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Abstract. In this article, we study the singular critical biharmonic problem

∆2u− µV (x)u = |u|2
∗−2u+ λf(x) in Ω,

u =
∂u

∂n
= 0 on ∂Ω,

where ∆2 is the biharmonic operator, Ω is an open bounded domain in RN (N ≥ 5) with

smooth boundary ∂Ω, 2∗ = 2N
N−4

, 0 < µ < µ̄ :=
(N(N−4)

4

)2
, f(x) and V (x) are given functions.

By using variational method and Nehari-type constraint, we establish the existence of multiple
solutions for this problem when 0 < λ < λ∗, for some λ∗ > 0.

1. Introduction

This article concerns the biharmonic problem

∆2u− µV (x)u = |u|2
∗−2u+ λf(x) in Ω,

u =
∂u

∂n
= 0 on ∂Ω,

(1.1)

where ∆2 denotes the biharmonic operator, Ω ⊂ RN (N ≥ 5) is a bounded domain with smooth
boundary ∂Ω, λ > 0 is a parameter, 2∗ = 2N

N−4 is the critical Sobolev exponent and 0 < µ < µ̄,
where µ̄ is the best constant for the Rellich inequality∫

Ω

u2

|x− a|4
dx ≤ 1

µ̄

∫
Ω

|∆u|2 dx, ∀a ∈ Ω, u ∈ H2
0 (Ω).

Here, H2
0 (Ω) denotes the completion of C∞

0 (Ω) with respect to the norm

∥u∥ =
(∫

Ω

|∆u|2 dx
)1/2

.

In elasticity theory, biharmonic equations with multipolar singular potentials effectively model
thin elastic plates that include k localized defects or concentrated loads situated at finitely many
points a1, a2, . . . , ak. These singularities strongly affect deformation and stability and can be used
to eliminate unwanted frequencies or localize vibrational energy (see Lindsay et al. [9]). Similar
models appear in composite and metamaterials, where point inclusions generate stress multipoles
influencing effective properties and cloaking effects (see Mao-Huang [12]). In addition, biharmonic
singular models can also arise in thin-film physics, surface growth, and nanomechanical resonators
(see [3], [4], and [5]).

In recent years, many authors have studied biharmonic problems, for instance, in the regular
case (µ = 0), Qian-Wang in [14] proved the existence of at least two distinct solutions for (1.1) with
µ = 0, λ = 1 and f(x) small. In the singular case (µ ̸= 0), we recall that the existence of multiple
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solutions of (1.1) has been studied under different hypotheses on V (x). For the homogeneous
case, D’Ambrossio-Jannelli [2] considered the Hardy potentiel V (x) = |x|−4 and Kang-Xiong in
[7] established the existence and nonexistence of ground state solutions of (1.1) where V (x) has
prescribed singularities of the form |x−aj |−4 with aj ∈ Ω and j = 1, . . . , k, by using a complicated
asymptotic analysis and variational arguments. For the nonhomogenous case, Li et al. [11] studied
(1.1) with V (x) = |x|−s, 0 < s ≤ 4. Very recently, the authors in [13] have proved the existence
of at least 2k solutions of the problem

∆2u−
k∑

j=1

µj

|x− aj |4
u = |u|2

∗−2u+

k∑
j=1

λj
|x− aj |4−αj

u+ f(x) in Ω

u =
∂u

∂n
= 0 on ∂Ω,

where Ω is an open bounded domain of RN (N ≥ 5) with smooth boundary ∂Ω, for all j = 1, . . . , k,
aj ∈ Ω denote the singularity points, λj > 0 are parameters, 0 < αj < 4 and µj > 0 are real

constants satisfying
∑k

j=1 µj < µ̄. We recall that the problem (1.1) with the Laplacian operator

was studied by Chen [1]. He proved the existence of at least k positive solutions by the argument
developed in [15]. The main goal of this paper is to generalize the result in [1] to the biharmonic
operator.

From the Rellich inequality, it follows that the best constant

Aµ(Ω) = inf
u∈H2

0 (Ω)\{0}

∫
Ω

(
|∆u|2 − µ u2

|x−a|4

)
dx( ∫

Ω
|u|2∗ dx

)2/2∗
, ∀a ∈ Ω, µ < µ̄, (1.2)

is well defined. Moreover, as shown in [2, 8], Aµ(Ω) is independent of the domain Ω and is attained
in RN by the family of translated extremals

{yε(x− a) = ε
4−N

2 Uµ(ε
−1(x− a)), ε > 0},

where Uµ is a positive, radially symmetric, and radially decreasing solution of

∆2u− µ
u

|x|4
= u2

∗−1 in RN \ {0}, u > 0.

The normalized translated profiles satisfy∫
RN

(
|∆yε(x− a)|2 − µ

|yε(x− a)|2

|x− a|4
)
dx =

∫
RN

|yε(x− a)|2
∗
dx = AN/4

µ .

By setting ρ = |x|, the profile Uµ has the following sharp asymptotics:

Uµ(ρ) = O1(ρ
−a(µ)) as ρ→ 0,

Uµ(ρ) = O1(ρ
−b(µ)), U ′

µ(ρ) = O1(ρ
−b(µ)−1) as ρ→ ∞,

where δ = N−4
2 and

a(µ) = δ φ(µ), b(µ) = δ
(
2− φ(µ)

)
,

with

φ(µ) = 1−

√
N2 − 4N + 8− 4

√
(N − 2)2 + µ

N − 4
, µ ∈ [0, µ̄].

In particular, for µ ∈ [0, µ̄) one has 0 ≤ a(µ) ≤ δ ≤ b(µ) ≤ 2δ. There exist positive constants
C1(µ), C2(µ) such that

0 < C1(µ) ≤ Uµ(x)
(
|x|a(µ)/δ + |x|b(µ)/δ

)δ ≤ C2(µ) ∀x ∈ RN \ {0}.

Before stating our main assumptions, we briefly fix some notations. We denote by D2,2(RN )
the completion of C∞

c (RN ) with respect to the norm

∥u∥D2,2(RN ) =
(∫

RN

|∆u|2 dx
)1/2

.
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For 1 ≤ p <∞, Lp(Ω) denotes the Lebesgue space endowed with the norm

∥u∥p =
(∫

Ω

|u|p dx
)1/p

.

