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VARIATIONAL APPROACH FOR THE n-DIMENSIONAL STATIONARY

NAVIER-STOKES EQUATIONS WITH A DAMPING TERM

ALIREZA KHATIB, ABBAS MOAMENI, SOMAYEH MOUSAVINASR

Abstract. harvesting effort We study the n-dimensional stationary Navier-Stokes equations
with a damping term by developing a new general minimax principle. This principle is suffi-

ciently broad to be applied in various contexts, and here it is used to establish the existence

of weak solutions for both linear and nonlinear damping, without restrictions on the damping
constant. The damping term, which models physical effects such as porous media flow, drag,

friction, and dissipation, also provides a mathematical advantage by improving the regularity

of solutions compared to the classical Navier-Stokes system.
Our results cover the cases of positive and negative damping constants and yield existence

theorems under different ranges of p and spatial dimensions. In particular, we prove solvability

even in borderline situations, such as when µ = −λ1, where coercivity is lost and traditional
minimax arguments typically fail. The general minimax framework we introduce is flexible and

can be adapted to other nonlinear PDEs, especially when symmetry or structural properties are

involved.

1. Introduction

In this article we study the n-dimensional stationary Navier-Stokes equations with a damping
term,

−∆u+ (u · ∇)u+ µ|u|p−2u = f(x) +∇P ∀x ∈ Ω

∇u = 0 ∀x ∈ Ω

u = 0 ∀x ∈ ∂Ω

(1.1)

where Ω ⊂ Rn is bounded, p ≥ 1 and µ ∈ R. We address both linear and nonlinear dampings
and we are allowing µ to take both positive and negative values. Here u = (u1, u2, . . . , un) is the
velocity, P stand for scalar pressure and f is the external force.

The analysis of the Navier-Stokes equations is a central theme in mathematical fluid mechanics.
For the classical evolutionary system without damping, the existence of global weak solutions
was established by Leray [11] and Hopf [6], but the uniqueness of weak solutions and the global
existence of strong solutions remain open problems. These longstanding challenges have motivated
researchers to study modified models where additional terms improve the mathematical structure
of the equations.

One such modification is the inclusion of a damping term of the form µ|u|p−2u. From the
physical viewpoint, this term models resistance to motion and arises naturally in contexts such
as porous media flows, drag or friction effects, and other dissipative mechanisms (see [7, 23]).
From the mathematical viewpoint, damping often leads to better control of solutions, sometimes
yielding results that are out of reach for the standard Navier-Stokes equations. This has stimulated
extensive research on the evolutionary Navier-Stokes system with damping, leading to results on
global existence, regularity, decay rates, attractors, and stability (see, e.g., [2, 8, 9, 10, 20, 25, 24,
26]).

In contrast, stationary Navier-Stokes equations with damping have received comparatively less
attention. Some existence and uniqueness results are available for the case µ > 0 [13], and there is
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growing literature on numerical approaches (see [12, 14, 18, 19, 27]). However, general variational
approaches capable of handling both positive and negative damping, as well as borderline cases
where coercivity is lost, are still lacking.

In this work, we develop a new minimax principle on convex subsets of Banach spaces and
apply it to the n-dimensional stationary Navier-Stokes equations with damping. Our framework
is broad and flexible: depending on the choice of convex set, it allows us to obtain solutions with
additional structural properties, such as symmetry. With this method we prove existence results
for both linear (p = 2) and nonlinear damping, without restriction on the damping constant, and
even in the critical case µ = −λ1. This general minimax principle is of independent interest and
may find applications to other nonlinear PDEs beyond the Navier-Stokes system.

In this work, we consider the Banach space

V = {u ∈ H1
0 (Ω) ∩ Lp(Ω),∇.u = 0},

equipped with the norm

∥u∥ :=∥u∥H1
0 (Ω)+∥u∥Lp(Ω).

Let Λu be the operator Λu := (u.∇)u, and K be a convex and weakly closed subset of V . We
shall define M : K ×K → R as follows,

M(u, v) =
1

2

∫
Ω

|∇u|2 dx− 1

2

∫
Ω

|∇v|2 dx+

∫
Ω

(Λu− f(x)− 1

p
|u|p−2u)(u− v) dx, (1.2)

where f ∈ L2(Ω). The following variational principle on general convex sets K is a key component
in our arguments. It is also broad enough to deal with various other cases by choosing a convex
set K accordingly.

Theorem 1.1. Let K be a convex and weakly closed subset of V . Assume that the following two
assertions hold:

(i) There exists ū ∈ K for such that

M(ū, v) ≤ 0, ∀v ∈ K,

where M is defined in (1.2).
(ii) There exists v̄ ∈ K such that

−∆v̄ +∇P = f(x) + |ū|p−2ū− Λū,

in the weak sense, i.e.,∫
Ω

∇v̄.∇η dx =

∫
Ω

(f(x) + |ū|p−2ū− Λū)η dx, ∀η ∈ V.

Then ū ∈ K is a weak solution of the equation

−∆u+ Λu = f(x) +∇P + |u|p−2u .

