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COMBINED EFFECTS OF CRITICAL HARDY-SOBOLEV EXPONENT AND
SINGULAR NONLINEARITIES IN NONLOCAL PROBLEMS WITH
VARIABLE WEIGHTS

SARAH ALMUTAIRI, KAMEL SAOUDI

ABSTRACT. This article studies a fractional elliptic equation that involves a critical Hardy-
Sobolev nonlinearity along with a singular term,

s _ gla)|uPs (D=2,
(=Ap)*u = Af(2)u Vi()‘# in Q,

u >0 in Q,
u=0 inRV\Q,
where  is a bounded domain in RY with a smooth boundary 9, and 0 € Q. The dimension N
satisfies N > sp, s € (0,1), A >0, 0 <y < 1, and p%(t) = p(Nf_;) represent the critical Hardy-
Sobolev exponent. The weight functions f and g are elements of L°°(2) and satisfy specific
positivity conditions, and (—Ap)%u is the fractional p-Laplacian operator. We use the method
of sub- and super-solutions combined with monotonicity arguments, to establish the existence

and nonexistence of solutions. Furthermore, we prove that any weak solution is locally Hoélder
continuous.

1. INTRODUCTION

The purpose of this article is to study a fractional equation characterized by a critical Sobolev
exponent and singular nonlinearity,

Py(t)=24,

(—A,) u = Af(z)u™ & 9() T in Q,

w>0 inQ, (1.1)

u=0 inRY\Q,

where 0 € 2 is a bounded domain in RY with a smooth boundary 92, and N > sp with s € (0,1).
The parameters satisfy A > 0 and 0 < v < 1, and the term pi(t) = pl(vj\:;)

Sobolev-Hardy exponent. The variable weight functions f and g belong to L>°(£2) and satisfy:

represents the critical

essinfyeq f(z) >0 and essinf,eqg(z) > 0. (1.2)

The fractional p-Laplacian (—A,)*u is defined for smooth functions as

Sy(m) — 91 u(z) — u(y) [P~ (u(z) — u(y))
(8} =210 fov, o — g | NFe w

where z € RY and B. is a ball of radius € centered at z.

2020 Mathematics Subject Classification. 34B15, 37C25, 35R20.

Key words and phrases. Nonlocal operator; singular nonlinearity; existence and nonexistence of solutions;
sub- and supersolutions; monotonicity arguments.

(©2025. This work is licensed under a CC BY 4.0 license.

Submitted May 12, 2025. Published October 20, 2025.

1



2 S. ALMUTAIRI, K. SAOUDI EJDE-2025/99

For clarity, we state the two versions of problem (1.1)) as follows

(—Ap)Pu=Af(x)u™" + g(:v)|u:t“)_2u in Q,
w>0 inQ, (1.3)
u=0 inRY\Q,
and .
(—Ay)°u=Af(zx)u™7 — W in ,
u>0 in Q, (1.4)

u=0 in RV \Q,
Before presenting the key results of this work, we will outline several related problems to prob-

lem (|1.1). Numerous studies have investigated solutions for elliptic partial differential equations
(PDEs) with singularity. Many authors have studied the nonlocal problem

= Az(f) + Mf(z,u) in Q,

u=0 inRY\Q,
uw>0 in ),

(~A,)%u
(1.5)

where N > ps, M > 0, and a : £ — R is a nonnegative bounded function. In the case where
M = 0, the purely singular problem was investigated by Canino et al. [6]. The authors proved that
when 0 < v < 1, problem possesses a unique solution u in the space W;* (). Additionally,
they proved that the essential infimum of u over K is greater than zero, i.e., essinfx u > 0. In
[18], variational techniques were used to establish multiple results for f(x,u) = u?~!. Using the
Nehari method, Ghanmi et al. [TT] obtained multiple results for 0 < v < 1 and A = 1. Additionally,
Alomair et al. [1] considered M = b(z) and f(z,u) = u?* !, employing sub and supersolution
methods along with monotonicity arguments to derive both existence and non-existence results.
Lastly, in Daouas et al. [§], variational methods were combined with a perturbation approach to
establish multiple results.