We write ∥ · ∥− for the norm in H−2(Ω), the dual space of H2
0 (Ω). The ball of center a ∈ RN

and radius r > 0 is denoted by B(a, r). li, νi, and Ci denote positive constants whose values
are unimportant. For all ε > 0, t > 0, O(εt) denotes the quantity satisfying |O(εt)|/εt ≤ C1,
O1(ε

t) denotes C2ε
t ⩽ O1(ε

t) ⩽ C3ε
t and o(εt) means o(εt)/εt → 0 as ε → 0 and o(1) a generic

infinitesimal value, → and ⇀ denote strong and weak convergence, respectively. Finally, we note

A0 = inf
{∫

Ω

|∆u|2; u ∈ H2
0 (Ω),

∫
Ω

|u|2
∗
= 1

}
.

We now state the structural assumptions used throughout the paper:

(A1) f ∈ H−2(Ω) and f(x) > 0 a.e. in Ω.
(A2) There exist k different points a1, a2, . . . , ak ∈ Ω such that

V (x) ∈ L∞
loc

(
Ω \ {a1, a2, . . . , ak}

)
, lim

x→aj

V (x) |x− aj |4 = 1.

Moreover, there exist δ0 > 0 and α, β > 2
(
b(µ) − δ

)
> 0 such that, for all x ∈ B(aj , δ0)

and j ∈ {1, . . . , k},

1− |x− aj |β ≤ |x− aj |4V (x) ≤ 1− |x− aj |α. (1.3)

Here, δ0 is chosen so that |ai − aj | ≥ 4δ0 for i ̸= j and B(aj , δ0) ⊂ Ω.
(A3) There exists a constant 0 < C < 1 such that

µ

∫
Ω

V (x)u2 dx ≤ C

∫
Ω

|∆u|2 dx, ∀u ∈ H2
0 (Ω).

We are ready to state our main result.

Theorem 1.1. Assume that (A1)–(A3) are satisfied and 0 < µ < µ̄. Then there exists λ∗ > 0
such that for all 0 < λ < λ∗, problem (1.1) has at least k solutions on H2

0 (Ω).

Remark 1.2. It is worth noting that, unlike [13], which studied nonhomogeneous biharmonic

problem with Rellich-type singularities V (x) =
∑k

j=1 |x − aj |−4 with a classical perturbation∑k
j=1 |x − aj |αj−4, our work considers a more rigid class of multiple singular potentials V (x).

Specifically, we impose sharper two-sided bounds near each pole and uniform separation between
the singularities, making the problem (1.1) more interesting and delicate.

This article is organized as follows. In Section 2, we give some preliminaries. In Section 3, we
present the proofs of several technical lemmas and propositions. Section 4 is devoted to the proof
of Theorem 1.1.

2. Preliminary results

To prove Theorem 1.1, we will use critical point theory. On H2
0 (Ω), we define the energy

functional associated with the problem (1.1) by

Jµ(u) =
1

2

∫
Ω

(|∆u|2 − µV (x)u2) dx− 1

2∗

∫
Ω

|u|2
∗
dx− λ

∫
Ω

fu dx.

We say that u is a weak solution of (1.1) if u ∈ H2
0 (Ω) and for all φ ∈ H2

0 (Ω), we have

⟨J ′
µ(u), φ⟩ =

∫
Ω

(∆u∆φ− µV (x)uφ) dx−
∫
Ω

|u|2
∗−2uφdx− λ

∫
Ω

fφ dx = 0.

We define

Nµ = {u ∈ H2
0 (Ω) : u ̸= 0, ⟨J ′

µ(u), u⟩ = 0}.
First, we give some energy estimates.
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Lemma 2.1. Let u be a solution of (1.1), then for any λ > 0,

Jµ(u) ≥ −χλ2,
where

χ =
(N + 4)2

32N(1− C)
∥f∥2−.

Proof. Let u be a solution of (1.1), then we have

Jµ(u) =
1

2

∫
Ω

(|∆u|2 − µV (x)u2) dx− 1

2∗

∫
Ω

|u|2
∗
dx− λ

∫
Ω

fu dx

=
2

N

∫
Ω

(|∆u|2 − µV (x)u2) dx− λ
N + 4

2N

∫
Ω

fu dx

≥ 2

N
(1− C)∥u∥2 − λ

N + 4

2N
∥u∥∥f∥− .

For t > 0, we set

h̄(t) =
2

N
(1− C)t2 − λ

N + 4

2N
∥f∥−t,

then, we obtain

h̄(t) ≥ h̄(t̄) = −λ2 (N + 4)2

32N(1− C)
∥f∥−,

where t̄ = λ N+4
8(1−C)∥f∥−. This completes the proof. □

Next, we define ψµ : (0,+∞) → R by ψµ(t) = ⟨J ′
µ(tu), tu⟩, that is

ψµ(t) = t2
∫
Ω

(|∆u|2 − µV (x)u2) dx− t2
∗
∫
Ω

|u|2
∗
dx− λt

∫
Ω

fu dx,

for all u ∈ Nµ. So

ψ′
µ(1) = 2

∫
Ω

(
|∆u|2 − µV (x)u2

)
dx− 2∗

∫
Ω

|u|2
∗
dx− λ

∫
Ω

fu dx,

=

∫
Ω

(
|∆u|2 − µV (x)u2

)
dx− (2∗ − 1)

∫
Ω

|u|2
∗
dx.

We split Nµ into three parts

N+
µ = {u ∈ Nµ : ψ′

µ(1) > 0},
N 0

µ = {u ∈ Nµ : ψ′
µ(1) = 0},

N−
µ = {u ∈ Nµ : ψ′

µ(1) < 0}.

We now derive some basic properties of N+
µ ,N 0

µ and N−
µ .

Lemma 2.2. Assume that (A1)–(A3) are satisfied and 0 < µ < µ̄. Then there exists λ1 > 0 such
that for any λ ∈ (0, λ1), N 0

µ = ∅ and N−
µ ̸= ∅.