It is worth noting that the primary consequence of this theorem centres on the choice of K, i.e.,
by choosing an appropriate K, one is able to establish the existence of a solution enjoying all the
properties induced by the set K (see Remark 1.5 for an application where the problem (1.1) has
some symmetry properties). Also, Condition (i) in Theorem 1.1 is most of the time guarantied
because of the well-known Ky Fan’s min-max principle by Brezis-Nirenberg-Stampacchia [1]. We
provide more details of how to apply the above theorem in the sequel. As an application of the
above Theorem we first prove the following result.

Theorem 1.2. Let Ω be a bounded C2 domain in Rn and µ < 0. Then for f ∈ L2(Ω) small
enough, the following statements hold:

(i) For n ≤ 4 and p > 2, the Navier-Stokes equation (1.1) has a solution u ∈W 2,2(Ω).
(ii) For 5 ≤ n ≤ 7 and 2 < p ≤ 2n−4

n−4 , the Navier-Stokes equation (1.1) has a solution in

W 2,2(Ω).
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In both cases there exists a scalar function P : Ω → R and a constant C > 0 such that

∥∆u∥L2(Ω)+∥∇P∥L2(Ω) ≤ C
(
∥f∥L2(Ω)+∥u∥p−1

L2(p−1)+∥u∥2W 1,2∗ (Ω)∥u∥
2

L
n
2 (Ω)

)
. (1.3)

where 2∗ = 2n/(n− 2).

When the constant µ in the damping term is non-negative we can cover higher values for p as
shown in the following theorem.

Theorem 1.3. Let Ω ⊂ Rn be a smooth bounded domain and µ > 0. Suppose that p ≥ 1 and
f ∈ L2(Ω). Then there exists u ∈ V such that the following holds:

(i) If n ≥ 2, then∫
Ω

∇u.∇η dx+

∫
Ω

|u|p−2u η +

∫
Ω

Λu η dx =

∫
Ω

f(x)η dx, ∀η ∈ C1
c (Ω), with ∇.η = 0.

(ii) If n ≤ 4 or p ≥ 4, then∫
Ω

∇u.∇η dx+

∫
Ω

|u|p−2u η dx+

∫
Ω

Λu η dx =

∫
Ω

f(x)η dx, ∀η ∈ V.

We would like to remark that the solution we are getting in part (i) of the above theorem is
weaker than the one we are getting in part (ii). This is so because all the test functions η in part
(i) are coming from C1

c (Ω) on contrary to part (ii) where the test functions η live in a less regular
space H1

0 (Ω) ∩ Lp(Ω).
We shall also deal with the linear damping term where p = 2 for positive and negative values

of µ. To state our result we first recall the following standard fact about the first eigenfunction of
the Laplacian on bounded domains. Recall that

λ1 = min
ψ∈H1

0 (Ω)\{0}

∫
Ω
|∇ψ|2 dx∫

Ω
|ψ|2 dx

.

where the minimum is taken over all ψ : H1
0 (Ω) → R. Note that in Theorem 1.3 we have already

covered the case µ > 0. Here is our result for the linear case where we are allowing negative values
for µ.

Theorem 1.4. Let Ω be smooth bounded domain in Rn and p = 2. Assume that −λ1 ≤ µ < 0,
and f ∈ L2(Ω). Then there exists u ∈ V such that the following assertions hold:

(i) If n ≥ 2, then∫
Ω

∇u.∇η dx+ µ

∫
Ω

uη dx+

∫
Ω

Λu η dx =

∫
Ω

f(x)η dx, ∀η ∈ C1
c (Ω), with ∇.η = 0.

(ii) If n ≤ 4, then∫
Ω

∇u.∇η dx+ µ

∫
Ω

u η dx+

∫
Ω

Λu η dx =

∫
Ω

f(x)η dx, ∀η ∈ V.

The highlight of the above theorem is the case where µ = −λ1 in which case one losses the
coercivity required in most minimax arguments.

Remark 1.5. Even though our main objective in this paper is to prove existence results having
a damping term in mind, we would like emphasize that the applications of Theorem 1.1 goes well
beyond this goal. In light of this remark, let us define the maps π1, π2, π3 : Ω ⊂ R3 → Ω as follow:

π1(x1, x2, x3) = (−x1, x2, x3),
π2(x1, x2, x3) = (x1,−x2, x3),
π3(x1, x2, x3) = (x1, x2,−x3).

We consider the 3D case of the stationary Navier-Stokes equations with damping presented in
equation (1.1). Assume that Ω is invariant under the maps π1, π2, π3 : Ω → Ω. Moreover, assume
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that KS is a subset of V containing all u ∈ V with the following properties:

u1(x1, x2, x3) = −u1(−x1, x2, x3),
u2(x1, x2, x3) = u2(−x1, x2, x3),
u3(x1, x2, x3) = u3(−x1, x2, x3).

(1.4)

Furthermore, assume that f(x) ∈ L2(Ω) also holds the same properties; i.e.,

f1(x1, x2, x3) = −f1(−x1, x2, x3),
f2(x1, x2, x3) = f2(−x1, x2, x3),
f3(x1, x2, x3) = f3(−x1, x2, x3).