The study of the existence and multiplicity of solutions, as well as their regularity, for regular
PDEs involving nonlocal operators and Sobolev-Hardy nonlinearities has indeed attracted consid-
erable interest in recent years. In particular, works such as those by Chen et al. [7], Yan [24], as
well as Alotaibi et al. [2], along with the references therein, have contributed significantly to this
field. These studies have explored various aspects of nonlocal problems, particularly focusing on
the critical growth of nonlinearities and the implications of Sobolev embeddings.

It is important to highlight that research on singular PDEs with Hardy-Sobolev nonlinearities
in a fractional setting has not been as extensively developed as its classical counterpart. Although
there are foundational results for regular PDEs, such as the existence, multiplicity, and regularity
of solutions, the analysis of singular problems involving fractional operators remains compara-
tively limited. For instance, although some studies have addressed the existence of solutions
for singular fractional PDEs, key questions regarding their qualitative properties (e.g. regular-
ity, asymptotic behavior, or stability) and the optimality of functional frameworks (e.g. weighted
fractional Sobolev spaces) are far from being fully resolved. This gap presents an opportunity
for further investigation into singular nonlocal problems, particularly those combining fractional
diffusion operators (e.g. the fractional Laplacian), Hardy-type singular potentials, and critical
nonlinearities tied to fractional Sobolev embeddings.

In this article, we will explore both the existence and nonexistence of solutions to the nonlocal
problem , as well as investigate its regularity. It is essential to note that including weight
functions f(z) and g(x) in problem is significant, as they enhance the mathematical richness
of our model and broaden its applicability to real-world scenarios. For example, these weight
functions can represent varying material properties in inhomogeneous media, account for spatial
differences in resource availability in ecological contexts, and play a crucial role in optimization
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problems. By incorporating weight functions, we address new mathematical challenges and ensure
that our work remains relevant to practical applications across various fields.
Now, we outline the main results that will be established, related to problem (1.1]).

Theorem 1.1. Suppose 0 < v < 1 and that the weight functions f,g € L>=() satisfy condition
(1.2). Then, there exists a positive constant Ay with the following properties:

(1) For every A € (0,A1), problem (1.3) admits a minimal solution uy.
(2) Problem (1.3) has a solution when A = A;.

(3) Problem (1.3) has no solutions for A > A;.

Theorem 1.2. Consider 0 < v < 1 and the weight functions f,g € L>(Q) that satisfy condition
(1.2). Then, there exists a positive constant Ao such that

(1) For A > Ag, problem (1.4)) has at least one solution.
(2) For A < Ag, problem (1.4) has no solutions.

The third result concerns the regularity of weak solutions of problem (1.1).

Theorem 1.3. Suppose u is a weak positive solution to problem (1.1). Then, there exists a value
a € (0,s] such that u belongs to the Hélder space C2 () for every compactly embedded subset
0 eq.

We highlight that the analysis of problem has yielded valuable insights into fractional
elliptic equations with weight functions. It demonstrates how these weight functions can alter the
properties of solutions, affecting their existence, uniqueness, and regularity, which is crucial for
modeling situations where material properties vary. We have established new results showing that
solutions can still exhibit desirable behavior, even in the presence of singularities. Additionally,
we have refined methods for identifying sub- and super-solutions, enhancing our understanding of
how weight functions influence solutions in nonlinear contexts. The interaction between weight
functions and critical nonlinear terms has also been clarified, revealing how they can lead to
multiple solutions or impact the stability of a solution. These findings are relevant in various fields,
including materials science, biology, and finance. Looking to the future, research can explore more
complex systems with multiple weight functions, develop specific numerical methods for these
equations, investigate higher-order fractional models, and examine applications in control theory.
Overall, this work opens many new avenues for research and practical applications in different
scientific disciplines.