Proof. Arguing by contradiction, we assume that there are λn → 0 such that N 0
µ ̸= ∅, then∫

Ω

(|∆un|2 − µV (x)u2n) dx = (2∗ − 1)

∫
Ω

|un|2
∗
dx, (2.1)

and ∫
Ω

(|∆un|2 − µV (x)u2n) dx =

∫
Ω

|un|2
∗
dx+ λn

∫
Ω

fun dx, (2.2)

by Sobolev inequality, (A3) and (2.1), we obtain

A−2∗/2
0

(∫
Ω

|∆un|2 dx
)2∗/2

≥
∫
Ω

|un|2
∗
dx ≥ 1− C

2∗ − 1

∫
Ω

|∆un|2 dx,

and so ∫
Ω

|∆un|2 dx ≥ C̃AN/4
0 , (2.3)
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with C̃ =
(
1−C
2∗−1

)N−4
4 . Combining (2.1), (2.2) with (2.3), we obtain

0 =
(
1− 1

2∗ − 1

)∫
Ω

(|∆un|2 − µV (x)u2n) dx− λn

∫
Ω

fun dx

≥
(
1− 1

2∗ − 1

)
(1− C)

∫
Ω

|∆un|2 dx− λn∥un∥∥f∥− > 0.

Since λn → 0. This contradiction implies that there is λ̄ > 0 such that N 0
µ = ∅ for any λ ∈ (0, λ̄).

Now, for u ∈ H2
0 (Ω) \ {0}, t > 0, we consider the function

g(t) = t

∫
Ω

(|∆u|2 − µV (x)u2) dx− t2
∗−1

∫
Ω

|u|2
∗
dx− λ

∫
Ω

fu dx.

Let

tmax =
(∫

Ω
(|∆u|2 − µV (x)u2) dx

(2∗ − 1)
∫
Ω
|u|2∗ dx

) 1
2∗−2

.

It is clear that g(t) achieves its maximum at tmax and we have

g(tmax) =
(( 1

2∗ − 1

) 1
2∗−2 −

( 1

2∗ − 1

) 2∗−1
2∗−2

)( ∫
Ω
(|∆u|2 − µV (x)u2) dx

) 2∗−1
2∗−2

∥u∥
2∗

2∗−2

2∗

− λ

∫
Ω

fu dx

= CN

(∫
Ω
(|∆u|2 − µV (x)u2) dx

)N+4
8

∥u∥N/4
2∗

− λ

∫
Ω

fu dx

≥ CN

(
(1− C)

∫
Ω
|∆u|2 dx

)N+4
8(

∥u∥√
A0

)N/4
− λ

∫
Ω

fu dx

≥ CN (1− C)
N+4

8 ∥u∥(
√
A0)

N/4 − λ∥u∥∥f∥− ,

where CN =
(

1
2∗−1

) 1
2∗−2 −

(
1

2∗−1

) 2∗−1
2∗−2

.

Let

¯̄λ =
CN (1− C)

N+4
8

(√
A0

)N/4

∥f∥−
> 0,

then for λ ∈ (0, ¯̄λ), one has that g(tmax) > 0. Then there exists t+ = t+(u) such that 0 < tmax <

t+, g(t+) = 0 and g′(t+) < 0, it follows that t+u ∈ N−
µ . In conclusion, for λ1 = min{λ̄, ¯̄λ} we have

N 0
µ = ∅ and N−

µ ̸= ∅. □

3. Localization of constraints

We minimize the functional Jµ on some subsets of constraints Nµ. For this similar to [10], we
define a map of “Barycenter type” βj : H

2
0 (Ω) \ {0} → RN , as

βj(u) =

∫
Ω
ψj(x)|∆u|2 dx∫
Ω
|∆u|2 dx

, for j ∈ {1, 2, . . . , k}

where ψj(x) = min{δ0, |x− aj |}. For r0 = δ0
3 , we set

N−
j = {u ∈ N−

µ , βj(u) < r0}, Γ−
j = {u ∈ N−

µ , βj(u) = r0}.

From [1] and [6], we derive the following result.

Proposition 3.1. Let r0 be as above, if βj(u) < r0 then∫
Ω

|∆u|2 dx ≥ 3

∫
Ω\B(aj ,r0)

|∆u|2 dx.
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Remark 3.2. We deduce from Proposition 3.1, that if u ∈ H2
0 (Ω)\{0}, βj(u) ≤ r0 and βi(u) ≤ r0,

then i = j. Indeed, notice that if βj(u) ≤ r0, βi(u) ≤ r0 and j ̸= i, then by Proposition 3.1, we
have

2

∫
Ω

|∆u|2 dx ≥ 3
(∫

Ω\B(aj ,r0)

|∆u|2 dx+

∫
Ω\B(ai,r0)

|∆u|2 dx
)
≥ 3

∫
Ω

|∆u|2 dx,

which is a contradiction.

Now, for j ∈ {1, 2, . . . , k}, we consider the following variational problems

cλ,j = inf{Jµ(u), u ∈ N−
j }, ĉλ,j = inf{Jµ(u), u ∈ Γ−

j }.

For j ∈ {1, 2, . . . , k} fixed, choose the radial cut-off function ϕ(x) = ϕ(|x|) ∈ C∞
0 (B(0, 2δ0)) such

that 0 ≤ ϕ(x) ≤ 1 in B(0, 2δ0) and ϕ(x) = 1 in B(0, δ0).
We set uε,j(x) = ϕ(x− aj)yε(x− aj). The following asymptotic properties hold.