Then, the solution u = (u1, u2, u3) obtained in Theorems 1.2, 1.3 and 1.4 is symmetric in the
sense (1.4). Indeed, the symmetry of solutions follows from the uniqueness of the solution to the
corresponding linear problem.

The article is organized as follows. In section 2, we prove Theorems 1.1 and 1.2 through a
minimax principle. Section 3 is devoted to the proof of our results in Theorems 1.3 and 1.4.

2. A minimax principle and the proof of Theorem 1.2

In this section, we first prove an adapted version of variational principle presented in Theorem
1.1 which is applicable specifically to our problem when µ < 0, and p > 2. Afterwards, we proceed
with the proof of Theorem 1.2.

We consider the Banach space V = {u ∈ H1
0 (Ω) ∩ Lp(Ω),∇.u = 0} equipped with the norm

∥u∥ :=∥u∥H1
0 (Ω)+∥u∥Lp(Ω).

Let Λu be the operator Λu := (u.∇)u, that is

⟨Λu, v⟩ =
∫
Ω

(Λu)v =

∫
Ω

n∑
j,k=1

uk
∂uj
∂xk

vj .

Let K be a convex and weakly closed subset of V . As stated in Theorem 1.1 we shall consider
the functional M : K ×K → R given in (1.2).

Proof of Theorem 1.1. It follows from condition (i) in the theorem that there exists ū ∈ K such
that

1

2

∫
Ω

|∇ū|2 dx− 1

2

∫
Ω

|∇v|2 dx ≤
∫
Ω

(f(x) +
1

p
|ū|p − Λū)(ū− v) dx, ∀v ∈ K. (2.1)

It also follows from (ii) that there exists v̄ ∈ K such that∫
Ω

∇v̄.∇η dx =

∫
Ω

(f(x) + |ū|p−2ū− Λū)η dx, ∀η ∈ V. (2.2)

Substituting η = ū− v̄ in the latter equality gives∫
Ω

∇v̄.∇(ū− v̄) dx =

∫
Ω

(f(x) + |ū|p−2ū− Λū)(ū− v̄) dx, ∀η ∈ V. (2.3)

Setting v = v̄ in (2.1) and taking into account the equality (2.3) we obtain that∫
Ω

∇v̄.∇(ū− v̄) dx ≥ 1

2

∫
Ω

|∇ū|2 dx− 1

2

∫
Ω

|∇v̄|2 dx. (2.4)

On the other hand, it follows from the convexity of g(t) = 1
2 t

2 that∫
Ω

∇v̄.∇(ū− v̄) dx ≤ 1

2

∫
Ω

|∇ū|2 dx− 1

2

∫
Ω

|∇v̄|2 dx. (2.5)

Inequalities (2.4) and (2.5) together imply that∫
Ω

∇v̄.∇(ū− v̄) dx =
1

2

∫
Ω

|∇ū|2 dx− 1

2

∫
Ω

|∇v̄|2 dx.



EJDE-2026/01 n-DIMENSIONAL STATIONARY NAVIER-STOKES EQUATIONS 5

Therefore, ∫
Ω

|∇ū−∇v̄|2 = 0,

from which it follows that v̄ = ū for a.e. x ∈ Ω. Hence, the equality (2.2) proves the desired
result. □

We shall apply Theorem 1.1 to prove the existence of solution in Theorem 1.2. The convex
subset K of V required in Theorem 1.1 is defined by

K(r) = {u ∈ V :∥u∥W 2,2(Ω) ≤ r}, (2.6)

for some r > 0 to be determined. To see that K(r) is weakly closed, we present the proof of this
statement in the following lemma.

Lemma 2.1. Let r > 0 be fixed. The set

K(r) = {u ∈ V :∥u∥W 2,2(Ω) ≤ r}

is weakly closed in V .

Proof. Let {um} be a sequence in K(r) such that um ⇀ u weakly in V . Then there exists
a subsequence of um, denoted by um again such that um → u a.e in Ω. On the other hand,
∥um∥W 2,2(Ω) ≤ r for all m ∈ N and so {um} is bounded in W 2,2(Ω). Going if necessary to a

subsequence, there exists ū ∈ W 2,2(Ω) such that um ⇀ ū weakly in W 2,2(Ω) and um(x) → ū(x)
for a.e. x ∈ Ω. It follows then u(x) = ū(x) for a.e. x ∈ Ω. Thus um ⇀ u weakly in W 2,2(Ω). Now
from the weak lower semi-continuity of the norm in W 2,2(Ω) follows that

∥u∥W 2,2(Ω) ≤ lim inf
m→∞

∥um∥W 2,2(Ω) ≤ r,

which means that u ∈ K(r). □

To apply Theorem 1.1, we need to verify both conditions (i) and (ii) in this Theorem. To verify
condition (i) we use the following version of the well-known Ky Fan’s min-max principle [1]. We
refer to [5, Lemma 12.1] for a proof.