This manuscript is structured as follows: Section [2| provides essential foundational results that
will be utilized in subsequent sections. The proofs of Theorems and can be found in
Sections [Bland [ Section [5 addresses the regularity of weak solutions, as detailed in Theorem [I.3}

2. FUNCTIONAL FRAMEWORK AND PRELIMINARY RESULTS
In this section, we introduce key definitions, notation, and function spaces that will be used
throughout this work. We define the fractional Sobolev space as
Wy P(RY) := {u € LP(RY) : u is measurable , |ul,, < +00,u =0 a.e. onQ°}.
In addition, the homogeneous fractional Sobolev space is defined as
WeP(RY) := {u € LP(R") : u is measurable , |ul,, < +oo}.

The associated Gagliardo norm for these spaces is defined as

1/p
s )
s,p

For a comprehensive overview of the properties of the space W*?(RY) we refer to [19] and refer-
ences therein.

Now, let Q C RY and define Q = R?V \ ((RY \ Q) x (RN \ Q)). The space (X, ||.|x) is defined
as:

el 2= (Jlull + fu

X = {u:R" — R is measurable, u|o € L?(Q) and Ju(@) = uw)| €LP(Q)}

N+ps

o=yl
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equipped with the Gagliardo norm

|u(x 1/p
ol = bl + [ o deay)

Here, ||u||, denotes the LP-norm of u. We also define the subspace
={ueX:u=0ae. inRN\Q}
which is equipped with the norm

|u 1/p
= (f 5 ) =S )™

Lastly, for u € LP<(®(RY), we define the norm

|l pr (1) = (/RN

3. STUDY OF PROBLEM (|1.3)

)1/17;‘(15)

Our goal is to demonstrate the existence of solutions for specific values of the parameter A. To
start, we introduce the concept of a weak solution of problem (|L.3]).

Definition 3.1. A function uy € X, is called a weak solution of problem (1.3 if, for every test
function ¢ € X, the following conditions hold

(i) ux >0, wu,’¢e L),

(ii)

[ ) = O este) ) =06,

|z — y [N

“(1)—2
=\ “Tad g(x)|u)\ s Un d
/Qf(x)u/\ ¢ x+/sz |z[t pdz

We now present the concepts of a subsolution and a supersolution for problem (1.3]).

Definition 3.2. A function u, is defined as a weak subsolution of problem (1.3)) if it satisfies

(1) The function is strictly positive on the domain. Additionally, the term w, "¢ is integrable
on §;
(2) For every nonnegative test function ¢ € Xy,

[ o) ) () — i, 1) (D) = 60)

|z —y|NHes
A pe(t)—2
/ f(«,)¢d /9(95)|@>\| : ”dego.
Q Uy Q |z

Definition 3.3. A function @) is defined as a weak supersolution of problem (|1.3)) if it satisfies

(1) The function is strictly positive on the domain. Additionally, the term @, "¢ is integrable
on 2;
(2) For every nonnegative test function ¢ € Xy,

| ) =B 0 mee) o),
A (a) o(@)aa P2,
A e A e L

Now, we define the functional I : Xg — R as

pL ()

e A i L[ @O
B = P = 2= [ fad e - o | d. (32)

5 j[*
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Next, we introduce the critical value
Ay :=inf {)\ > 0 : problem (1.3) admits no weak solution}.
We now establish the following key result.

Lemma 3.4. For A € (0,Aq), problem (1.3) has at least one weak solution.

Proof. To demonstrate the existence of a solution for problem (|1.3]), we will construct a well-
ordered pair of functions: a weak subsolution u, and a weak supersolution wy such that the
inequality u, <y holds throughout the domain.

