(f) + O(%)} (2.26)

where we recall that E(x) and p are the quantities in and (1.13)), respectively. Similarly,
for each fized x € R, as A — oo in C— the Jost solutions 1/)((, x) and ¢(¢, ) to (1.6) appearing in

and (| -, respectively, satisfy

B =g @ 1= o [ ayawre) +0(55)]. (227
¥a(C,x) — emin/2D () [% +O(%>], (2.28)
PR o (52 o) e

a(6.) =14 295 ayayr +o(55)] (230

Proof. The large (-asymptotics of the Jost solutions to are already known [12, [13] and they
are listed in Theorem 2.4 in [I2]. We use those asymptotics on the right-hand sides of 7
2.21)). We also express ¢ and 7 appearing in those asymptotics in terms of ¢ and r with the help of
E Furthermore, we use to relate the parameters A and  to each other. We then obtain

the large (-asymptotics expressed in (2.23)—(2.30). O

Next, we introduce the scattering coefficients associated with the linear system (1.6) by using
the spacial asymptotics of the Jost solutions to (|1.6) as

n(Gn)] | Tge L)
[wz(é,x)] N ?) ic? m{[l+o(1)ﬂ ;T = —00, (2.31)
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- — - r 71 71‘(21 _1 1

(G @) _ | T©O° i + of ) B

1/)2(4.,1') o & iz [ | y & —00, (232)
' S G R

_ _ B _242 1 1 T

61(¢2)] | moe +o(1),

¢2(C,I‘) o R(¢) ZC x I ) T — +OO, (233)
- | e _1 +o(1)] |

-— _ 'M —ic% 1 1 =

$1(¢, ) T.0¢ +o( )

b = ; 41, x— +oo. 2.34
92(C, )] T—l( )elc ¢ 1 +0(1) (2.34)

We refer to Ti(¢) and Ti(¢) as the left transmission coefficients, L(¢) and L(¢) as the left reflection
coefficients, T, (¢) and T;(C) as the right transmission coefficients, and R(¢) and R(() as the right
reflection coefficients.

Similarly, we introduce the scattering coefficients associated with the linear system by
using the spacial asymptotics of the Jost solutions to as

o) _ |Fge " 1+0(0) T = —00 (2.35)
da(Ga)] | e w[uo )] ’

1G] _ T L+ ot) . r— —oo, (2.36)
Da(C.x)| T | HQee 14 }

[01(¢,2)] _ ﬁ o] 2.37
| 6o(C, 7)) ?Egezq x|:1+ )} , T — 400, (2.37)
= T ©) e KT

¢1(C )| _ gé) = [1+or) . x— +oo. (2.38)
5G] | e 1 o)

We refer to T(¢) and T/(¢) as the transmission coefficients, L(¢) and L({) as the left reflection
coefficients, and R(¢) and R(() as the right reflection coefficients. We remark that we do not
need to make a distinction between the left and right transmission coefficients for . This is
due to the fact that the trace of the matrix X appearing in is zero. Consequently, the left
and right transmission coefficients for coincide, and we use T'(¢) and T'(¢) to denote those
common values, respectively. On the other hand, the trace of the matrix X appearing in
is not zero. This results in the fact that the left and right transmission coefficients are unequal.
Hence, to describe the transmission coefficients for , we need to use the four quantities 71(¢),
T.(0), Ti(C), and T4(C).

In the next theorem, we show the connection among the scattering coefficients for and the
scattering coefficients for .

Theorem 2.5. Let the potential pair (q,7) in and the potential paz'r (q,7) in are related
to each other as in , where p is the quantity appearing in . Assume that the potential
pair (q,r) belongs to the Schwartz class S(R). Then, we have the followmg
R(Q), L(¢) for (1
(€) fo

(a) The eight scattering coefficients Ti(¢), T:(C), Ti(¢), Ty (C), R( Q). L(
r ([L9) as

<)
are related to the siz scattering coefficients T(C), T(¢), R(¢), L(C), R(C), L(¢

T(¢) = "2 T (), Ti(¢) =T(0), (2.39)

T.(¢) = T(Q)., T(¢) = e ™2 T(0), (2.40)
R(¢) = ¢ R(C), R(C) =e "2 R(C), (2.41)
L) = L), L(¢) = L(©). (2.42)
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(b) The transmission coefficients T)(¢) and Ty({) are even in (, and hence they are functions of
. As functions of A, the quantities T)(¢) and T (¢) are meromorphic in A € Ct and continuous in
X\ € Ct except at the poles causing the meromorphic property in Ct. Similarly, the transmission
coefficients Ti(¢) and T,(¢) are even in ¢, and hence they are functions of X. As functions of \,
the quantities T,(¢) and T,(¢) are meromorphic in A € C~ and continuous in A € C— except at
the poles causing the meromorphic property in C~. The four quantities R(C)/¢, R(C)/¢, L(¢)/¢,
L(¢) /¢ are even in C, and hence they are all functions of . As functions of X, those four quantities
are continuous in A € R.

Proof. For the proof of (a), we use the relationships f connecting to Jost solutions to
(1.6) and the Jost solutions to . With the help of the asymptotics in (1.12) and f ,
by comparing the leading terms in the spacial asymptotics of 7, we obtain (2.39))—
(2.42). Hence, the proof of (a) is complete. By using the relevant properties of the scattering

coefficients T'(C), T(¢), L(¢), L(¢), R(¢), and R(¢) given in Theorem 2.2 of [12], we establish the
aforementioned properties of the scattering coefficients for (|1.6)). O

In the next theorem, we present the small (-asymptotics of the scattering coefficients for (|1.6]).

Theorem 2.6. Assume that the potentials ¢ and r in belong to the Schwartz class S(R) in
x € R. Let the parameter \ be related to the spectral parameter ¢ as in . Then, the small
C-asymptotics of the scattering coefficients Ti(¢), T:(¢), Ti(¢), T:(¢), R(C), R(C), L(¢), and L(¢)
appearing in f are expressed in \ as

Ti(C) = e/ [1 + O()\)}, A= 0in CF, (2.43)
T.(¢()=1+0(\), X—0inCH, (2.44)
Ti(¢)=1+0()\), A—0inCH, (2.45)

To(¢) = e—ih/? [1 + O(A)], A= 0 in CF, (2.46)
R( ) 7} 1 = :
?fe /Q[E(x)/oodyr(y)—i—O()\)}, A—0in R, (2.47)
Ré@‘) = =2 B(a) [ dyaw)+ ow]. A—0mE, (2.48)
LE_O S {E(x) /m dy q(y) + O(A)}, A—0inR, (2.49)
L(¢) I .
L [W /m dyr(y) + O], A= 0mE (2.50)

Proof. To obtain (2.43)—(2.50), we use the connections among the scattering coeflicients for (1.6
and for (1.9) given in (2.39)—(2.42)). We utilize the help of (2.8)) and the known small { asymptotics
of the scattering coefficients for , where those asymptotics are listed in Theorem 2.5 (d) of

[12]. We then obtain (2.43)—(2.50). O

In the next theorem, we present the large (-asymptotics of the scattering coefficients for (|1.6)).
In the theorem, those asymptotics are expressed in terms of A, which is related to ¢ as in (2.7]).