Lemma 2.2. Let E be a closed convex subset of a reflexive Banach space H, and consider M :
E × E → R̄ to be a functional such that:

(1) For each y ∈ E, the map x→M(x, y) is weakly lower semi- continuous on E.
(2) For each x ∈ E, the map y →M(x, y) is concave on E.
(3) There exists γ ∈ R such that M(x, x) ≤ γ for every x ∈ E.
(4) There exists a y0 ∈ E such that E0 = {x ∈ E :M(x, y0) ≤ γ} is bounded.

Then there exits x̄ ∈ E such that M(x̄, y) ≤ γ for all y ∈ E.

One of the requirements in Lemma 2.2 is the lower semi-continuity of M(. , v) for a fixed v. To
verify that, we begin with the following Lemma.

Lemma 2.3. For each v ∈ K, the map u → ⟨Λu, v⟩ is weakly continuous on K for the values of
n, p in Theorem 1.2.

Proof. Fix v ∈ K, and let um ⇀ u weakly in K. We have∣∣⟨Λum, v⟩ − ⟨Λu, v⟩
∣∣ = ∣∣∣ n∑

j,k=1

∫
Ω

(
umk

∂umj
∂xk

vj − uk
∂uj
∂xk

vj
)
dx

∣∣∣
=

∣∣∣ n∑
j,k=1

∫
Ω

(
(umk − uk)

∂umj
∂xk

vj + uk
∂(umj − uj)

∂xk
vj
)
dx

∣∣∣
≤

n∑
j,k=1

∫
Ω

∣∣∣(umk − uk)
∂umj
∂xk

vj

∣∣∣+ n∑
j,k=1

∫
Ω

∣∣∣uk ∂(umj − uj)

∂xk
vj

∣∣∣ dx.
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On the other hand, by Hölder inequality we conclude that

n∑
j,k=1

∫
Ω

∣∣∣(umk − uk)
∂umj
∂xk

vj

∣∣∣ ≤∥(um − u)v∥L2∥∇um∥L2 ≤∥um − u∥L4∥v∥L4∥∇um∥L2 .

Therefore,∣∣⟨Λum, v⟩ − ⟨Λu, v⟩
∣∣ ≤∥um − u∥L4∥v∥L4∥∇um∥L2 +

n∑
j,k=1

∫
Ω

∣∣∣uk ∂(umj − uj)

∂xk
vj

∣∣∣ dx.
Moreover, since the space W 2,2(Ω) is compactly imbedded into L4(Ω), for all n ≤ 7, it follows
that um → u strongly in L4(Ω). Furthermore, since u, v are in W 2,2(Ω), we deduce from Hölder’s
inequality that ukvj ∈ L2(Ω). Finally, since ∇um ⇀ ∇u weakly in K, by definition of weak
convergence the result follows. □

Lemma 2.4. Fro each v ∈ K, the map u → M(u, v) is weakly lower semi-continuous on K for
the values of n, p in Theorem 1.2.

Proof. Let v ∈ K be fixed and um ⇀ u weakly in K. Since < Λu, u >= 0 resulting from (1.2) we
have

M(u, v) =
1

2

∫
Ω

|∇u|2 dx− ⟨Λu, v⟩ −
∫
Ω

f(x)u dx− 1

p

∫
Ω

|u|p dx

+
1

p

∫
Ω

|u|p−2uv dx+
1

2

∫
Ω

|∇v|2 dx+

∫
Ω

f(x)v dx,

(2.7)

Now we shall verify lower semi-continuity of every single part in (2.7) separately. Note that the
last two terms in (2.7) are constant with respect to u.

• Since the function g(u) = |u|2 is convex, it can easily be shown that∫
Ω

|∇u|2 dx ≤ lim inf
m→∞

∫
Ω

|∇um|2 dx.

that implies the map u→
∫
Ω
|∇u|2 dx is weakly lower semi-continuous.

• The map u→ −
∫
Ω
Λu.v dx is weakly lower semi-continuous by Lemma 2.3.

• Since f ∈ L2(Ω), applying the definition of weak convergence leads to∫
Ω

f(x) u dx = lim inf
n→∞

∫
Ω

f(x)um dx.

• The map u→
∫
Ω
|u|p dx is weakly lower semi-continuous for n, p in Theorem 1.2 because

(i) if n ≤ 4, then W 2,2(Ω) is compactly imbedded into Lp(Ω) for all p > 2, and
(ii) if 5 ≤ n ≤ 7, then W 2,2(Ω) is compactly imbedded into Lp(Ω) for all 2 < p < 2n

n−4 .
It then follows for both of cases that

lim
n→∞

∫
Ω

|um|P =

∫
Ω

|u|P dx,

• The map u →
∫
Ω
|u|p−2uv dx is weakly lower semi-continuous for n, p in Theorem 1.2

because
(i) if n ≤ 4, then W 2,2(Ω) is compactly imbedded into L2(p−1)(Ω) for all p > 2, and
(ii) if 5 ≤ n ≤ 7, then W 2,2(Ω) is compactly imbedded into L2(p−1)(Ω) for all 2 < p <

2n−4
n−4 .