First, let A\; denote the principal eigenvalue of the fractional p-Laplacian operator (—A,)® in the
domain €. Specifically, A; and its corresponding eigenfunction ¢ satisfy the eigenvalue problem
(—=Ap)°¢1 = Aih(x)|1[P ¢ in Q,
¢1 >0 in €,

61 =0 inRV\Q,

where h(z) = min{f(x), g(x)}. Here, the eigenfunction ¢; is positive and belongs to L>(2). For
further details, we refer the reader to [I5].
Assume A\; < A. Define the subsolution u, = e¢;, where € > 0 is a small constant. Then

(=28p)°(wy) = M h(@)¢] ™ < AP h(2)¢l T < Ah(2)e ¢y

Since uy = e¢1, we have

Ah(z)e” < h(x)(ﬂ ePs (=1, p:(t)—2¢1)
‘15177 B (;517'7 |t
o g(@)uy P O—2u,
< )\f(m)u/\FY+ ‘xt

Thus, u, satisfies

(=Ap)%(uwy) < Af(x)uy” + 9(x)|uy

which shows that u, is a subsolution of problem (|1.3)).
Now, let h(z) = max{f(x),g(x)} and assume A\; > A. Define the supersolution @y = C¢,
where C > 0 is a sufficiently large constant. Then

(—Ap)* (@) = MCP ' h(x)g} ™" > ACP  h(z)dh ™! > Aa()C7 ;7.
Since uy = C'¢1, we have
Y Y P, (t)—1
AMDEL iy (24 ]
on K on K |z

Thus, w) satisfies

77

Ps (t)72ﬂ>\ )
Uy

pi(t)fz(bl) . h(z)( A N [T

x|t

ORI

g() [
j[*

)

(=Ap)"(Ur) = Af(x)uy” +
which proves that @y is a supersolution of problem ([1.3)).
To ensure uy < @y, we choose € > 0 small enough and C' > 0 large enough such that
epy < C¢y forall z € Q.

This holds trivially since € < C.
By the weak comparison principle (see Lemma 3.1 in Saoudi et al. [20]), we have

Uy < .

Therefore, using the classical iteration method, we conclude that problem (|1.3) admits a solution
uy that satisfies uy, < wuy <y for all A < A;. O

Lemma 3.5. For all A € (0,A1), problem (L.3)) has a minimal solution uy.
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Proof. To prove the existence of a minimal solution, we introduce the monotone iterative scheme

.
Pa(t)=2y

g(x)|un—
|z[*

(=Ap)°up — Af(x)u,” = in Q

)

un|aQ = O.

We initialize the scheme with uyp = u,, where u, is the unique solution to the purely singular
problem, as established in the work of Canino et al. [6],

(=Ay)°u=Af(x)u™ inQ,
ulpgo =0, uw>0 inQ.

According to the weak comparison principle (as detailed in Saoudi et al. [20, Lemma 3.1]), it
follows that ug is a weak subsolution to (P)y and fulfills condition uy < v, where v denotes
any weak solution of (P)y. Furthermore, applying the weak comparison principle once more,
we can demonstrate that the sequence {u,}>2; is not monotonically decreasing, which means
ug < up < ug < ---. Furthermore, since u,, < v for every n, the sequence {u,} remains uniformly
bounded in Xj.

From the monotonicity and uniform boundedness of the sequence {u,}, it follows that {u,}
converges weakly in X and pointwise to a function uy, which serves as a weak solution to (L.3)).

To establish that w) is the minimal solution, let @) represent any weak solution to r
0 < A < Ay. Since ug = uy < 4y, the weak comparison principle allows us to assert that w, <y
for all n > 0. Taking the limit as n — oo, we derive uy < w). This establishes that uy is in fact
the minimal solution to . O

Lemma 3.6. Problem (1.3) admits a solution when A\ = Aj.

Proof. Consider a sequence {\,}nen such that A, T Ay as n — oo. According to Lemma
we know that there exists a weak positive solution u, = wuy, > u, to problem (1.3) for the
corresponding parameter. Consequently, for any ¢ € C°(2), we can derive that

/ [t () — un @)1P2 (un (@) — un (1)) ($(x) — 6 (y))
Q

|z —y[ NP ey

= /Q f(@)u; " gdz + /Q g(@)lun

|z

(3.3)

Py (t)_zun

n ¢dx.