Lemma 3.3. Assume that N ≥ 5 and 0 < µ < µ̄. Then, as ε→ 0, we have the following estimates∫
Ω

(
|∆uε,j |2 − µ

|uε,j |2

|x− aj |4
)
dx = AN/4

µ +O(ε2(b(µ)−δ)), (3.1)∫
Ω

|uε,j |2
∗
dx = AN/4

µ +O(ε2
∗(b(µ)−δ)), (3.2)∫

Ω

|x− aj |α−4|uε,j |2 dx = O(ε2(b(µ)−δ)), since α > 2(b(µ)− δ). (3.3)

Proof. The proof is similar to [2] and [8]. □

Proposition 3.4. Let (A1), (A2) and (A3) be verified, and 0 < µ < µ̄. Then, there exists λ2 > 0,
such that for all λ ∈ (0, λ2) there holds

cλ,j <
2

N
AN/4

µ − χλ2. (3.4)

Proof. As uε,j(x) ̸= 0, from Lemma 2.2 we can find t−ε,j = t−(uε,j) > 0, such that for any

λ ∈ (0, λ1) we have t−ε,juε,j ∈ N−
j . Since

βj(t
−
ε,juε,j) =

∫
Ω
ψj(x)|∆uε,j |2 dx∫
Ω
|∆uε,j |2 dx

→ 0, as ε→ 0,

it follows that there exists ε1 > 0 such that βj(t
−
ε,juε,j) < r0 for any ε ∈ (0, ε1), that is t

−
ε,juε,j ∈

N−
j . Hence, we have

sup
t>tmax

Jµ(tuε,j) ≤ sup
t>0

{ t2
2

∫
Ω

(
|∆uε,j |2 − µV (x)u2ε,j

)
dx− t2

∗

2∗

∫
Ω

|uε,j |2
∗
dx

}
− tmaxλ

∫
Ω

fuε,j dx,

for t > 0, we consider the function

ḡ(t) =
t2

2

∫
Ω

(
|∆uε,j |2 − µV (x)u2ε,j

)
dx− t2

∗

2∗

∫
Ω

|uε,j |2
∗
dx.

Using (1.3), we obtain

ḡ(t) ≤ t2

2

[ ∫
Ω

(
|∆uε,j |2 − µ

u2ε,j
|x− aj |4

)
dx+ µ

∫
Ω

|x− aj |β−4u2ε,j dx
]
− t2

∗

2∗

∫
Ω

|uε,j |2
∗
dx.

On the other hand, from

sup
t≥0

( t2
2
B1 −

t2
∗

2∗
B2

)
=

2

N
B

N/4
1 B

4−N
4

2 ; B1, B2 > 0,

and (3.1), (3.2) and (3.3), we obtain

sup
t≥0

ḡ(t) ≤ 2

N
AN/4

µ + o(ε2(b(µ)−δ)).
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Hence, for all 0 < ε < ε1, we have

sup
t>tmax

Jµ(tuε,j) ≤
2

N
AN/4

µ + o(ε2(b(µ)−δ))− tmaxλ

∫
Ω

fuε,j dx

≤ 2

N
AN/4

µ + o(ε2(b(µ)−δ))− C4λε
b(µ)−δ

for some positive constant C4 independent of ε and j. We write

o(ε2(b(µ)−δ)) = k(ε)ε2(b(µ)−δ),

where k(ε) → 0 as ε→ 0. Taking

ε2(b(µ)−δ) = (
2χ

C1
)2λ2, k(ε) < χ(

C1

2χ
)2, (3.5)

and choosing λ2 small enough, we have taht ε < ε1 for all λ ∈ (0, λ2). Substituting ε as above to
(3.5) gives (3.4). □

Proposition 3.5. For j ∈ {1, . . . , k}. Let (A1)–(A3) be satisfied and 0 < µ < µ̄. Then there
exists λ3 > 0, such that for all λ ∈ (0, λ3)

ĉλ,j >
2

N
AN/4

µ .

Proof. We argue by contradiction. Suppose that there exists a sequence λn → 0 such that

ĉλn,j → c ≤ 2

N
AN/4

µ

for some 1 ≤ j ≤ k. Hence, we can find a sequence {un}n ⊂ H2
0 (Ω) with un ∈ N−

j satisfying

Jµ(un) → c ≤ 2

N
AN/4

µ , as n→ ∞. (3.6)

From {un}n ⊂ N−
j , we have∫
Ω

(|∆un|2 − µV (x)u2n) dx−
∫
Ω

|un|2
∗
dx = λn

∫
Ω

fun dx = o(1). (3.7)

This means that

c+ o(1) = Jµ(un)

=
1

2

∫
Ω

(|∆un|2 − µV (x)u2n) dx− 1

2∗

∫
Ω

|un|2
∗
dx+ o(1)

=
2

N

∫
Ω

(|∆un|2 − µV (x)u2n) dx+ o(1),

and ∫
Ω

(|∆un|2 − µV (x)u2n) dx =

∫
Ω

|un|2
∗
dx+ o(1)

≤
(∫

Ω
|∆un|2 dx
A0

)2∗/2
+ o(1)

≤
(∫

Ω
(|∆un|2 − µV (x)u2n) dx

(1− C)A0

)2∗/2

+ o(1),

which together imply that

Nc+ 1 ≥
∫
Ω

(|∆un|2 − µV (x)u2n) dx ≥ ((1− C)A0)
N/4

> 0

holds for n large. From (A3), we obtain

(1− C)∥un∥2 ≤
∫
Ω

(|∆un|2 − µV (x)u2n) dx ≤ C ′∥un∥2,

which provides that
0 < ν1 ≤ ∥un∥ ≤ ν2 (3.8)
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for some positive constants ν1 and ν2. From (3.7), we set

lim
n→∞

∫
Ω

(|∆un|2 − µV (x)u2n) dx = lim
n→∞

∫
Ω

|un|2
∗
dx = l1 > 0.

We define the Levy concentration functions

ϱn(r) = sup
y∈Ω

∫
B(y,r)

|un|2
∗
dx,

since, for every n we have rn > 0 such that ϱn(rn) =
l1
2 , then there exists yn ∈ Ω such that∫

B(yn,rn)

|un|2
∗
dx = ϱn(rn) =

l1
2
.

Let us define the rescaled functions by

wn(x̃) = r
N−4

2
n un(rnx̃+ yn),

then wn(x̃) ∈ H2
0 (Ωn) with Ωn = (Ω − yn)/rn. By extending wn(x̃) to be zero for x̃ outside Ωn,

we obtain wn(x̃) ∈ D2,2(RN ), with∫
RN

|∆wn(x̃)|2 dx̃ =

∫
Ωn

|r
N−4

2
n ∆un(rnx̃+ yn)|2 dx̃

=

∫
Ωn

rNn |∆un(rnx̃+ yn)|2 dx̃

=

∫
Ω

|∆un(x)|2 dx.