Theorem 2.7. Assume that the potentials ¢ and r in (1.6 belong to the Schwartz class S(R) in
x € R. Let the parameter \ be related to the spectral parameter ¢ as in 1) Then, the large
C-asymptotics of the scattering coefficients T1(C), Tx(¢), T1(¢), T:(¢€), R(C), R(¢), L(¢), and L({)

appearing in (2.31)—(2.34) are expressed in \ as
1 _
Ti(¢) = 1+O(X)’ A — oo in CT, (2.51)

Ti(¢) = e*/? [1 + O(%)], A — 0o in CT, (2.52)

Ty(¢) = e~/ [1+O(§)}, A — ooin CT, (2.53)
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T.(()=1+ 0(%), A = 00 in CF, (2.54)
R(C) = 0(4—13)7 R(C) = o(cig), Ao too, (2.55)
L(C) = o(gig), L) = o%), A > oo, (2.56)

Proof. The large (-asymptotics of the scattering coefficients for ([1.9)) are known and they are listed

in (2.46)—(2.51) of [12]. Using those asymptotics in (2.39)—(2.42), we obtain (2.51)—(2.56)). d

In the next theorem we show that the left scattering coefficients T1(¢), 7T1(¢), L({), L(¢) can be
expressed in terms of the right scattering coefficients T;(¢), T;(¢), R(¢), R(¢). Hence, in solving the
inverse scattering problem for , instead of using all the scattering coefficients, it is sufficient to
use as input a scattering data set containing the right scattering coefficients but not left scattering

coeflicients.

Theorem 2.8. Assume that the potentials ¢ and r in (L.6) belong to the Schwartz class S(R) in
x € R. The left scattering coefficients Ti(¢), Ti(C), L(C), L(C) for (L.6]) can be expressed in terms
R(C) for (LG) as

of the right scattering coefficients T;(C), T:(¢), R(C),

T(Q) = e"PT(Q), Ti(¢) = e *T(Q), (2:57)
LQ) = =" PROT S O = ~ROZS. (2.58)

where p is the complex constant defined in (1.13)).

Proof. We obtain the first equality in EI) directly from the first equalities of and ([2.40)).
Similarly, the second equality in @ is obtained by using the second equalities in (2.39)) and
(2.40). The analogs of the first and the second equalities in for the linear system (1.9) are
known from [I2, (2.45)] and we have

i) = —e2R) 29 o) =~k 29

7:(¢) 7:(¢)
By using the relationships between the reflection coefficients for (|1.6)) and the reflection coefficients

for (1.9) in (2.59), namely, using (2.59) in (2.42)), we obtain the first and the second equalities in
(2.58)), respectively. O

(il

(2.59)

3. BOUND STATES

We recall that the potential pair (g, r) appearing in is assumed to belong to the Schwartz
class S(R) in z € R. The bound states for correspond to square integrable column-vector
solutions to . When the spectral parameter ( is real, by using any two linearly independent
column-vector solutions to (1.6)), it is impossible to form a square integrable solution to .
Hence, there are no bound states for when ¢ € R. A bound state for can only occur at
a nonreal complex value of (.

As indicated in Theorem the potential pair (¢,7) in belongs to the Schwartz class
S(R) when the potential pair (g,r) in belongs S(R). The bound states for are closely
related to the meromorphic properties of the transmission coefficients in the complex (-plane.
From an we know that the transmission coefficients for and the transmission
coefficients for (1.9) have similar meromorphic properties in the complex (-plane. Thus, by using
the facts outlined in Section 3 of [I2] for the bound states for , we obtain the facts related to
the bound states for . We refer the reader to Section 3 of [I2] for the details about the bound
states for , and in the following we provide a summary related to the bound states for
when the potential pair (g, r) belongs to the Schwartz class.

(a) As already indicated, the bound states for cannot occur when ¢ € R. A bound state
can only occur at a nonreal complex (-value at which the transmission coefficient T;.({) has a pole
in the first or third quadrant in the complex ¢(-plane or the transmission coefficient T;(¢) has a pole
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in the second or fourth quadrant. As a consequence of , the poles and their multiplicities
for Ti(¢) and T,(¢) coincide and the poles and their multiplicities for 73(¢) and 7;(¢) coincide.
From Theorem b) we know that the transmission coefficients 7,(¢) and T,(¢) are even in (,
and hence the (-values corresponding to the bound states for are located symmetrically with
respect to the origin of the complex (-plane. Thus, it is convenient to describe the bound-state
poles of T;(¢) and T;(¢) in terms of the parameter X related to ¢ as in .

(b) The number of poles of T,(¢) in the upper-half complex A-plane is finite, and we use \;
for 1 < j < N to denote those distinct poles of T;(¢). Similarly, the number of poles of T;(¢) in
the lower-half complex A-plane is finite, and we use S\j for 1 < j < N to denote those distinct 5\]-
values. It is possible that 7;(¢) has no poles in the upper-half complex A-plane, in which case we
have N = 0. Similarly, it is possible that T}(¢) has no poles in the lower-half complex A-plane, in
which case we have N = 0. The multiplicity of the pole of T;(¢) at A = ); is finite, and we use
m; to denote that multiplicity. Similarly, the multiplicity of the pole of T;(¢) at A = 5\]- is finite,
and we use m; to denote that multiplicity.

(c) The bound-state information for contains the sets {\;, mj}jyzl and {Xj,mj};v:l. For
each bound state and multiplicity, we specify a bound-state normalization constant. To denote
the bound-state normalization constants, we use the double-indexed quantities cj, for 1 <j < N
and 0 < k < m; — 1 and the double-indexed quantities ¢;;, for 1 < j < Nand 0< k< m; — 1.
The construction of the complex-valued normalization constants c¢j; and ¢, for (1.6]) is similar to
the construction given in [I11, [12] of the bound-state normalization constants for. Thus, the
bound-state information for consists of the two sets given by

m;—1 N X _ _ m;—1 N
{)‘jvmj» {cirtelo }j_l ; {Aj,mj, {Citelo }j_l : (3.1)
We refer the reader to Examples 6.1 and 6.2 in [I2], where it is illustrated how the bound-state
normalization constants for constructed by using the transmission coefficients and the bound-
state dependency constants for .

(d) The bound-state information presented in can be organized by using a pair of matrix
triplets. We use the matrix triplet (A, B,C) and the matrix triplet (A, B,C) to represent the
information contained in the first and the second sets, respectively, appearing in . The
specification of the bound-state information in the form of a pair of matrix triplets is especially
convenient in the solution of the inverse scattering problem for with the help of the solution
to a Marchenko system of integral equations. The advantage of using matrix triplets to represent
the bound-state information is that it allows us to deal with any number of bound states with any
multiplicities as if we deal only with a single bound state having the multiplicity equal to 1.