Since u,, € Xo and u, > u, , it is evident that (3.3) holds for ¢ € Xy as well. Furthermore, we

have
|un (@) — un(y)[” / . 9(@)un P2
|:E _ y‘Nstp o ( ) 0 |$C|t ( )

Q
Again, using Lemma [3.4] we deduce that

An
L=n
because u,, is a minimizer of I, over {u > u, }, and the subsolution u, is constructed to have
negative energy because of the singular term.

So, substituting Eq. (3.4) into Eq. (3.5]), we obtain
pe(t)

1 - 9()|un P>t An - 1 g(z)lun
= An T)uk 7dsc+/ dz ) — / o)utdr — / dx < 0.
p( /Qf( ) Q EdK ) L=y Qf( ) pi(t) Jo Edk

Therefore,

L[y, (2) —uy, (9)]P
I " < I —— n n d d _
)\n(u ) =4, (an) p \/Q |l‘ _y‘N-‘rb‘p ray

/ f(@)uy Vdz <0, (3.5)
Q

1_ : g(a:)|un|1’§(t) T L_l DulVdx
G pf;(t))/Q P S p)/ﬂf( Juy " de. (3.6)

Insetting (3.6) into (3.4), and using the Sobolev embedding along with the fact that f € L (Q),
we derive the inequality
-1
Junll%,”™ < Ch (3.7)



EJDE-2025/99 NONLOCAL PROBLEMS WITH VARIABLE WEIGHTS 7

where (' is a positive constant. This leads us to easily conclude that

sup||un || x, < oc.
neN

Thus, given that the space Xj is reflexive, we can assert the existence of a subsequence, still
denoted by {u,}, such that u, — uy, in Xy as n approaches co. By taking the limit of (3.3 as
n — 00, we obtain

/ |uA1 (.’1?) — UA, (y)|p_2(u/\1 (l‘) —ua, (y))((b(.%') - ¢(y)) dx dy
Q

|z — gy NP

Al/Qf(a:)uA;ngder/Qg(x”uAl odx.

We deduce that uy, is a weak solution to problem ([1.3]). O

P, (t)—2

uAl

]

We shall now prove that Aq is finite.
Lemma 3.7. Problem (1.3) has no solution if A > Aj.

Proof. We proceed by contradiction. Assume that there exists a sequence A\, — oo for which
problem (1.3)) has a solution w,. Setting

h :=min { essinf,cq f(z),essinfyeq g(z)} > 0. (3.8)
So, we derive the existence of Ay > 0 satisfying
[r[P= =2y 1
h()\r_"y + T) > M +6)rP™ forallr>0,0€(0,1) and A > Ay (3.9)
x

where A; is the principal eigenvalue of (—A,)® in .
Fix A\, > A;. It is simple to see that u,, is a supersolution of problem

(—A);u = ()\1 + (S)Up_l in Q,

(3.10)
u >0, U,‘BQ =0,

for all 6 € (0,1). According to the results presented in [6l Theorem 1.2], we can select € < A + ¢
sufficiently small such that epy(z) < w,(x) ensures that ep; is a valid subsolution to problem
(3.10). Through a monotone iteration process, we can derive a solution to problem for any
0 € (0,1), which contradicts the assertion that A;(s,p) is a positive, simple and isolated point in
the spectrum of (~A); in X, (refer, e.g. [10, Theorems 4.9 and 4.11]). O

Proof of Theorem[1.1] Its assertion can be derived from the results established in Lemmas
and 0

4. STUDY OF PROBLEM (|1.4))

Our main objective is to investigate the existence of solutions by analyzing the critical points
of the associated functional energy. To this end, we define the functional E) : Xg — R, as

1 A _ 1 T up:(t)
B = Ml — 12 [ gt rar s s [ SIS,

5 |z[*

Here, the functional F) is considered within the Sobolev space X, which serves as the appro-
priate functional setting for this variational approach. The existence of solutions is determined
by identifying the critical points of E), which correspond to weak solutions to problem . To
establish the main result, namely Theorem [1.2] we proceed through a sequence of intermediate
steps, each formulated as a lemma. The first key step in our analysis is to establish the coerciv-
ity of the functional energy E). This property plays a crucial role in ensuring the boundedness
of minimizing sequences and, consequently, in proving the existence of solutions via variational
methods. Now, we shall prove the following lemma.

