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MULTIPLICITY OF SOLUTIONS FOR BIHARMONIC EQUATIONS WITH
CRITICAL EXPONENT AND PRESCRIBED SINGULARITY

NADJET YAGOUB, MOHAMMED EL MOKHTAR OULD EL MOKHTAR,
ATIKA MATALLAH, SAFIA BENMANSOUR

ABSTRACT. In this article, we study the singular critical biharmonic problem
A2y — pV (z)u = \u|2*72u + Af(z) inQ,
1o}
u = au_ 0 on 99,

on
where A2 is the biharmonic operator, € is an open bounded domain in RV (N > 5) with
smooth boundary 89, 2* = ]3—]_\]4, O<pu<p:= (W)Q, f(z) and V (z) are given functions.
By using variational method and Nehari-type constraint, we establish the existence of multiple
solutions for this problem when 0 < A < A*, for some A* > 0.

1. INTRODUCTION

This article concerns the biharmonic problem

A%y — pV(z)u = |[u* 2u+ Af(z) inQ,

o (L.1)
U= au_ 0 on 092,
on
where A? denotes the biharmonic operator, @ C RY (N > 5) is a bounded domain with smooth
boundary 02, A > 0 is a parameter, 2* = % is the critical Sobolev exponent and 0 < u < [,

where [ is the best constant for the Rellich inequality

2 1
/|acu*a|4dx§ﬁ/|Au|2d$’ Ya € Q, u € HF(Q).
QlT— Q

Here, H3(Q) denotes the completion of C§°(£2) with respect to the norm

= ([ Auar) "

In elasticity theory, biharmonic equations with multipolar singular potentials effectively model
thin elastic plates that include & localized defects or concentrated loads situated at finitely many
points aq, ag, ..., ax. These singularities strongly affect deformation and stability and can be used
to eliminate unwanted frequencies or localize vibrational energy (see Lindsay et al. [9]). Similar
models appear in composite and metamaterials, where point inclusions generate stress multipoles
influencing effective properties and cloaking effects (see Mao-Huang [12]). In addition, biharmonic
singular models can also arise in thin-film physics, surface growth, and nanomechanical resonators
(see [3], @], and [5]).

In recent years, many authors have studied biharmonic problems, for instance, in the regular
case (1 = 0), Qian-Wang in [I4] proved the existence of at least two distinct solutions for with
u=0,\=1and f(z) small. In the singular case (u # 0), we recall that the existence of multiple
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solutions of has been studied under different hypotheses on V(x). For the homogeneous
case, D’Ambrossio-Jannelli [2] considered the Hardy potentiel V(z) = |z|~* and Kang-Xiong in
[7] established the existence and nonexistence of ground state solutions of where V(z) has
prescribed singularities of the form |z —a;|~* with a; € Q and j = 1,..., k, by using a complicated
asymptotic analysis and variational arguments. For the nonhomogenous case, Li et al. [I1] studied
with V(x) = |z|7%, 0 < s < 4. Very recently, the authors in [I3] have proved the existence
of at least 2k solutions of the problem

le U*\u? 2u+z|x v u+ f(z) inQ
ou
U—%—O on 012,

where  is an open bounded domain of RY (N > 5) with smooth boundary 9, for all j = 1,...  k,
a; € Q denote the singularity points, A; > 0 are parameters, 0 < a; < 4 and p; > 0 are real
constants satisfying Z;ﬂ:l pj < fi. We recall that the problem with the Laplacian operator
was studied by Chen [I]. He proved the existence of at least k positive solutions by the argument
developed in [T5]. The main goal of this paper is to generalize the result in [I] to the biharmonic
operator.

From the Rellich inequality, it follows that the best constant

Jo (18f? = p ) de
A(Q) = inf , YaeQ, u<ij, (1.2)

ueHZ()\{0} (f |u o dx) 2/2*
Q

is well defined. Moreover, as shown in [2,[§], A, (€2) is independent of the domain € and is attained
in RN by the family of translated extremals

{yg(x—a)—a E U( Yz —a)), e >0},
where U, is a positive, radially symmetric, and radially decreasing solution of
U
Ml
The normalized translated profiles satisfy

Q)2 .
[ (vt —ap -0 do = [ - o) e = 427
RN RN

|z —alt

A%y — =427t inRM\ {0}, u>0.

By setting p = |z|, the profile U, has the following sharp asymptotics:
Uu(p) = O1(p —am)y as p— 0,
Uu(p) = O1(p™" ™), Ul(p) = O1(p"M~1) as p — o0,

where § = % and
a(p) = 8@(p),  blp) =86(2—¢(u)),

\/N2 AN 48— 4/(N —2)2
N1 ;e 0, al.