The translation of the bound-state information from to the matrix triplets (A, B, C') and
(A, B, Q) is as follows. For each bound state at A = Aj for 1 < j < N with the multiplicity m;,
we form the matrix subtriplet (A;, Bj, C;) by letting

A, 10 0 0]
0 A 1 0 0
0 0 A 0 0
Aj = ) : (3.2)
0 0 0 PYIS
0 0 0 0 A
0
Bj:= 0 o Cji=[Cm—1) Cim—2) G o] (3:3)
1

Here, A; is the m; x m; square matrix in the Jordan canonical form with A; in the diagonal entries,
B is the column vector with m; components that are all zero with the exception of the last entry
being 1, and C; is the row vector with m; components containing the bound-state normalization
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constants cji for 0 < k < m; — 1 in the order indicated in (3.3). In a similar manner, for each
bound state at A = A; for 1 < j < N, we form the matrix subtriplet (A;, B;,C;) as

N 10 e 000
0 % 1 .- 0 0
_ 0 0 X -~ 0 0
Aj = . A, (3.4)
0 0 0 N1
10 0 O 0 )\J_
0
Bj = 0 s C; = [Ej(ﬁzjfl) Cj(m;—2) "°° Cj1 Ejo] . (3.5)
1

We note that A; is the m; x 7m; square matrix in the Jordan canonical form with ); in the diagonal
entries, B; is the column vector with the first /m; — 1 entries being zero and with the last entry
being 1, and C; is the row vector with m; components containing the bound-state normalization
constants ¢;j, for 0 < k < m; — 1 in the order indicated in (3.5).

By using the subtriplets (4;, B;,C;) and (A;, B;,C;) given in (3.2)-(3.5), we transform the

bound-state information from (3.1)) to the matrix triplets (A, B,C) and (A, B, C) by letting

A0 -0 0] A0 -0 0
0 Ay -+ 0 0 0 Ay -+ 0 0
A= |0 A e e (36)
0 0 -+ Ay O 0 0 -+ Ay, O
0 0 -+ 0 Ay [0 0 0 Ay
By ] 5;1
By _ By
Bi=| .|, B:= : (3.7)
By | | By
C = [Cl 02 CN] 5 C = [Cl 02 e C’N] . (38)

We remark that the matrices A, B, C, A, B, C each are block matrices, and the zeros in ([3.6)
denote the zero matrices of appropriate matrix sizes. The matrix size of A is N x N and the
matrix size of A is N x N, where we have defined

N N
N = ij, ./\7 = ij. (39)
j=1 j=1

The matrices B and B are column vectors with A and A components, respectively. Similarly, the
matrices C' and C are row vectors with N' and N components, respectively.

4. THE MARCHENKO METHOD

In this section we present the Marchenko method [B] 26] for by deriving the corresponding
Marchenko system of linear integral equations. In the Marchenko method, the potentials ¢ and
r are recovered from the input scattering data set consisting of the scattering coefficients and
the bound-state information. The input is used to construct the kernel in the Marchenko system
of linear integral equations as well as the nonhomogeneous term in the Marchenko system. The
potentials and all other relevant quantities associated with are then recovered from the
solution to the Marchenko system.

In the next theorem, we present the derivation of the Marchenko system of integral equations
for in the absence of bound states.
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Theorem 4.1. Assume that the potentials ¢ and r in (1.6) belong to the Schwartz class S(R) in
x € R. In the absence of bound states, the Marchenko system of linear integral equations for (|1.6)
18

[0 0] _ {I_ﬁ(ﬂc,y) Kl(x,y)] L]0 R(x +y)
00 K (z,y) Ka(z,y) R(z+y) 0

+/OOdZ [—iK1($,Z)R’(z+y) Kl(x7z)]f2(z+y)

(4.1)

1>

) x<y’

K2(x7Z)R(Z+y) zf(z(x,z)R’(z—ky)

where R(y) and ﬁ(y) are related to the reflection coefficients R(C) and R(¢) for (1.6) via the
Fourier transforms given by

> L 1 > R(C) Ay 5 L 1 o R(C) —iAY
R(y) :== %/ dATeA , R(y):= %/_m d)\Te = (4.2)

with R’(y) and é’(y) denoting the derivatives of R(y) and é(y), respectively, and A being the
parameter related to ¢ as in (2.7). The quantities Ki(z,y), Ka(z,y), Ki(z,y), and Kz(z,y) are
related to the components of the Jost solutions ¥((,x) and ¥ ((,x) appearing in (2.1)) as

— 00

Ki(z,y) == % /_O; dA[W}e—W, (4.3)
Ka(z,y) == % [ O:O aA[ia(C @) — e, (4.4)
Ki(z,y) = % /Z dA [%%(C, ) — e*”"”} e, (4.5)
Ro(w,y) = % /_ o; dx[d’?(g’“’)}ew, (4.6)

with E(x) and p being the quantities defined in and , respectively.

Proof. For notational simplicity in the derivation of 7 we suppress the arguments and write
Y for (¢, ), ¥ for Y(¢, ), ¢ for ¢(¢,x), ¢ for ¢(¢,x), T, for T,(¢), T, for T,(¢), R for R(¢), R
for R(¢), and E for E(z). From the asymptotics in and we see that the column-vector
Jost solutions 1 and 1) to are linearly independent, and hence those four column-vector
solutions form a fundamental set of column-vector solutions to . Thus, each of the other two
column-vector Jost solutions ¢ and ¢ can be expressed as linear combinations of 1 and ). With

the help of (2.3]), (2.4), (2.33)), and (2.34), for ( € R we obtain

- R
iﬂ)Jril/f,

or equivalently

o (4.7)

T:¢ = Rip + 1,
which forms a basis for our Riemann—Hilbert problem. The solution to the Riemann—Hilbert
problem consists of the construction of the Jost solutions from the knowledge of the scattering
coefficients T}, T,, R, R appearing as coefficients in . We derive our Marchenko system of
integral equations starting from by proceeding as follows. We first combine the two column-
vector equations in and obtain the 2 x 2 matrix-valued system given by

[Tr¢ To)=[v @]+ [Ry Ry]. (4.8)
Using and , we write as
l:Tr é1 Tr@} _ ['l/_)l 1/11} i {Rﬂh RJH} (4.9)
Ty g2 Ti¢2 Y2 Yo Rvo  Ripo|” '
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/2 p—1
Premultiplying both sides of (4.9)) by the 2 x 2 matrix [e OE ﬂ , we obtain
l:eip,/QElTr (bl 6i“/2E_1Tr(Z_51:| B |:6”L/2El'l/_)1 eip/2E1w1:|
T T o
b2 P2 .1/12 111.2 B (4.10)
N |:€“L/2E1R¢1 61#/2E_1R1/}1:|
Ry Rip, '
—iAx