Lemma 4.1. The energy functional Ey is coercive.
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Proof. We begin by applying Holder’s inequality with the exponents

_ pi(t) ,_ pi(t)
11—~ pi(t) —(1—7v)

and ¢
This yields the estimate

[ @t o < e
Q

where || denotes the measure of the domain (.
Next, we bound the term [, [u

s (t)—(1-7)

A
pi(t) dx) SR aio

[l oz < Sllull,

EJDE-2025/99

P:(*) dz using the fractional Sobolev-Hardy inequality,

where S > 0 is the best Sobolev constant associated with the fractional Sobolev space X and the

dimension N. Applying this inequality, we obtain

e
pi(t) dm) O < SV P

Substituting this estimate into the singular term, we obtain

1—vy
/f ' dz < Cy[lul| ',

”fHL"O Si- W‘Q|W

where
CL = )\—"——"

Therefore, using the fractional Sobolev—Hardy inequality once again, we have
()

g()ul?" :
> .
/Q ||t dv = (ezbelélfg(:c))

Since ||ul| 2 > 0, it follows that

Lps®)

1 _
Ex(w) 2 Zlul” - Clful .

Noting that 1 —+ < p, we conclude that E(u) — +00 as ||u|| — co. Therefore, E) is coercive. O

Lemma 4.2. The energy functional Ey has a global minimizer.

Proof. Let {u}i be a minimizing sequence for the functional Ey in the space Xy. By Lemma
the sequence {ug}x is bounded in Xy. Moreover, since E)(u) = Ex(|u|), we may assume without

loss of generality that {uy} is nonnegative, that is, ux > 0 for all k.

By the reflexivity of Xy, there exists a subsequence, still denoted by {uj}, and a function

u € X such that
ur — u  weakly in X,

up — u  weakly in LP: M (Q),

dz .
w) for r € [1’ps(t)>7

ur — u  almost everywhere in €.

up — u  strongly in L"(€,

These convergence properties are a consequence of compact embeddings X
Xo < LP:)(Q), as well as the weak lower semi-continuity of the norm || - ||.
From the weak lower semicontinuity of the norm || - ||, we have

lu||” < liminf |Jug||P.
k—o0

— L'"7(Q) and

Additionally, the strong convergence in L" (€2, ‘(}T‘”ﬁ) and the convergence almost everywhere imply

/f( =7 de = hm f(2)u 77dx,
Q

HOOQ
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. ps(t)
/79(30) dr = lim 79(:6)‘1% dx
Q ||t k—oo Jq ||t

Combining these results, we obtain

Ey(u) < liminf Ey (ug).
k—o0
Since {ug} is a minimizing sequence for E}, it follows that u is a global minimizer of E) in X,. O

The next Lemma guaranties the existence of at least one solution for sufficiently large values
of the parameter .

Lemma 4.3. There exists a positive number Ay such that for all A > Ay, problem (1.4) admits at
least one solution.

Proof. We begin by introducing the constrained variational problem

1 1 < (1)
A, 1= inf {=[|w|P+ / 9(=)
p Q

1
dz:we Xy and 7/f(m)|w|177dx:1}. (4.1)
L= Ja

pi(t) kg
Additionally, we define
A :=inf {X > 0: (L4) admits a nontrivial weak solution}. (4.2)

Consider a sequence {vg}r to be a minimizing sequence for A.. Employing an argument similar
to the one in Lemma we may assume that {vy}r converges weakly to some v € X, satisfying

=L o)t
lell? + (t)/ o

/f Yo'~ dz = 1.