In both cases, we have |u|p−2u ∈ L2(Ω) from which we deduce that the map u →∫
Ω
|u|p−2uv dx is continuous functional and

lim
n→∞

∫
Ω

|um|p−2uv dx =

∫
Ω

|u|p−2uv dx.

This completes the proof. □

We are now in a position to state the following result addressing condition (i) in Theorem 1.2.
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Lemma 2.5. Let K = K(r) be a convex and weakly closed subset of V defined in (2.6). Let
M : K ×K → R be defined as (1.2) and n, p as in Theorem 1.2. Then there exists ū ∈ K such
that

M(ū, v) ≤ 0 ∀v ∈ K.

Proof. We shall show that the function M satisfies all the conditions of the Ky Fan’s Min-Max
Principle presented in Lemma 2.2. The condition (1) is provided by Lemma 2.4. For each u ∈ K,
the map v →M(u, v) is concave on K since M(u, v) is a linear functional with respect to v except
− 1

2

∫
Ω
|∇v|2 dx, which is in fact concave. Also we have M(u, u) = 0 = γ for every u ∈ K. Finally,

since u ∈ K we have that ∥u∥W 2,2(Ω) ≤ r. Thus, we can conclude that {u ∈ K : M(u, v) ≤ 0} is
bounded. It now follows by Lemma 2.2 that there exists ū ∈ K such that

M(ū, v) ≤ 0 ∀v ∈ K,

as desired. □

Our next task consists of verifying condition (ii) in Theorem 1.2. To do this, we start with the
following two lemmas, which provide us the required estimates. Hereafter C will denote a positive
constant, not necessarily the same one.

Lemma 2.6. Let Ω ⊂ Rn be a bounded domain and 1 < p. Then for any u ∈ K(r) we have∥∥f + |u|p−1u− Λu
∥∥
L2(Ω)

≤
(
∥f∥L2(Ω)+∥u∥p−1

L2(p−1)+∥u∥2W 1,2∗ (Ω)∥u∥
2

L
n
2 (Ω)

)
.

Proof. Let u ∈ K(r). By Hölder’s inequality we have∥∥f + |u|p−2u− Λu
∥∥
L2(Ω)

≤∥f∥L2(Ω)+∥up−1∥L2(Ω)+∥Λu∥L2(Ω)

≤∥f∥L2(Ω)+∥u∥p−1
L2(p−1)(Ω)

+∥∇u∥2L2∗ (Ω)∥u∥
2

L
n
2 (Ω)

, (where 2∗ =
2n

n− 2
)

≤∥f∥L2(Ω)+∥u∥p−1
L2(p−1)(Ω)

+∥u∥2W 1,2∗ (Ω)∥u∥
2

L
n
2 (Ω)

.

as desired. □

Lemma 2.7. Let p > 2 and C > 0 be given. Then there exists 0 < r ∈ R which satisfies

C(∥f∥L2(Ω) + rp−1 + r4) ≤ r,

where ∥f∥L2(Ω) be small enough.

Proof. Since p > 2, we can choose r such that

C(rp−1 + r4) ≤ r

2
.

Now if C∥f∥L2(Ω) ≤ r
2 then we have

C(∥f∥L2(Ω) + rp−1 + r4) ≤ r,

as desired. □

Here is another useful results that we shall use in the sequel. See [3, Theorem 1.2] for a more
general version of the following result.

Lemma 2.8. If g ∈ L2(Ω), then there exists u ∈ W 2,2(Ω) ∩H1
0 (Ω), a scalar function P : Ω → R

and a constant C such that

∆u+∇P = g, ∇ · u = 0, u|∂Ω = 0,

and

rV ert∆u∥L2(Ω)+∥∇P∥L2(Ω) ≤ C∥g∥L2(Ω).

The following inequality is proved in [4, Lemma 9.17].
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Lemma 2.9. Let Ω be a bounded C1,1 domain in Rn and let the operator Lu = aij(x)Diju +
bi(x)Diu + c(x)u be strictly Elliptic in Ω with coefficients aij ∈ C(Ω), bi, c ∈ L∞(Ω), with i, j =
1, . . . , n and c ≤ 0. Then there exists a positive constant C (independent of u) such that

rV ertu∥W 2,p(Ω) ≤ C∥Lu∥Lp(Ω),

for all u ∈W 2,p(Ω) ∩W 1,p
0 (Ω), 1 < p <∞.

Here comes a direct consequence of Lemma 2.9.

Corollary 2.10. Let Ω be a bounded C1,1 domain in Rn. Then there exists a constant C such
that

∥u∥W 2,2(Ω) ≤ C∥∆u∥L2(Ω),

for all u ∈W 2,2(Ω) ∩H1
0 (Ω).

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Without loss of generality we may suppose that µ = −1. We define K =
K(r) for r > 0 to be determined presently. By Lemma 2.5 we have the existence of a non-trivial
ū ∈ K such that

M(ū, v) ≤ 0 ∀v ∈ K.

Now we shall show the existence of v̄ that satisfy condition (ii) in the theorem. Consider

g(x) = f + |ū|p−1ū− Λū.