Subtracting the 2 x 2 matrix 0

diagonal entries by ¢ in the resulting matrix equality, we obtain

63\4 from each side of (4.10) and then dividing the off-

e”‘/QE_lTrqSl _ e~ e‘z/iE—1Tr¢gl B eiu/QE—l@ _ e~ e"z/?E—lwl
LT16s T,y — Lo G — e oy
ei;A/ZE—lRwl ME_IR’(ZH '

LRy, Ris
Next, we take the Fourier transform of ({@.I1)) with [ dAe*¥/27 in the first columns and with
ffo d\e™"™Y /27 in the second columns. This yields the 2 x 2 matrix-valued equation

LHS = K(z,y) + RHS, (4.12)
where we have defined 2 (.y) .9)
L [gl xr,y Kl z,y

K= o) k) (4.13)

with the entries K (x,y), Ka(z,v), Ki(x,y), and Ky(x,y) are as in ([£.3)-(4.6), respectively. In
(4.12) we have

s = [{lien Liiow) (119
R el (415)

with the matrix entries in and defined as
LHS,; := /O:O % {% T.(C) d1(C, ) — e*m} e, (4.16)
LHS,, = /_ O:o ;ii[g%:rr(g)q‘sl(g,x)}e-”y, (4.17)
LHS, = /_Z % [% T, (C) éa(C, x)} e, (4.18)
LHS,, = [ o; %[Tr(g)@(g,x) feﬂe*i*y, (4.19)
RHS,; = [ O:o ;ii[eEzf) R(Q)vn (¢, )|, (4.20)
RHS 5 := /_ Z %[ ;;(/;)R(g)&l(g,x)}e—i*y, (4.21)
RHSy; :— /_ o; s [% R(C) a(C.)] e, (4.22)
RHSs := [ O; %[E(g)@(g,z)}e*w (4.23)

In the absence of bound states, when z < y the integrands in (4.3) and re analytic in
A € Ct, are continuous in A € CT, and behave as e*(¥=2)0O(1/\) as A — oo in C*+. Similarly, in
the absence of bound states, when x < y the integrands in (4.5) and (4.6) are analytic in A € C—,
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are continuous in A € C—, and behave as e=*¥=2)O(1/)) as A — oo in C—. Thus, from Jordan’s
lemma it follows that the matrix K(z,y) defined in is equal to zero when = > y. On the
other hand, in the absence of bound states, when = < y with the help of Theorems and
we observe that the integrands in and are analytic in A € CT, are continuous
in A € C*, and behave uniformly as O(1/)\) as A — oo in CT. Similarly, when = < y, with
the help of Theorems and we observe that the integrands in and are
analytic in A € C~, continuous in A € C—, and behave as O(1/)) as A — oo in C-. Hence,
when = < y, using Jordan’s lemma and the residue theorem, we conclude that the matrix LHS
defined in is zero. In fact, from the continuity of the Jost solutions stated in Theorem [2.1}
the continuity and asymptotic properties of the scattering coefficients stated in Theorem [2.7} the
large ¢-asymptotics of the Jost solutions stated in Theorems [2.4] we observe that each integrand

in (4.3)—(4.6) and (4.16)-(#.23)) is continuous in A € R and behaves as O(1/A) as A — 4co. Thus,
the L?-Fourier transforms in (4.3)—(4.6) and (4.16)—(4.23) are all well defined. Using the inverse
1»

Fourier transform, from (4.3])— we obtain
62';L/2 oo N
Fmen= [ EEge, (120
va(C.) = et [ dy Ko g)e™, (425)
e —iAz o —iA
o= [ a R pe . (126)
1- e _ .
Fhalc.) = [ dyRafa)e . (427)
Form (4.2)), by using the inverse Fourier transform we have
R o - , R SN .
éo :/ ds R(s)e™ ™, EO :/ ds R(s)e™s. (4.28)
Taking the y-derivatives, from (4.2)) we obtain
A i = R(Q) | i D i = R(O) | —in
R(y) = — dX —X e, R'(y) = —— AN —== e "V, 4.29
=5 [ aTehed Ru)= -5 [ o (129)
Using the inverse Fourier transform, from (4.29) we obtain
R A e R * . ;
(f))\ = —i/ ds R'(s)e™™, EC) A= z/ ds R'(s)e™*. (4.30)

Next, we take the Fourier transform of each component of the matrix RHS appearing in (4.15)).
For this, we first write (4.20) in an equivalent form, i.e.

AN 4y, [ €2 R(¢)
HSy; = —e —=2 ). 4.31
RHS1 /,OO o ¢ (CE(x)d)l(C’x))( ¢ ) (4.31)
Then, using (4.24) and the first equality of (4.30) on the right-hand side of (4.31]), we obtain
RHS; = —i/ dz Kyi(x,2)R (2 + y), (4.32)

where we have used the fact that Kj(z,z) vanishes when = > z. Similarly, we write (4.23]) in an
equivalent form as

_ < dA —iy [ —ipn/2 1/;2(C,-T) R(C)
Ritsy = [ ghem (el o D) (B ). (439
Then, using (4.27) and the second equality of (4.30]) on the right-hand side of (4.33]), we obtain

RHS,» — i / A=K (2, )R (= + 1), (4.34)
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where we have used the fact that Ks(z,z) vanishes when = > 2. Proceeding in a similar manner,
by using (4.25)), (4.26)), and (4.28)), we write (4.21) and (4.22), respectively, as

RHS1» = Bz +y) + / dz Ky (2, 2)R(z + 1), (4.35)

RHS,, = R(z +y) + /OO dz Ko(z,2)R(z +v). (4.36)

Hence, using (4.32)), (4.34), (4.35)), and (4.36) in (4.12)), we observe that RHS is equal to the sum
of the second and third terms on the right-hand side of (4.1). Thus, the proof is complete. O

When has bound states, the only modification needed in the proof of Theorem is that
the quantity LHS appearing in is no longer equal to the zero matrix because of that we
must take into account the bound-state poles of the transmission coefficients 7;(¢) and T,(¢) in
evaluating the integrals in (£.16)—(4.19). Those integrals, after using the poles of T}(¢) and T;()
and the bound-state dependency constants for , can be explicitly evaluated and the results can
be expressed in terms of the matrix triplets (4, B, C) and (A, B, C) appearing in (3.6)~(3.8). This
yields the Marchenko system of integral equations presented in the next theorem in the presence
of bound states for . The proof of the theorem is analogous to the proof of [I3, Theorem 4.2]
involving the derivation of the Marchenko system for in the presence of bound states. Hence,
we omit the proof. In order to present the Marchenko system of integral equations for in the
presence of bound states, we introduce the 2 x 2 matrix-valued quantities Q(y) and Q(y) as

Qy) = R(y) + Ce B, Q(y) .= Rly) + Ce " WE, (4.37)

where we use ¢4 and e~*4% to denote the corresponding matrix exponentials. By taking the
y-derivative of the two matrix equalities in (4.37)), we obtain

Qy) = B (y) +iCAYB, Q' (y) = R (y) — iCAe "B, (4.38)

Theorem 4.2. Assume that the potentials g and r in (1.6) belong to the Schwartz class S(R)
inx €R. Let (A,B,C) and (A, B,C) be the pair of matrix triplets representing the bound-state
information for (L.6)). In the presence of bound states, the Marchenko system for (1.6 is given by

R R R A

o —iKy (2, 2) V(2 +y) Ki(z,2)Qz+y)
S A (A A Ll AR | IR

)

(4.39)

where Q(y), Qy), V(y), Y (y) are the quantities appearing in (4.37) and ([E38), and Ky (x,y),

Ks(z,y), Ki(z,y), Ko(x,y) are the quantities appearing in ([.3)—(4.6)), respectively.