Similarly, we obtain ∫
RN

r4nV (rnx̃+ yn)w
2
n(x̃) dx̃ =

∫
Ω

V (x)u2n(x) dx,∫
RN

|wn(x̃)|2
∗
dx̃ =

∫
Ω

|un(x)|2
∗
dx.

Then by (3.8), {wn}n is bounded in D2,2(RN ), thus we can assume that

wn(x̃)⇀ w0(x̃) in D2,2(RN ), wn(x̃) → w0(x̃) a.e in RN .

Set w̃n(x̃) = wn(x̃)− w0(x̃), we have from (3.7)∫
RN

(
|∆wn(x̃)|2 − r4nV (rnx̃+ yn)w

2
n(x̃)

)
dx̃−

∫
RN

|wn(x̃)|2
∗
dx̃ = o(1), (3.9)

by using Brezis-Lieb lemma, we obtain∫
RN

|∆w̃(x̃)|2 dx̃ =

∫
RN

|∆wn(x̃)|2 dx̃−
∫
RN

|∆w0(x̃)|2 dx̃+ o(1)∫
RN

|w̃n(x̃)|2
∗
dx̃ =

∫
RN

|wn(x̃)|2
∗
dx̃−

∫
RN

|w0(x̃)|2
∗
dx̃+ o(1)∫

RN

r4nV (rnx̃+ yn)w̃
2
n(x̃) dx̃ =

∫
RN

r4nV (rnx̃+ yn)w
2
n(x̃) dx̃−

∫
RN

r4nV (rnx̃+ yn)w
2
0(x̃) dx̃+ o(1).

Recalling that rnx̃+yn ∈ Ω and Ω is bounded, we can assume up to a subsequence, that rn → r̄ ≥ 0
and yn → ȳ ∈ Ω, so we will distinguish two cases. Before doing so, we need to clarify one notation.
Whenever writing rnx̃ + yn ∈ (or /∈)B(aj , δ0), always mean that there is a natural number N1

such that for all n > N1, there holds rnx̃+ yn ∈ (or /∈)B(aj , δ0), for any given x̃.

Case (I): If rnx̃+ yn /∈ B(aj , δ0), then by taking into account the definition of ψj(x), we obtain

r0 = βj(un) =

∫
Ω
ψj(x)|∆un(x)|2 dx∫
Ω
|∆un(x)|2 dx

=

∫
RN ψj(rnx̃+ yn)|∆wn(x̃)|2 dx̃∫

RN |∆wn(x̃)|2 dx̃
→ δ0,

which is a contradiction to the choice of r0.

Case (II): When rnx̃+ yn ∈ B(aj , δ0), we distinguish three steps.
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Step 1. If rn → r̄ = 0 and ȳ = aj , then we have

r0 = βj(un) =

∫
RN ψj(rnx̃+ yn)|∆wn(x̃)|2 dx̃∫

RN |∆wn(x̃)|2 dx̃
→ ψj(aj) = 0, as n→ ∞,

which is a contradiction.

Step 2. If rn → r̄ > 0, we consider the following two sub-steps:

Sub-step 2.1. If ∥w̃n∥D2,2(RN ) → 0, from (1.2) and (3.9), we have∫
RN

(
|∆wn(x̃)|2 − µ

r4n

|rnx̃+ yn − aj |4
w2

n(x̃)
)
dx̃

≥ Aµ

(∫
RN

|wn(x̃)|2
∗
dx̃

)2/2∗

= Aµ

(∫
RN

(
|∆wn(x̃)|2 − µr4nV (rnx̃+ yn)w

2
n(x̃)

)
dx̃

)2/2∗

≥ Aµ

(∫
RN

(
|∆wn(x̃)|2 − µ

r4n

|rnx̃+ yn − aj |4
w2

n(x̃)
)
dx̃

)2/2∗

.

Hence, we obtain ∫
RN

(
|∆wn(x̃)|2 − µ

r4n

|rnx̃+ yn − aj |4
w2

n(x̃)
)
dx̃ ≥ AN/4

µ ,

and so ∫
RN

(
|∆w0(x̃)|2 − µ

r4n
|rnx̃+ yn − aj |4

w2
0(x̃)

)
dx̃ ≥ AN/4

µ .

Consequently,

Jµ(un) =
1

2

∫
Ω

(|∆un|2 − µV (x)u2n) dx− 1

2∗

∫
Ω

|un|2
∗
dx+ o(1)

=
2

N

∫
RN

(
|∆wn(x̃)|2 − µr4nV (rnx̃+ yn)w

2
n(x̃)

)
dx̃+ o(1)

≥ 2

N

∫
RN

(
|∆wn(x̃)|2 − µr4n

w2
n(x̃)

|rnx̃+ yn − aj |4
)
dx̃

+
2

N
µ

∫
RN

r4n|rnx̃+ yn − aj |α−4w2
n(x̃) dx̃+ o(1)

=
2

N

∫
RN

(
|∆w0(x̃)|2 − µr4n

w2
0(x̃)

|rnx̃+ yn − aj |4
)
dx̃

+
2

N
µ

∫
RN

r̄2|r̄x̃+ ȳ − aj |α−4w2
0(x̃) dx̃

>
2

N
AN/4

µ ,

which contradicts the assumption that Jµ(un) ≤ 2
NAN/4

µ .

Sub-step 2-2. If ∥w̃n∥D2,2(RN ) → L > 0, set

A+ o(1) =

∫
RN

(
|∆w0(x̃)|2 − µr4nV (rnx̃+ yn)w

2
0(x̃)

)
dx̃−

∫
RN

|w0(x̃)|2
∗
dx̃,

then, by (3.9) we obtain

−A+ o(1) =

∫
RN

(
|∆wn(x̃)|2 − µr4nV (rnx̃+ yn)w

2
n(x̃)

)
dx̃−

∫
RN

|wn(x̃)|2
∗
dx̃.