Consequently, for any A > A, we have Ey(v) = A — A < 0.
Now, fix A > Ay. By the definition of As, there exists 5 € (Ag, A) such that the functional Ejs
has a non-trivial critical point ug € Xy. Since 3 < A, ug serves as a sub-solution to problem .
To construct a super-solution, consider the minimization problem

NG

inf {EHWHP - L/ f@)|w|'=7 da + : / gl ® dz :w € Xo, w > ug}. (4.3)
p 1—7vJa pi) Jo  |aff
Then, using arguments analogous to those for problem , we deduce that problem admits
a solution w) satisfying wy > ug. Furthermore, for all A > Ag, the function w, remains also a
weak solution to problem . Using the reasoning described in [20], we infer that a solution
exists for when A = As.

Finally, the positivity of uy follows from the strong maximum principle (see [I6, Lemma 2.3]),

as uy is a weak C'! positive solution of the differential inequality

g O

(—Ap)°u+ in Q.

We derive that u) is nonnegative everywhere in 2. This completes the proof. O

Lemma 4.4. There exists a positive number Ay such that if A < A, problem (1.1) does not have
solution.

Proof. Fix § € (0,A1), where A; is the principal eigenvalue. Set A; = min{l,} > 0. We now
claim that for all A € (0, Az) and for all r > 0, the following inequality holds
P (t)—2
A (z)r™7 — g(x)rﬂtr < 6rP~ 1 (4.4)
Indeed, first observe that for A < Ay <1 and 0 <~ <1 < p*(t), we derive for all r € [0,1] that

Py (t)—2
M)y — @

|z[*
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Furthermore, for » > 1 and since 1 — v < p, we deduce that
g(x)rp:(t)_Qr
EdK

for all Ag € [A,d]. Which proves (4.4). We now consider A € (0, A2) and let u be a critical point
to the energy functional E. Therefore,

A (x)r™ — < Mf(z)r™7 < orpt

el ey = ((~2p) )

ps(?)
— )\/ F(@)|u) = dz — / g@)fulP-® (4.5)
Q Q
< 8ful”.
On the other hand, using the variational description of A1, we have
[ s
)\1 = in 7‘/[;0 ) .
ueW;?(Q) ||uHLP(Q)
This implies
el gy > Ml - (4.6)
Combining the two inequalities (4.5) and (4.6)), we obtain

Aflell” < Hlullfyee gy < Sllull”.

(@)
Since § < A1, this implies
Atllull” < 6full?.

If |u||? # 0, then dividing both sides by ||u||P gives A\; < §. But this contradicts the assumption
that § < A;. Therefore, the only possibility is ||u||P = 0, which implies © = 0 almost everywhere

in Q. Consequently (|1.4) has no solution if A < As. O
Proof of Theorem[1.4 The proof follows directly from Lemma [£.3] and Lemma [£.4] O

5. REGULARITY RESULTS

In this section, we study the regularity of weak solutions to problem ([1.1)). We begin by
recalling the following elementary inequalities, which are proved in [4, [5]. These inequalities serve
as fundamental tools in our analysis.

Lemma 5.1 ([4, Lemma C.2 ]). Let 1 < p < 0o and r > 1. For any non-negative real numbers a,
b, and M, it holds

Tpp r+p—1 r+p—1

|a—b|P—2(a—b)(a§V[—bﬁ4)2 m}aMp —b]Wp

)

with apy = min{a, M} and by = min{b, M }.

Lemma 5.2 (cite[Lemma C.3]BrPa). Let 1 < p < oo and an increasing function g : R — R. For
each a,b € R, it holds

G(a) = GO)IP < |a —bIP~*(a — b)(g(a) — g(b)),
with G(t) = fg g ()P dr fort € R.

Now, we establish the boundedness of weak solutions to problem (1.1). The proof relies on
iterative techniques and careful estimates involving fractional Sobolev spaces.