Using the four equalities arising from the four entries in (4.39)), we write the Marchenko system
as a coupled system of four integral equations holding for x < y as

Ki(z,y) —i/oo dz Ki(x,2)Q (2 +y) =0,
Kl(x,y)+Q(x+y>+/Oodzf?1(x,z)@(z+y)=0,
- (4.40)
K2($7y)+§2(x+y)+/ dz Ko(z,2) Uz +y) =0,

o0

Ka(x,y) —|—i/ dz Ka(z,2)Q (2 +y) = 0.

x
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We can uncouple the Marchenko system (4.40) by using the first line in the second equality and
by using the fourth line in the third equality. We obtain

Ki(z,y) + Qz +vy) Jri/ dz Kq(z, 2) /OO dsQ(z+5)Qs +y) =0,
2 . (4.41)
Ky(z,y) + Q(z +v) —i/ dzf(g(x,z)/ dsQ(z+5) Qs +y) =0,

o0

and

Ki(z,y) = i/oo dz Ky (z,2) Y (2 +y),
= (4.42)
Ko(z,y) = —i/ dz Ko(z,2)Y (2 + y),

where it is understood that we first solve the two uncoupled integral equations given in and
obtain Ki(z,y) and Ks(z,y) and then use those values in the integrands in and recover
Ky (z,y) and Ks(z,y). B )

In the next theorem, we relate the quantities Ki(x,z), Ki(z,z), Ka(z,z), Ko(x,2) obtained
from the solution K(z, y) to the Marchenko system to some quantities related to the potential

pair (g, r) in (L.6).

Theorem 4.3. Suppose that the potentials g and r appearing in (1.6) belong to the Schwartz class
S(R) in x € R. Let K(z,y) be the solution to the Marchenko system (4.39)), with the components
Ki(z,y), Ka(z,y), Ki(z,y), Ka(z,y) as in (£.13)). In the limit y — T we have

Ki(z,z) = —ei;p ;((J;)), (4.43)

A R L / " dyaly) '), (449
/ dyq(y (4.45)

Koz, 7) = _e—;m r(z) E(x), (4.46)

where E(x) and p are the quantities defined in (1.11) and (1.13), respectively, and for notational
s_zmplzczty we use Kl(!E,.'IJ), Kg(.’L‘,.’L'), K1($,$)7 K2($7.'IJ) fOT’ K1($7$+); K2($,$+), K1($,$+),
Ko(x,xm), respectively.

Proof. We rewrite (4.24) as

7,,u,/2 d e
¢ } (4.47)

o= d [K
Sohca = [ 1<zy>d =
where we recall that the parameter X is related to ¢ as in . Using integration by parts in

(4.47), we obtain

e 2y (¢, x) e 3K1(z Y)
— " = K dy D 4.48
s e o, (1.45)
where we have used K (z,400) = 0. Letting A — oo in C+, from (4.48) we obtain
eiu/le (C .T) ei/\ac
— ' =K o 4.49
CE(z) (@) =5+ (,\2) (4.49)
Using the large (-asymptotics of ¥ (¢, z) given in (2.23) on the left-hand side of (4.49)), we have
e/ (1) 1 Ki(z,x)e —
cc — 2\ HE in C+
e {m +O</\2)] = +O( 5), A—o0inCT. (4.50)

A comparison of the O(1/\)-terms on both sides of (4.50) yields (4.43). The equalities (4.44)—
(4.46)) are obtained in a similar manner. O
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In the next theorem, we show how to recover the quantity E(x), the potential pair (g,r), and
the Jost solutions ¢(¢,x) and (¢, z) to (L.6) from the solution K(z,y) to the Marchenko system
@39).

Theorem 4.4. Assume that the potentials ¢ and r in (1.6) belong to the Schwartz class S(R) in
v € R. The quantity E(x) in (L.11), the constant p in (1.13)), the potential pair (q,7), and the
Jost solutions ¥(¢,z) and (¢, x) to (1.6) are recovered from the solution K(x,y) to the Marchenko

system (4.39) as follows:
o0

(a) We have
E(z) =exp (21/ dz P(z)), uw= 4/ dz P(z), (4.51)

—00 — 00

T

where P(x) is the scalar quantity constructed from Ky(x,y) and Ko(x,y) as

P(z) = Ky(z,2)Ka(z, 7). (4.52)

(b) The potential pair (q,r) is recovered as
q(x) = —2K;(z,x) exp ( — 27 /OO dz P(z)), (4.53)
r(r) = —2Ks(z, ) exp <2i /OO dz P(z)) (4.54)

(c) The Jost solutions (¢, x) and (¢, ) to are recovered as

1(¢x) = ((/:O dy Kl(x,y)ei<2y> exp ( — 27 /:O dz P(z)), (4.55)

¢2<C7$> = eiCZx + /oo dy K2($7y)eiC2ya (456)
1(¢z) = (eﬂf% + /00 dy K1 (z, y)e_i<2y> exp ( — 21 /00 dz P(z)), (4.57)
Ga(C.x) = [ dyFalwg)e <, (4.58)

where we recall that ¥1(C,x), ¥a2(C,x), ¥1(¢,x), and ¥o(,x) are the components of the Jost
solutions defined in (2.1)).

Proof. Using (4.43) and (4.46]), we observe that the auxiliary scalar quantity P(z) defined in (4.52)
is expressed in terms of the potential pair (q,r) as

P(r) = L0r@). (4.59)

Hence, with the help of (1.11)), (4.52), and (#.59) we obtain the first equality of (4.51)). Using
4.59) in ((1.13]), we obtain the second equality of (4.51). Thus, the proof of (a) is complete. Using

4.51)) in (4.43)), we recover the potential ¢ as in (4.53)). Similarly, using in , we recover
the potential r as in . Hence, the proof of (b) is also complete. We obtain the expressions
for the components of the Jost solutions ¥(¢, z) and 9(¢, z) listed in (4.55)—(4.58)), by using
in 7, respectively. U

5. SOLUTIONS TO THE CHEN-LEE-LIU SYSTEM

In Section 4| we presented the solution to the inverse scattering problem for by using the
Marchenko method. This has been done by using the data set {R(¢), R(¢), (4, B,C), (A, B,C)} as
input to the Marchenko system (4.39) and by recovering the potential pair (¢, r) from the solution
K(z,y) to , as described i and with the quantity P(x) expressed as in .
If we use the time-evolved version of our input data set, via the Marchenko method we recover the
time-evolved potential pair (¢,r). From the inverse scattering method [21] [24] we know that the
time-evolved potentials ¢(x, t) and 7(z,t) form a solution to the integrable nonlinear system (L.1)).
In this section, since we deal with the time-evolved quantities, we show the explicit t-dependence
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in our notation for the potentials, the scattering coefficients, and the solution to the Marchenko
system.