Suppose that A > 0 (A < 0 can be considered similarly). We can find tn → 1, sn → 1 such that
w̄n = tnw0 and v̄n = snw̃n satisfy

A =

∫
RN

(
|∆w̄n|2 − µr4nV (rnx̃+ yn)w̄

2
n

)
dx̃−

∫
RN

|w̄n|2
∗
dx̃, (3.10)
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−A =

∫
RN

(
|∆v̄n|2 − µr4nV (rnx̃+ yn)v̄

2
n

)
dx̃−

∫
RN

|v̄n|2
∗
dx̃. (3.11)

Now for v = tv̄n = t(snw̃n), t ∈ (0, 1), we have∫
RN

(
|∆v|2 − µr4nV (rnx̃+ yn)v

2
)
dx̃ =

∫
RN

|v|2
∗
dx̃.

We denote

J̃µ(w) =
1

2

∫
RN

(
|∆w|2 − µr4nV (rnx̃+ yn)w

2
)
dx̃− 1

2∗

∫
RN

|w|2
∗
dx̃.

Then, we have

J̃µ(v) =
2

N

∫
RN

(
|∆v|2 − µr4nV (rnx̃+ yn)v

2
)
dx̃

=
2

N
t2
∫
RN

(
|∆v̄n|2 − µr4nV (rnx̃+ yn)v̄

2
n

)
dx̃

<
2

N

∫
RN

(
|∆v̄n|2 − µr4nV (rnx̃+ yn)v̄

2
n

)
dx̃

=
1

2

∫
RN

(
|∆v̄n|2 − µr4nV (rnx̃+ yn)v̄

2
n

)
dx̃− 1

2∗

(∫
RN

|v̄n|2
∗
dx̃−A

)
= J̃µ(v̄n) +

1

2∗
A

= J̃µ(v̄n) +
1

2
A+

( 1

2∗
− 1

2

)
A

< J̃µ(w0) + J̃µ(w̃n) +
( 1

2∗
− 1

2

)
A+ o(1).

Thus, we obtain

J̃µ(w0) + J̃µ(w̃n) > J̃µ(v) +
(1
2
− 1

2∗

)
A.

Using an argument as in sub-step 2-1, we obtain

J̃µ(v) ≥
2

N
AN/4

µ .

It follows that

J̃µ(w0) + J̃µ(w̃n) + o(1) ≥ 2

N
AN/4

µ +
(1
2
− 1

2∗

)
A >

2

N
AN/4

µ . (3.12)

On the other hand, we have

Jµ(un) =
1

2

∫
RN

(
|∆w0|2 − µr4nV (rnx̃+ yn)w

2
0

)
dx̃− 1

2∗

∫
RN

|w0|2
∗
dx̃+ o(1)

+
1

2

∫
RN

(
|∆w̃n|2 − µr4nV (rnx̃+ yn)w̃

2
n

)
dx̃− 1

2∗

∫
RN

|w̃n|2
∗
dx̃

= J̃µ(w0) + J̃µ(w̃n) + o(1).

Using (3.12), we obtain

Jµ(un) >
2

N
AN/4

µ .

That is absurd in contrast to (3.6). When A = 0, the proof is similar. Using (3.10), (3.11) with
A = 0, we obtain from the same argument as above that

Jµ(un) = J̃µ(w0) + J̃µ(w̃n) + o(1) ≥ 2

N
AN/4

µ +
2

N
AN/4

µ >
2

N
AN/4

µ .

Again, we obtain a contradiction.

Step 3. If rn → r̄ = 0 and ȳ ̸= aj , then

r4nV (rnx̃+ yn) ≤
r4n

|rnx̃+ yn − aj |4
− r4n |rnx̃+ yn − aj |α−4 → 0.
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Thus, we obtain

Jµ(un) =
1

2

∫
RN

|∆wn|2dx̃− 1

2∗

∫
RN

|wn|2
∗
dx̃+ o(1). (3.13)

We also divide this step into two sub-steps.

Sub-step 3.1. When ∥w̃n∥D2,2(RN ) → 0, we have∫
RN

|∆wn|2 dx̃ ≥ A0

(∫
RN

|wn|2
∗
dx̃

)2/2∗

= A0

(∫
RN

|∆wn|2 dx̃
)2/2∗

,

hence, we obtain ∫
RN

|∆wn|2 dx̃ ≥ AN/4
0 .

It follows from (3.13) that

Jµ(un) =
1

2

∫
RN

|∆wn|2 dx̃− 1

2∗

∫
RN

|wn|2
∗
dx̃+ o(1)

=
2

N

∫
RN

|∆wn|2 dx̃+ o(1) ≥ 2

N
AN/4

0 >
2

N
AN/4

µ ,

which also contradicts (3.6).

Sub-step 3.2. If ∥w̃n∥D2,2(RN ) → L > 0, then the proof is similar. Using (3.12), we obtain from
the same arguments as above that

Jµ(un) = J̃µ(w0) + J̃µ(w̃n) + o(1)

≥

{
2
NAN/4

0 +
(
1
2 − 1

2∗

)
A, if A ̸= 0,

2
NAN/4

0 + 2
NAN/4

0 , if A = 0.

>
2

N
AN/4

µ .

Again, we obtain a contradiction.
This completes the proof of Proposition 3.5. □

4. Proof of Theorem 1.1

To obtain the existence of multiple solutions for the problem (1.1), we need several lemmas.

Lemma 4.1. For each u ∈ N−
j there exist a number ρu > 0 and a continuous function h > 0

defined on {w ∈ H2
0 (Ω) : ∥w∥ < ρu}, satisfying

h(0) = 1, h(w)(u− w) ∈ N−
j , for ∥w∥ < ρu,

and

⟨h′(0), w⟩ =
2
∫
Ω
(∆u∆w − µV (x)uw) dx− 2∗

∫
Ω
|u|2∗uw dx− λ

∫
Ω
fu dx∫

Ω
(|∆u|2 − µV (x)u2) dx− (2∗ − 1)

∫
Ω
|u|2∗ dx

.