Thus we have to show there exists v̄ ∈ K that the following equation holds in the weak sense,

−∆v +∇P = g(x). (2.8)

By Lemma 2.8 there exists v̄ ∈ V which satisfies (2.8) and

∥∆v̄∥L2(Ω)+∥∇P∥L2(Ω) ≤ C∥g∥L2(Ω). (2.9)

It is sufficient to show that v̄ ∈ K. The estimate (2.9) together with Lemma 2.6 imply that

∥∆v̄∥L2(Ω)+∥∇P∥L2(Ω) ≤ C∥f + |ū|p−1ū− Λū∥

≤ C
(
∥f∥L2(Ω)+∥ū∥p−1

L2(p−1)+∥ū∥2W 1,2∗ (Ω)∥ū∥
2

L
n
2 (Ω)

)
.

(2.10)

On the other hand, Corollary 2.10 together with (2.10) yield that

∥v̄∥W 2,2(Ω) ≤ C∥∆v̄∥L2(Ω) ≤ C
(
∥∆v̄∥L2(Ω)+∥∇P∥L2(Ω)

≤ C
(
∥f∥L2(Ω)+∥ū∥p−1

L2(p−1)+∥ū∥2W 1,2∗ (Ω)∥ū∥
2

L
n
2 (Ω)

)
.

(2.11)

From the imbeddings of W 2,2(Ω) ↪→ L2(p−1) and W 2,2(Ω) ↪→ W 1,2∗(Ω) we obtain from (2.11)
that

∥v̄∥W 2,2(Ω) ≤ C
(
∥f∥L2(Ω)+∥ū∥p−1

w2,2(Ω)+∥ū∥2W 2,2(Ω)∥ū∥
2
W 2,2(Ω)

)
. (2.12)

Let r be as in Lemma 2.7 for C given in the last inequality above. The inequality (2.12) and
Lemmas 2.7 yield that

∥v̄∥W 2,2(Ω) ≤ C(∥f∥L2(Ω) + rp−1 + r4) ≤ r,

where ∥f∥L2(Ω) is small enough. That means v̄ ∈ K and so v̄ = ū. This completes the proof of (i)
and (ii). Now the inequality (2.10) concludes that

∥∆u∥L2(Ω)+∥∇P∥L2(Ω) ≤ C
(
∥f∥L2(Ω)+∥u∥p−1

L2(p−1)+∥u∥2W 1,2∗ (Ω)∥u∥
2

L
n
2 (Ω)

)
. (2.13)

□
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3. Proof of Theorems 1.3 and 1.4

We need some preliminary results before proving the theorems in this section. We consider
the same notation for the Banach space V = {u ∈ H1

0 (Ω) ∩ Lp(Ω),∇.u = 0} with norm ∥u∥ =
∥u∥H1

0 (Ω)+∥u∥Lp(Ω). Where Ω is a bounded domain of Rn, the operator Λu = (u.∇)u may not be

defined on whole space H1
0 (Ω). Although, there exist constant C such that

|⟨Λu, v⟩| =
∣∣∣ ∫

Ω

n∑
j,k=1

uk
∂uj
∂xk

vj

∣∣∣ ≤ C∥u∥L2(Ω)∥∇u∥L2(Ω)∥v∥C1(Ω) .

which means that for the dense linear subspace

E = {u ∈ C1
c (Ω),∇.u = 0}

of V , we have that Λ is well defined. We shall define Φ : V → R by

Φ(u) =
1

2

∫
Ω

|∇u|2 dx+
1

p

∫
Ω

|u|p dx−
∫
Ω

f u dx.

We also define H : V × V → R by

H(v, u) = Φ(u)− Φ(v).

For r > 1, we set

K(r) = {u ∈ V ; ∥u∥ ≤ r},
that is convex and weakly closed in V by similar arguments as in the proof of Lemma 2.1. Let

K0(r) = K(r) ∩ E,
and define M : K(r)×K0(r) → R by

M(u, v) = H(v, u)− ⟨Λu, v⟩. (3.1)

When µ > 0 in the damping term, we shall use a different version of Ky-Fan minimax theorem
(See [5, Lemma 12.1]) for a proof). This version is more practical when one expects less regularity
of the solution. For a subset set D, we denote its convex hull by conv(D).

Lemma 3.1. Let ∅ ≠ D ⊂ E ⊂ H where E is a weakly compact convex set in a Banach space H,
and consider M : E × conv(D) → R to be a function such that:

(1) For each y ∈ D, the map x→M(x, y) is weakly lower semi- continuous on E.
(2) For each x ∈ E, the map y →M(x, y) is concave on conv(D).
(3) M(x, x) ≤ 0 for every x ∈ conv(D).

Then there exits x̄ ∈ E such that M(x̄, y) ≤ 0 for all y ∈ D.