In the next theorem, we provide the time evolution of the scattering coefficients for and
the matrices C' and C' appearing in the matrix triplets (A, B,C) and (A, B,C) used to describe
the bound-state information.

Theorem 5.1. Assume that the potentials ¢ and r appearing in belong to the Schwartz class
S(R) in x € R for each fized t € R. Let the time evolution of the potentials q¢ and r be governed
by the AKNS pair matriz T in . We have the following:

(a) The four reflection coefficients R((,t), R(C,t), L(¢,t), L(¢,t) for evolve in the time
variable t as

R(C,t) = R(C,0) e R(¢,t) = R((,0)e*Nt, AeR, teR, (5.1)
L(C,t) = L(¢,0) e *¥t L(C,t) = L(¢,0)e**, XeR, teR,
where we recall that the parameter X is related to the spectral parameter ¢ as in 12.7).
(b) The four transmission coefficients T\((,t), T,(¢,t), Ti(¢,t), T(¢,t) do not change in time,
and hence we have
(¢ t) = T(¢,0),  Th(¢,t) = Th(¢,0),  Ti(¢,t) = Ti(¢,0),  Ti(( 1) = Tx(¢,0).
Since the transmission coefficients do not change in time, for notational simplicity we use Ti(C),

T.(¢), Ti(¢), and T(¢) for Tlgg,t), Z}(C,t), Ti(¢,t), and Ty(C,t), respectively.

(¢c) The four matrices A, A, B, B appearing in (3.6) and (3.7) do not change in time. On the
other hand, the matrices C and C' appearing in (3.8]) evolve in time as

C s ChiNt Oy Ce4iAt (5.2)
where, for notational simplicity, we use C and C to denote their values at t = 0.

Proof. The proof of (a)—(c) for the linear system (1.9) can be found in [I3, Theorem 2.1}, and the

corresponding proof for (1.6) is similarly obtained. O
With the help of (5.1)), we obtain the time evolution of R(y,t) and é(y, t) defined in (4.2)) as
. 1 [ R(0) , . N 1 [ R0 , ,
R(y,t) = —/ d/\ﬁe‘“)‘zte”‘y, R(y,t) = —/ d)\Me_‘“)‘zte_’)‘y. (5.3)
o )¢ o )¢

Next, using and in we obtain the time-evolved Marchenko kernels Q(y,t) and
Qy,t) as

Q(y,t) = R(y,t) + Cetit’teidup, Qy,t) = Ii%(y, t)+ Ce4id’to—idyp (5.4)
We remark on the symmetry and elegance in the connection between and . The scalar
term 4N’ teidy appearing in the integrand in the first equality of suggests the appearance
of the matrix exponential e4A’teiAY i the first equality of . When there is a simple bound
state at A = A; of multiplicity 1, the eigenvalue of A and the matrix A coincide. Thus, the
scalar \ appearing in e*** e in the first equality of is naturally replaced by the matrix
A in %414y in the first equality of (5-4). In a similar manner, the scalar term e~4iN*to—idy
appearing in the integrand in the second equality of suggests the appearance of the matrix
exponential e~4i4% =4y in the second equality of . When there is a simple bound state
at A = 5\]- of multiplicity 1, the eigenvalue of A and the matrix A coincide. Thus, the scalar A
appearing in e~4iX’te=iNy i the second equality of is naturally replaced by the matrix A in
6741',42:&671'@_

In the reflectionless case, i.e. when the reflection coefficients for are all zero, there are
various restrictions on the bound-state information presented in . Hence, in the reflectionless
case, there are restrictions on the matrix triplets (4, B,C) and (A, B, C_’) appearing in 7.
We refer the reader to Theorem 4.3 of [I3] for the restrictions on the bound-state information
for in the reflectionless case. Since the transmission coefficients for and for are
related to each other as in and , the restrictions on the bound-state information for
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in the reflectionless case can be obtained from the corresponding restrictions for . For
example in the reﬂectlonless case we must have A' = N, where N and N are the nonnegatlve
integer quantities defined in (3.9). In the reflectionless case, with the help of (4.40) of [13] and
([2:40), we obtain the restriction that the transmission coefficients 7}(¢) and T;(¢) for have
to be related to each other as

T.(O)T:(¢) =e ™/, X€eR, (5.5)

where we recall that A\ and ( are related to each other as in and g is the constant appearing
in (LI3). In that case, the transmission coefficients 7;(¢) and T,(¢) each have meromorphic
extensmns to the entire complex A-plane, and hence the bound-state \A;-values and )\ -values
become restricted. Such restrictions must be taken into account in con51der1ng the analy51s of
solutions to the linear system and the nonlinear system in the reflectionless case.

In the reflectionless case, from we obtain

Qy,t) = Cetit’teidup, Qy,t) = Ce4id’te—idyp (5.6)
In the next theorem, in the reflectionless case without imposing any of the restrictions on the

matrix triplets, we obtain the solution to the Marchenko system in terms of the matrix
triplets (A, B,C) and (A, B, C) with the help of the input {Q(y, ),Q( t)} given in ([5.4)).

Theorem 5.2. Assume that the potential pair (q,r) appearing in (1.6 belongs to the Schwartz
class S(R) in x € R for each fized t € R, where the time evolution of the potential pair is governed
by the AKNS pair matriz T given in (1.5). Then, in the reflectionless case, the solution K(x,y,t)

to the Marchenko system (4.39)) is

Ky(z,y,t) = —C’e*“ﬁf‘(x,t)*le*my*‘lmgtB, (5.7)
Ki(z,y,t) = Cfe—iﬁxf(aj?t)—le—iﬁx—4iﬁ2tMAeiA(x+y)+4iA2t B, (5.8)
Ko(z,y,t) = CeiAn I(z, t)71eiAm+4iA2tMAefiA(x+y)741'1421537 (5.9)
Ko(z,y,t) = —Ce™ A T(z, 1)~ leiAvtid’t g, (5.10)

where Ki(z,y,t), Ko(z,y,t), Ki(z,y,t), Ko(x,y,t) are the entries of IC(m y, ) appearing in
@13). The 2 x 2 matriz-valued functions T'(z,t) and T'(x,t) appearing . are expressed
in terms of the matriz triplets (A, B,C) and (A, B,C) as