Proof. Define H : R×H2
0 (Ω) → R as follows

H(t, w) = t
(∫

Ω

(
|∆(u− w)|2 − µV (x)(u− w)2

)
dx

)
− t2

∗−1

∫
Ω

|u− w|2
∗
dx− λ

∫
Ω

f(u− w) dx.

Since u ∈ N−
j , we have

H(1, 0) =

∫
Ω

(
|∆u|2 − µV (x)u2

)
dx−

∫
Ω

|u|2
∗
dx− λ

∫
Ω

fu dx = 0.

and
∂H

∂t
(1, 0) =

∫
Ω

(
|∆u|2 − µV (x)(u)2

)
dx− (2∗ − 1)

∫
Ω

|u|2
∗
dx ̸= 0.

We obtain the result by applying the implicit function Theorem at the point (1, 0). □
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Lemma 4.2. Assume that (A1)–(A3) are verified, and 0 < µ < µ̄. Then, for any sequence
{ujn} ⊂ N−

j , satisfying

Jµ(u
j
n) → m <

2

N
AN/4

µ − χλ2,

and

J ′
µ(u

j
n) → 0, in H−2(Ω), (4.1)

{ujn} is relatively compact in H2
0 (Ω).

Proof. Since {ujn} ⊂ N−
j and Jµ(u

j
n) → m as n→ ∞, we can assume from a similar argument to

Proposition 3.5 that

0 < ν3 ≤ ∥ujn∥ ≤ ν4

for some positive constants ν3 and ν4. Going if necessary to a subsequence, we can assume that
ujn ⇀ uj in H2

0 (Ω) and a.e. in Ω. Using (4.1) then for any φ ∈ H2
0 (Ω),

o(1) = ⟨J ′
µ(u

j
n), φ⟩

=

∫
Ω

(
∆ujn∆φ− µV (x)ujnφ

)
dx−

∫
Ω

|ujn|2
∗−2ujnφdx− λ

∫
Ω

fφ dx

=

∫
Ω

(
∆uj∆φ− µV (x)ujφ

)
dx−

∫
Ω

|uj |2
∗−2ujφdx− λ

∫
Ω

fφ dx+ o(1)

= ⟨J ′
µ(u

j), φ⟩+ o(1),

that is, uj is a weak solution of (1.1), and∫
Ω

(
|∆uj |2 − µV (x)(uj)2

)
dx−

∫
Ω

|uj |2
∗
dx− λ

∫
Ω

fuj dx = 0. (4.2)

Now, we claim that uj ̸= 0. Arguing by contradiction, we assume that uj ≡ 0, then limn→∞
∫
Ω
fujndx =∫

Ω
fujdx = 0 and therefore, from {ujn} ⊂ N−

j we have∫
Ω

(
|∆ujn|2 − µV (x)(ujn)

2
)
dx−

∫
Ω

|ujn|2
∗
dx = o(1),

thus, we obtain

lim
n→∞

∫
Ω

(|∆ujn|2 − µV (x)(ujn)
2) dx = lim

n→∞

∫
Ω

|ujn|2
∗
dx = l2 > 0,

and we find yn ∈ Ω, rn ≥ 0 such that∫
B(yn,rn)

|ujn|2
∗
dx =

l2
2
.

Again denoting wn(x̃) = r
N−4

2
n ujn(rnx̃ + yn), by extending wn(x̃) to be zero for x̃ outside Ωn, we

obtain wn(x̃) ∈ D2,2(RN ) with∫
RN

(
|∆wn(x̃)|2 − r4nV (rnx̃+ yn)w

2
n(x̃)

)
dx̃−

∫
RN

|wn(x̃)|2
∗
dx̃ = o(1).

We divide the discussion into two cases.

Case III. If rnx̃+ yn /∈ B(aj , δ0), it follows from the definition of βj(u), ψj and r0 that

δ0
3

= r0 = βj(u
j
n) =

∫
Ω
ψj(x)|∆ujn(x)|2 dx∫
Ω
|∆ujn(x)|2 dx

=

∫
RN ψj(rnx̃+ yn)|∆wn(x̃)|2 dx̃∫

RN |∆wn(x̃)|2 dx̃
→ δ0,

which is a contradiction.

Case IV. If rnx̃+ yn ∈ B(aj , δ0), then

Jµ(u
j
n) =

1

2

∫
Ω

(|∆ujn|2 − µV (x)(ujn)
2) dx− 1

2∗

∫
Ω

|ujn|2
∗
dx+ o(1)

=
1

2

∫
RN

(
|∆wn(x̃)|2 − µr4nV (rnx̃+ yn)w

2
n(x̃)

)
dx̃− 1

2∗

∫
RN

|wn(x̃)|2
∗
dx̃+ o(1)
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=
2

N

∫
RN

(
|∆wn(x̃)|2 − µr4nV (rnx̃+ yn)w

2
n(x̃)

)
dx̃+ o(1)

= J̃µ(wn) + o(1),

The proof is divided into several steps: step 1: rn → r̄ = 0 and ȳ = aj ; step 2: rn → r̄ > 0; step
3: rn → r̄ = 0 and ȳ ̸= aj .

We use the same arguments as those in the corresponding steps in the proof of Proposition 3.5

to get that J̃µ(wn) ≥ 2
NAN/4

µ . Here, we only sketch the argument for step 2. It follows from (1.2),
that ∫

RN

(
|∆wn(x̃)|2 − µ

r4n

|rnx̃+ yn − aj |4
w2

n(x̃)
)
dx̃

≥ Aµ

(∫
RN

|wn(x̃)|2
∗
dx̃

)2/2∗

= Aµ

(∫
RN

(
|∆wn(x̃)|2 − µr4nV (rnx̃+ yn)w

2
n(x̃)

)
dx̃

)2/2∗

≥ Aµ

(∫
RN

(
|∆wn(x̃)|2 − µ

r4n

|rnx̃+ yn − aj |4
w2

n(x̃)
)
dx̃

)2/2∗

.

So, that ∫
RN

(
|∆wn(x̃)|2 − µ

r4n

|rnx̃+ yn − aj |4
w2

n(x̃)
)
dx̃ ≥ AN/4

µ .