Proof of Theorem 1.3. Without loss of generality we may suppose that µ = 1. By similar argu-
ments as in Lemma 2.4 for M defined in (3.1) we obtain that

• For each v ∈ K0(r) the function u→M(v, u) is weakly lower semi-continuous.
• For each u ∈ K(r) the function v →M(v, u) is concave.
• M(u, u) = 0,∀u ∈ K0(r)

Now we can apply Ky-Fan minimax principle (Lemma 3.1), which yields there exits ūr ∈ K(r)
such that

M(ūr, v) = H(v, ūr)− ⟨Λūr, v⟩ ≤ 0, ∀v ∈ K0(r) (3.2)

Substituting v = 0 in the latter inequality implies that Φ(ūr) ≤ 0. Now the coercivity of the
functional Φ follows that {ūr}r is bounded in V and so there exists a sequence rn → ∞ and
ū ∈ V such that ūrn → ū weakly in V . If v ∈ E is fixed, then from (3.2) and the weak lower
semi-continuity of the functions involved, we obtain

H(v, ū)− ⟨Λū, v⟩ ≤ 0 (3.3)

This indeed implies that

sup
v∈E,∥v∥E≤1

⟨Λū, v⟩+ inf
∥z∥≤1

H(z, ū) ≤ 0 (3.4)
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Therefore,

sup
v∈E,∥v∥E≤1

⟨Λū, v⟩ ≤ − inf
∥z∥≤1

H(z, ū) ≤ ∞. (3.5)

This implies that the linear functional l : E → R defined by l(v) =< Λū, v > is continuous. It now
follows from the bounded linear extension theorem that l can be extended to a bounded linear
operator L : V → R with the same operator norm as l. It then follows that there exists Λ̂ū ∈ V ∗

such that

⟨Λ̂ū, v⟩ =< Λū, v >, ∀v ∈ E. (3.6)

This together with (3.3) yield that

H(v, ū)− ⟨Λ̂ū, v⟩ ≤ 0, ∀v ∈ E. (3.7)

But since E is dense in V and expression (3.7) is continuous with respect to v, we can conclude
that

H(v, ū)− ⟨Λ̂ū, v⟩ ≤ 0, ∀v ∈ V. (3.8)

Now by substituting v = ū+ tη, η ∈ V , into (3.8) we obtain that

H(ū+ tη, ū)− ⟨Λ̂ū, ū+ tη⟩ ≤ 0, ∀t ∈ R. (3.9)

Dividing (3.9) by t > 0 and letting t converge to zero yields that∫
Ω

∇ū.∇η dx+

∫
Ω

|ū|p−2ūη dx−
∫
Ω

fη dx+

∫
Ω

Λ̂ū η ≥ 0, ∀η ∈ V. (3.10)

Now substituting η by −η in (3.10) we deduce the opposite inequality and thus∫
Ω

∇ū.∇η dx+

∫
Ω

|ū|p−2ūη dx−
∫
Ω

fη dx+

∫
Ω

Λ̂ū η = 0, ∀η ∈ V. (3.11)

This together with (3.6) follow that∫
Ω

∇ū.∇η dx+

∫
Ω

|ū|p−2ū η dx−
∫
Ω

fη dx+

∫
Ω

Λū η = 0, ∀η ∈ E.

This completes the proof of part (i).
For the proof of the second part we consider two cases n ≤ 4 and p ≥ 4 separately.

Case 1: (n ≤ 4). Let v ∈ V . If n ≤ 4, then 4 ≤ 2n
n−2 . From continuous imbedding of Sobolev

space H1
0 (Ω) into L

4(Ω), and by the Hölder inequality we obtain for operator Λu

|⟨Λu, v⟩| =
∣∣ ∫

Ω

n∑
j,k=1

uk
∂uj
∂xk

vj
∣∣ ≤ C∥uv∥L2(Ω)∥∇u∥L2(Ω)

≤ C∥u∥L4(Ω)∥v∥L4(Ω)∥u∥H1
0 (Ω) <∞.

This means, the operator Λu is well defined on V . Since E is a dense subspace of V , from
uniqueness of the bounded linear extension theorem we have ⟨Λ̂ū, v⟩ =< Λū, v >, ∀v ∈ V. Now
the result follows from (3.11).

Case 2: p ≥ 4. For v ∈ V , since V ⊂ Lp(Ω) we can deduce that

|⟨Λu, v⟩| ≤ C∥uv∥L2(Ω)∥∇u∥L2(Ω) ≤ C∥u∥H1
0 (Ω)∥u∥Lp(Ω)∥v∥

L
2p

p−2 (Ω)
<∞

where the last inequality follows from 2p
p−2 ≤ p. Thus operator Λu is well defined on whole V and

this completes the proof. □

We would like to remark that in the last part of the proof we make extensive use of 2p
p−2 ≤ p.

Note that if 2 < p < 4 and n ≥ 5, then 2p
p−2 > p, and there is no guarantee for ∥v∥

L
2p

p−2 (Ω)
<∞.