T(z,t) =1 — piAT+4iA tMAe—2iAw—4iA2tMeiAm7 (5.11)
f‘(ac,t) —J_ e—iﬁm—4iﬁ2tMAe2iAm+4iA2tMe—iﬁx7 (5.12)

with I denoting the 2 x 2 identity matriz and the quantities M and Z\:4 being the 2 x 2 matriz-valued
constants expressed in terms of the matriz triplets (A, B,C) and (A, B,C) as

M ::/ dze'* BCe™ 4% M :z/ dze "A* B Ceth=. (5.13)
0 0
Proof. From (j5.6), by taking the y-derivatives we obtain
Q' (y,t) = iC’AeZ“'AQtemyB7 A (y,t) = —iC’[lefﬁhAQte*myB (5.14)

where the prime is used to denote the y-derivative. Using 1- ) and (5.14]) in the uncoupled system
we recover Ki(z,y,t) and Ky(z,y,t) listed in (5.7) and , respectlvely We then use (5.7)) in
the integrand in the first line of and use ((5.10)) in the integrand in the second line o
and recover Ki(z,y,t) and Ky(z,y,t) given in (5.8) and , respectively. Since the process is
similar to the proof of [12, Theorem 5.4], we omit the details. We remark that since the eigenvalues
of A are all located in the upper-half complex A-plane and the eigenvalues of A are all located in
the lower-half complex A-plane, the two integrals in both exist. O

In the next theorem, we recover the potential pair (¢,7) appearing in (L.6]) in terms of the
matrix triplets (A4, B, C) and (A, B, C) in the reflectionless case.
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Theorem 5.3. Assume that the potential pair (q,r) appearing in belong to the Schwartz
class S(R) in x € R for each fized t € R, where the time evolution of the potential pair is governed
by the matriz T in (L5). Let the quantities Q(y,t) and Q(y,t) be the time-evolved reflectionless
Marchenko kernels defined in . Then, we have the following:

(a) The corresponding key quantity E(x,t) defined in can explicitly be written in terms
of the matriz triplets (A, B,C) and (A, B,C) as

x

E(z,1) = exp (21/ dzP(z,t)>, (5.15)

— 00

where P(x,t) is the scalar-valued function of x and t defined in (£52) with Ki(z,x,t) and
Ko(x,x,t) there explicitly expressed in terms of the matriz triplets as

Ki(z,z,t) = —C_'e_mxf‘(x,t)_le_mx_‘lm?té, (5.16)
Ko(z,z,t) = —Ce M I'(x, t)flem“”‘im% B. (5.17)

The 2 x 2 matriz-valued quantity T'(x,t) in (5.11)) is ewplicitly determined by the matriz triplets
(A,B,C) and (A, B,C) as described in (.16). Similarly, the 2 x 2 matriz-valued quantity I'(z,t)
in (5.12) is explicitly determined by the matriz triplets (A, B,C) and (A, B,C) as described in
(5.17).

(b) The corresponding potential pair (q,7) appearing in the linear system (L.6]) can explicitly be
expressed in terms of the matriz triplets (A, B,C) and (A, B,C) as

q(z,t) = (2@e_igrf(x,t)_le_iA””_MAZtB) exp ( - 2i/ dz P(z,t)), (5.18)

o0
r(z,t) = (ZCeiA” F(m,t)_lemx""lmzt B) exp (22/ dz P(z,t)). (5.19)
x
Proof. We get (5.16) and (5.17)) from (5.7) and (5.10)), respectively, by letting y — 2+ there. Thus,

we obtain (5.15]) from the first equality of (4.51) with the help of (4.52)) by using (5.16)) and (5.17))
on the right-hand side of (4.52)). This completes the proof of (a). We obtain (5.18)) from (4.53)) by

using (5.16]) on the right-hand side of (4.53). Similarly, we obtain (5.19) by using (5.17)) on the
right-hand side of (4.54)). O

6. EXPLICIT EXAMPLES

In this section, we illustrate the solution method for the Chen-Lee-Liu system developed
in Section [5| with two explicitly solved examples.

In the first example below, we construct a one-soliton solution with multiplicity 1 as a solution
to the Chen-Lee-Liu system . This is done by solving the inverse scattering problem for
in the reflectionless case via the Marchenko method developed in Section 4} As input to the
Marchenko system we use a specific pair of matrix triplets, where we choose the size of each
of the six matrices in the triplets as 1 x 1. For notational simplicity in our example, we write a
1 x 1 matrix as a scalar quantity.

Example 6.1. In the reflectionless case, we use the matrix triplets (4, B,C) and (4, B, C) given
by

AZM? B:[l]v C:[i]’ A:[_i]’ B:[l]a C’:[_i]' (6.1)
Using (6.1)) in (5.13)), we construct the 1 x 1 constant matrices M and M as
1 - 1
L=l (62)
Next, using (6.1)) and (6.2)) in (5.11)) and (5.12]), we obtain the 1 x 1 matrices I'(z,t) and I'(z,t) as
;. —4x s —4x
F(x,t):1+w4 : f(x)=1—w4 (6.3)
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Then, we use (6.1) and (6.3) in (5.16)) and (5.17) and construct the scalar quantities K;(x,,t)

and K (z,z,t), respectively, and we obtain

4e2w+4it _ 462w74it
K t)y=——, K t)=———. 4
@ t) =~ Kot =—7—Fg (64)
Next, using (6.4]) in (4.52)) we obtain the quantity P(z,t) as
16e4*
P(z,t) = ————. .
(@) = T3 1ge8 (6.5)

Finally, we use (6.4) and (6.5 in (4.51)), (4.53)), (4.54), and we recover the quantity E(x,t), the
constant u, and the potentials ¢(z,t) and r(z,t) as

Ba,t) = 2 tan 1 (4¥) ) —op (6.6)
Qe2rH4it+2i tan~ " (4e7) .1 Qe2e—4it—2i tan™" (4¢7)
r(z,t) =
1+ dietr ’ ’ 1 — die* ’
From ([6.7) we observe that the potentials q(z,t) and r(z,t) satisfy

T(Z‘,t) = q(.’L‘7t)*,

where we use an asterisk to denote complex conjugation. From we also see that the potentials
q(z,t) and r(z,t) have no singularities and they belong to the Schwartz class S(R) in « for each
fixed ¢t € R. Since the 1 x 1 matrices A and A in the input data set correspond to the poles
of T(¢) and T;(¢) in the upper-half and lower-half complex A-planes, respectively, with the help
of we determine those two right transmission coefficients as
A+ - A—i
T.(¢) = 5 L =33 A€C

A—1

Q(x’t) =

zeR, teR. (6.7)

where the value of p appearing in the second equality in is taken into account and we recall
that the parameter A is related to the spectral parameter ¢ as in . In this example, as seen
from the first equality of (6.6)), the quantity E(x,t) is independent of ¢ even though the potentials
q(z,t) and r(z,t) given in contain the parameter t. On the other hand, the quantities |g(z, t)]
and |r(z,t)| do not change in ¢. Since ¢(z,t) and r(z,t) are complex valued, in Figure [1| we have
plotted |g(z,t)| and |r(x,t)| as functions of z. From we have |r(z,t)| = |g(z,t)| for all z € R
and ¢t € R. Hence, in this example, the soliton represented by |q(z,t)| or |r(z,t)| does not move
in time.

la(x, ) 1r(x, )]
4 4

-6 -4 -2 0 2 4 2 4

FIGURE 1. Snapshots for |¢(z,t)| and |r(x,t)| in Example [6.1] corresponding to
the input data set in (6.1)).