Lemma 5.3. If u is a weak solution to problem (L.1)), then u belongs to L ().
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Proof. The proof adapts methods from [2], which are inspired by the work in [5]. This method has
been further incorporated and applied in the current context. Setting u; = min{(u — 1)*,1} with
I > 0. Also, let us define the function ¢ by ¢ = (u; + )" — 6" with 6 > 0 and r > 1. Combining
lemma with the triangle inequality and applying it to problem with ¢ € Xy, we obtain
the key inequality

ﬁ / (@) +0) 75 (@) = ((wly) +0) "5 ()| dwdy
- / ()| = lu(y)|[” (u<x>||; @zzvlggiul<x>+e)r_<ul<y>+a>r) .

. [P (D=2y, .
< / M ((u+0)" —07)dx + ((ug +60)" —6")da.
Q

Q |z[*

Then with the help of the Holder inequality combine with the support of u;, we derive

‘u p:(t)72u
/ AT ((u+6)" —0")da + / 71:((“1 +6)" —0")dx
Q Q z|
|u p:(t)—2u
= / AT ((w+60)"—0")dx + / 7 ((ug+6)" —0")dx
{u>1} {u>1} x|
py(t)—2

<k () w0 5:2)

{u>1} x|

|u p:(t)_Qu

< 2K1/ ((w+0)" —0")dx
{u=>1}

< 283 ul%: 7 |(w + 0)7),

with K7 = max{\, 1} and ¢ = p%/(p% + 1 — pi(t)). Furthermore, applying [I9] Theorem 1] with
inequality (u; + 6)" < (u; + 0)"*P~10'~P we obtain

x|t

r+p—1 r+p—1 |P
[ @)+ 0757 )+ 075 [ anay
R2N
r+p—1 r+p—1 P: p%
> Covge ([ () + 05 = 0757)" an) 5.9
RN

9 r+p—1

= (g)p_lczv,p,s(/w ((wi(@) + )5 )" dx)’f _ gt

with Cn s being a positive constant. From (5.2) and (5.3), we derive

P
P

P ps(t)—1
rdp—1. p* PE |u : r+p—1\p-1 - - B
(/ (@) +0)"57)" o)™ < Onga = () 407l + 07101 (5.4
RN r pQT
Now, noting that for r > 1, we have
Y ()
> . 5.5
(r+p—1? " \r+p-1 (55)
Applying (5.5)), it is easy to see that
B 1 — 1\P sp
o0 < - () 0 )7 (5.6)
Therefore, using (5.6)) in (5.4), we obtain
(/ () +6)"57)" do) ™
RN
pi(t)-1 (5.7)
r—+p—1\pr-1 - |u * _1_sp
SCNJ%S(T) |(Ul+9) |q X (ﬁ—k”ﬂl q N).

poe
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We now fix 8 > 0 as

ph(t)—1

0= (Jul,y ™ +10I7T077 %)
Setting w = rq and o = % > 1. Therefore, (5.7)) can be formulated as
1 a q _ 1177‘1
(/(ul(x)+9)“’” dr) ™" < (Onpal Q75 8) ()5 (BEEZD Yy 4 ), (58)
Q w qp

So, we now iterate (5.8]) using

wy =1 Wiy =wio = okt

By initiating from k = 0 at step k, we can express the inequality (5.8) as

L1\ Tk w; (Wi + qp — q\ P4/ wi
[+ Oy < (Cwgpsl @573 ) 77 T ()7 (P (w4 0) . (5.9)

W; qp

We now notice that wy diverges at infinity, and furthermore

< 1 < 1 o q/w — g\ Pa/w
S Loy o7 g [Ty
o Yk =00 o—1 ko Wk ap

Through an infinite iteration of inequality (5.9)), we arrive at

_1_sp\955T
oo < (Covps 247 F )7 [+ 1),

Given that u; < (u—1)T, we obtain

1_ sp qg%
oo < (Cps @757 %) (1w = 1)Fy + 01007)

Taking | — oo, it follows that

= 1) < (Copal )T (Jfu— 1%, 4 01021/7).

Thus, in particular, we conclud that u € L (Q). O
Proof of Theorem[1.3 The proof follows from Lemma and [I7, Theorem 6.5]. O
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