As we have just seen, the case of µ > 0 with the linear damping term was covered in the theorem
1.3. But for µ < 0, due to an essential role of Lemma 2.7 in the proof of theorem 1.2 we were not
be able to deal with the linear damping term in this theorem. However, with a similar argument
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to theorem 1.3, we would be in a position to manage it separately. Note that when p = 2 we have
that V = {u ∈ H1

0 (Ω),∇u = 0}, and

Φ(u) =
1

2

∫
Ω

|∇u|2 dx+
µ

2

∫
Ω

|u|2 dx−
∫
Ω

f u dx.

Proof of Theorem 1.4. In the same way as in proof of Theorem 1.3, it follows from the Ky-Fan
minimax principle (Lemma 3.1) that there exits ūr ∈ K(r) with

M(ūr, v) = H(v, ūr)− ⟨Λūr, v⟩ ≤ 0, ∀v ∈ K0(r). (3.12)

Now we claim that {ūr}r is bounded in V and so there exists a sequence rn → ∞ and ū ∈ V such
that ūrn ⇀ ū weakly in V . Thus, by similar arguments as in proof of Theorem 1.3 we obtain the
result.

Now to complete the proof we have to show the claim. Assume, by contradiction, that {ūr}r is
unbounded. So there exists a sequence rm → ∞ such that {ūrm}m is unbounded. By substituting
v = 0 in (3.12) we obtain that

Φ(ūrm) =
1

2

∫
Ω

|∇ūrm |2 dx+
µ

2

∫
Ω

|ūrm |2 dx−
∫
Ω

f ūrm dx ≤ 0. (3.13)

Let t2m =
∫
Ω
|∇ūrm |2 dx, and wm =

ūrm

tm
. Note that ∥wm∥H1

0 (Ω) = 1. Thus, there exists a

w = (z1, . . . , zn) ∈ V such that wm ⇀ w weakly in V . It follows that w ̸= 0, because dividing
(3.13) by t2m we obtain

1

2
+
µ

2

∫
Ω

|wm|2 dx ≤ 1

tm

∫
Ω

f wm dx, (3.14)

and letting m→ ∞, due to the compact imbedding H1
0 (Ω) ↪→ L2(Ω) we obtain that

1

2
+
µ

2

∫
Ω

|w|2 dx ≤ 0, (3.15)

which implies w ̸= 0. Also, we have

1

2

∫
Ω

|∇w|2 dx+
µ

2

∫
Ω

|w|2 dx ≤ lim inf
m→∞

(1
2

∫
Ω

|∇wm|2 dx+
µ

2

∫
Ω

|wm|2 dx
)

≤ 1

2
+
µ

2

∫
Ω

|w|2 dx.

This estimate together with (3.15) yield that∫
Ω

|∇w|2 dx+ µ

∫
Ω

|w|2 dx ≤ 0.

Therefore, ∫
Ω
|∇w|2 dx∫

Ω
|w|2 dx

≤ −µ, (3.16)

from which with hypothesis −λ1 ≤ µ of theorem we obtain that∫
Ω
|∇w|2 dx∫

Ω
|w|2 dx

≤ λ1. (3.17)

On the other hand, for first eigenvalue λ1 of −∆ we have∫
Ω
|∇w|2 dx∫

Ω
|w|2 dx

=

∑n
i=1

∫
Ω
|∇zi|2 dx∑n

i=1

∫
Ω
z2i dx

≥
∑n
i=1 λ1

∫
Ω
z2i dx∑n

i=1

∫
Ω
z2i dx

= λ1, (3.18)

where w = (z1, . . . , zn). It then follows from (3.17) and (3.18) that

λ1 =

∫
Ω
|∇w|2 dx∫

Ω
|w|2 dx

, (3.19)

from which we obtain that ∫
Ω

|∇zi|2 dx = λ1

∫
Ω

z2i dx, (i = 1, .., n).
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Therefore,
−∆zi = λ1zi, i = 1, . . . , n. (3.20)

Since the first eigenvalue of the −∆ is simple it follows that there exists α = (α1, . . . , αn) ∈ Rn
such that

zi = αiψ1, i = 1, . . . , n, (3.21)

where ψ1 > 0 is the unique eigenfunction of −∆ corresponding to λ1 with ∥ψ1∥L2(Ω) = 1, i.e.

−∆ψ1 = λ1ψ1, ψ1|∂Ω = 0.

Since ∇.w = 0, it follows from (3.21) that

0 =

n∑
i=1

∂zi
∂xi

=

n∑
i=1

αi
∂ψ1

∂xi
= α.∇ψ1. (3.22)

Now let x be an interior point of Ω and x̄ the closest point on ∂Ω to x such that x̄ − x = Cα
for some constant C ∈ R, and the line joining x to x̄ lies in Ω̄. Define g : [0, 1] → R by

g(t) = ψ1(tx+ (1− t)x̄).

It can be easily deduced from (3.22) that

g′(t) = (x− x̄).∇ψ1(tx+ (1− t)x̄) = Cα.∇ψ1(tx+ (1− t)x̄) = 0.

Thus, g is a constant function and since ψ1|∂Ω = 0 we have

g(t) = g(0) = ψ1(x̄) = 0, ∀t ∈ [0, 1],

which implies that ψ1(x) = 0. This is the contradiction we wanted. □
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