In the next example, we illustrate a double-pole soliton solution to . As in Example
this is done by solving the inverse scattering problem for (|1.6) in the reflectionless case via the
Marchenko method. As input to the Marchenko system q& , we use a pair of matrix triplets
with the 2 x 2 matrices A and A presented in their Jordan canonical forms.
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Example 6.2. In the reflectionless case, we choose the input data set to the Marchenko system
as

A[é ﬂ Bm, c=Tli 1], A[‘Oi _11}, Bm, C=[-i 1. (68)

We recover the potential pair (¢,7) in terms of the matrix triplets (A, B,C) and (A,B,C) as
follows. Using in (5.13)), we construct the 2 x 2 constant matrices M and M as

1 _

M:[_g ?}, M:{ ?]. (6.9)
2 1 1

Then, using and in (5.11)) and (5.12)), we obtain the 2 x 2 matrices I'(x,t) and T'(z, 1),

respectively, as

[SIERNE

Iy Tl = I'f Fikz}
[(x) = , D)=Lt 12 6.10
@ =[R2 = [m gk (6.10)
where we have defined
—4x
Piy o= 14 S (i 8 (ia? — dat + 6t + 32it%) ).
6—437
Tz = — (—1+42® — 8z® — 128t%(—1 + 2z) — 32it(z — 1°)),
e—4ac
F21 = T (—1 + 2z — Slt) 5
e—4x
[op =1+ (i(3 — 8z + 827%) 4+ 16t(—1 + 22)) ,

16
and we recall that an asterisk denotes complex conjugation. Having constructed the matrices
['(z,t) and T'(z,t), we use (6.8) and (6.10) in (5.16) and (5.17), and we obtain K;(z,x,t) and
Ks(z, z,t), respectively, as

32 2z+4it (_ 48 4x 2ix — i + 8t) — 4it
Koo,z t) = 20 (o4 Bel Qi — i 8 —dif) (6.11)
32e47 (1 — 4 + 822 + 12812 + 16it) — i + 256757

_ 32e2 4 (—gz 4 8e!® (—2iw + i + 8t) + 4it)

K. t) = . 6.12
2(2,01) = o5 T (T~ 4w + 827 1 128%% — 16) T 1 — 256ic™ (6.12)
Next, we use (6.11) and (6.12)) in , and we obtain the quantity P(zx,t) as
1024e%* T
P(z,t) = —— 191 (6.13)

W W3
where we have defined
wy =iz — 4t — 8ie*™ (—i + 8t + 2i x),
Wy 1= —1 + 256e% — 32ie™” (1 — 4z + 82° + 164t + 128¢%) .
From (6.13)) we observe that the quantity P(z,t) is real valued for all z € R and ¢t € R. Finally,

using (6.11)), (6.12), and (6.13) in (4.51), (4.53)), and (4.54), we recover the quantity E(z,t), the
constant u, and the potentials ¢(z,t) and r(z,t) as

E(x,t) = exp ( -2 tanfl(wg/wzl)), =4, (6.14)
64
q(z,t) = — w1 exp (2:1: + 4it — 24 tan_l(w3/w4)), reR, teR, (6.15)
w2
r(z,t) = q(z,t)*, zeR, teR, (6.16)

where we have defined
wy = 32e"" (1 — 4z + 82% + 128t%),  wy 1= —1 4 256€>* + 512¢*"¢.
From (6.15)) and (6.16)) we observe that the potentials ¢(z,t) and r(z,t) satisfy |r(z,t)| = |q(z,1)]

and they each belong to the Schwartz class S(R) in x for ¢t € R. We also see from (6.14) that the
quantity F(z,t) depends on ¢, whereas in Example the quantity E(x,t) given in does
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not depend on t. The eigenvalues of the 2 x 2 matrices A and A correspond to the poles of T; ()
and T,(¢) in the upper-half and lower-half complex A-planes, respectively. Hence, with the help
of (5.5) we see that those two right transmission coefficients are given by

i\ 2 N2
nO=(35), To=(5-) rec (617)
where the value of p listed in the second equality of is taken into account and we recall
that the parameters A and ( are related to each other as in . As seen from , each
transmission coefficient has a double pole. Since ¢(z,t) is complex valued and |r(z,t)| = |¢(x, )],
we only discuss the time evolution of |¢(x,t)|. In Figure [2| we show the snapshots for |q(x,t)| at
t=-5t=-02,t=0,t=0.1,¢t=0.2 and t = 5, respectively. As seen from Figure [2] there
are two solitons that are initially far apart. They move toward each other and a Mathematica
animation shows that their speeds increase as they get closer. Then, the two solitons interact with
each other nonlinearly, and then they move away from each other. As they move away from each
other, they regain their individual shapes.

1q(x, -5) 1qx, 0.2)1 14(x, 0)
4 4 4

3

2 2 2

1 1 1
0 2 4 -6 -4 -2 -4 -2 0

0 2 4 -6

&
IS
Y

19(x, 0.1) 19(x, 0.2) 19(x. 5)
) 4 4

MO N

3
2
1
0 2 4 -6 -4 -2 0 2 4

&
IS

-2

FIGURE 2. Snapshots for |g(z,t)| in Example att = =5, t = —0.2,t = 0,
t=0.1,t = 0.2, and ¢t = 5, respectively.

In the reflectionless case, we have prepared a Mathematica notebook that allows the user
to input the entries of the two matrix triplets corresponding to any number of bound states
with any multiplicities. By using the method of Section [5] our Mathematica notebook evaluates
all the relevant quantities and yields the output including the scalar quantity E(z,t) in ,
the constant p in , the potentials ¢(x,t) and r(z,t) appearing in and , and the
transmission coefficients 7,(¢) and 7,(¢) appearing in (5.5). Our Mathematica notebook also
allows the user to animate |g(x,t)| and |r(x,t)| to observe the time evolution of soliton solutions
to corresponding to any number of bound states and any number of multiplicities.

The advantage of using matrix exponentials in expressing explicit solutions to becomes
clear as the number of bound states or their multiplicities become large. As seen from
and (5.19), the potentials g(x,t) and r(z,t) are expressed in a compact form with the help of
matrix exponentials constructed by using a pair of matrix triplets. By “unpacking” those matrix
exponentials, we can express ¢(z,t) and r(z,t) in terms of elementary functions, where those
latter expressions become extremely lengthy as the number of bound states and their multiplicities
increase, whereas the compact expressions in and involving matrix exponentials and
matrix triplets remain unchanged no matter how many bound states we have and no matter how
large their multiplicities are.
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