Thus, from (A2) it follows that∫
RN

(
|∆wn(x̃)|2 − µr4nV (rnx̃+ yn)w

2
n(x̃)

)
dx̃ ≥ AN/4

µ .

Then, we have

2

N
AN/4

µ − χλ2 > m = lim
n→∞

Jµ(u
j
n) = lim

n→∞
J̃µ(wn) ≥

2

N
AN/4

µ ,

which is a contradiction. In sum, we have proved that uj ̸= 0.
Next, we prove that the limit uj is indeed strong. Suppose by contradiction that ∥ujn − uj∥ →

ν5 > 0 and denote vn = ujn − uj , then we have vn ⇀ 0 in H2
0 (Ω) and ∥vn∥ → ν5 > 0. It follows

from Brezis-Lieb Lemma and (4.2), that∫
Ω

(
|∆vn(x)|2 − V (x)v2n(x)

)
dx−

∫
Ω

|vn(x)|2
∗
dx

=

∫
Ω

(
|∆ujn(x)|2 − V (x)(ujn)

2(x)
)
dx−

∫
Ω

|ujn(x)|2
∗
dx

−
∫
Ω

(
|∆uj(x)|2 − r4nV (x)(uj)2(x)

)
dx+

∫
Ω

|uj(x)|2
∗
dx+ o(1)

= λ

∫
Ω

fujn dx− λ

∫
Ω

fuj dx+ o(1)

= o(1).

Similarly to the previous proof, we can find yn ∈ Ω, rn > 0 such that∫
B(yn,rn)

|ujn|2
∗
dx =

l3
2
> 0.

Letting zn(x̃) = r
N−4

2
n vn(rnx̃+ yn), and extending zn to be zero for x̃ outside Ωn = r−1

n (Ω− yn),
we can write zn(x̃) ∈ D2,2(RN ) and we have that∫

RN

(
|∆zn(x̃)|2 − r4nV (rnx̃+ yn)z

2
n(x̃)

)
dx̃−

∫
RN

|zn(x̃)|2
∗
dx̃ = o(1). (4.3)

We will distinguish two cases.
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Case V. If rnx̃ + yn /∈ B(aj , δ0), we can use similar arguments as those in case III to obtain a
contradiction, so we omit the details here.

Case VI. If rnx̃+ yn ∈ B(aj , δ0), then

Jµ(u
j
n) =

1

2

∫
Ω

(|∆vn|2 − µV (x)v2n) dx− 1

2∗

∫
Ω

|vn|2
∗
dx+ Jµ(u

j) + o(1)

=
1

2

∫
RN

(
|∆zn(x̃)|2 − µr4nV (rnx̃+ yn)z

2
n(x̃)

)
dx̃− 1

2∗

∫
RN

|zn(x̃)|2
∗
dx̃+ Jµ(u

j) + o(1)

= J̃µ(zn) + Jµ(u
j) + o(1).

Now, we need to distinguish three steps.

Step 1. If rn → r̄ > 0, it follows from (1.2) and (4.3), that∫
RN

(
|∆zn(x̃)|2 − µ

r4n

|rnx̃+ yn − aj |4
z2n(x̃)

)
dx̃

≥ Aµ

(∫
RN

|zn(x̃)|2
∗
)2/2∗

dx̃

≥ Aµ

(∫
RN

|∆zn(x̃)|2 − µ
r4n

|rnx̃+ yn − aj |4
z2n(x̃)

)2/2∗

dx̃.

Thus, we obtain

J̃µ(zn) =
2

N

∫
RN

(
|∆zn(x̃)|2 − µr4nV (rnx̃+ yn)z

2
n(x̃)

)
dx̃ ≥ 2

N
AN/4

µ . (4.4)

Step 2. If rn → r̄ = 0 and ȳ ̸= aj then we have

r4nV (rnx̃+ yn) ≤
r4n

|rnx̃+ yn − aj |4
− r4n |rnx̃+ yn − aj |α−4 → 0.

Thus, we obtain J̃µ(zn) =
2
N

∫
RN |∆zn(x̃)|2 dx̃. Then, we obtain∫

RN

|∆zn|2 dx̃ ≥ A0

(∫
RN

|zn|2
∗
dx̃

)2/2∗

= A0

(∫
RN

|∆zn|2 dx̃
)2/2∗

,

hence

J̃µ(zn) ≥
2

N
AN/4

0 ≥ 2

N
AN/4

µ . (4.5)

Step 3. If rn → r̄ = 0 and ȳ = aj , then similarly, we can obtain

J̃µ(zn) ≥
2

N
AN/4

0 ≥ 2

N
AN/4

µ . (4.6)

It follows from (4.4), (4.5) and (4.6) that

J̃µ(zn) ≥
2

N
AN/4

µ .

Since uj is a solution of (1.1) then from Lemma 2.1, we obtain

Jµ(u
j) ≥ −χλ2.

Therefore,

Jµ(u
j
n) = J̃µ(zn) + Jµ(u

j) + o(1) ≥ 2

N
AN/4

µ − χλ2,

which is a contradiction with the choice of {ujn}.
This completes the proof of Lemma 4.2. □

Proof of Theorem 1.1. Fix λ∗ = min{λ1, λ2, λ3}. For any j ∈ {1, . . . , k}, we obtain N−
j = N−

j ∪
Γ−
j . Propositions 3.4 and 3.5 imply that

cλ,j <
2

N
AN/4

µ − χλ2 < ĉλ,j .
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Thus, cλ,j = inf{Jµ(u), u ∈ N−
j }. By the Ekeland variational principle, we can obtain the

minimizing sequence {ujn} ⊂ N−
j satisfying

cλ,j < Jµ(u
j
n) < cλ,j +

1

n
and J ′

µ(u
j
n) → 0, in H−2(Ω).

Therefore, by Lemma 4.2 up to a subsequence we have ujn → uj and uj ̸= 0 in H2
0 (Ω) and so uj

is a solution of (1.1). Moreover, from Remark 3.2, we know that ui and uj are distinct if i ̸= j.
This implies that problem (1.1) has at least k solutions uj ∈ N−

j . □
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