In particular, for u € [0,1) one has 0 < a(p) < § < b(u) < 26. There exist positive constants
C1(p),Co(p) such that

0< Cu(p) < Un(w) (Ja|"007% 4 | P00/9)" < Co(p) W € RN \ {0},

Before stating our main assumptions, we briefly fix some notations. We denote by D%2(RY)
the completion of C2°(RY) with respect to the norm

1/2
2y = (/ |Auf? dz)
RN

with

o) =1~
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For 1 < p < oo, LP(2) denotes the Lebesgue space endowed with the norm

fally = ( [ 1 az) ™"

We write || - |- for the norm in H=2(Q), the dual space of H3(Q2). The ball of center a € RY
and radius r > 0 is denoted by B(a,r). l;, v;, and C; denote positive constants whose values
are unimportant. For all € > 0,¢t > 0,0(g!) denotes the quantity satisfying |O(e?)|/et < Ci,
01 (") denotes Coe? < O1(e') < C3et and o(e?) means o(g?) /et — 0 as € — 0 and o(1) a generic
infinitesimal value, — and — denote strong and weak convergence, respectively. Finally, we note

Ao :mf{/ A we H@), [ =1},
Q

We now state the structural assumptions used throughout the paper:

(A1) fe H %) and f(x) > 0 a.e. in Q.
(A2) There exist k different points ag,as,...,ar € Q such that

V(z) € Lis.(Q\ {a1,a2,...,a}), ILm_ V(z) |z —a)t =1

Q

Moreover, there exist dg > 0 and «, 8 > 2(1)(,u) — 5) > 0 such that, for all z € B(a;,do)
and j € {1,...,k},
l—|z—a|® < |z —aq;*V(z) < 1—|z—a4° (1.3)

Here, d¢ is chosen so that |a; — a;| > 46y for ¢ # j and B(a;,dp) C Q.
(A3) There exists a constant 0 < C' < 1 such that

,u/V(:z:)uzd:c < C/ |Au|? dx, Yu e HZ(Q).
Q Q

We are ready to state our main result.

Theorem 1.1. Assume that (A1)—(A3) are satisfied and 0 < p < fi. Then there exists \* > 0
such that for all 0 < X\ < \*, problem (L.1)) has at least k solutions on HZ(2).

Remark 1.2. It is worth noting that, unlike [I3], which studied nonhomogeneous biharmonic
problem with Rellich-type singularities V(z) = Z?Zl |z — a;j|=* with a classical perturbation

Z§:1 |z — a;j|*~*, our work considers a more rigid class of multiple singular potentials V(z).
Specifically, we impose sharper two-sided bounds near each pole and uniform separation between
the singularities, making the problem (|1.1)) more interesting and delicate.

This article is organized as follows. In Section 2, we give some preliminaries. In Section 3, we

present the proofs of several technical lemmas and propositions. Section 4 is devoted to the proof
of Theorem [T11

2. PRELIMINARY RESULTS

To prove Theorem [1.1} we will use critical point theory. On HZ(Q), we define the energy

functional associated with the problem (L.1]) by
1 1 .
Ju(u) = = / (|Au|* — pV (z)u?) dx — —*/ lu|? dx — /\/ fudz.
2 Ja 2" Jo Q

We say that u is a weak solution of (1.1]) if u € H3(Q) and for all ¢ € HZ(2), we have

(J(u), ) = /Q(AuAcp — pV(x)up) dx — /Q lul? ~2up da — )\/chp dx = 0.

We define
Ny =A{ue H5(Q) :u#0, (J),(u),u) =0}

First, we give some energy estimates.
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Lemma 2.1. Let u be a solution of (1.1)), then for any A > 0,

Jll(u) 2 _X)‘27
where ~ 4)
_ + 2

Proof. Let u be a solution of (1.1)), then we have
1
Ju(u) = /(|Au|2 — pV(x)u®)de — —/ > dx — )\/ fudx
N 4
- */(\AuIQ—uV(x)u oA [ fuda
N Jo

2 N 4
>~ (1= )l - A= w1l
For t > 0, we set
- 2 N+4
W) = -0 -2y e
then, we obtain
- . N +4)
h(t) > h(t) = —)\2(7
(1) h0) = ¥ g s -
where ¢ = /\8(]\1"%) IIf||=. This completes the proof. O

Next, we define v, : (0, +00) — R by 9,,(t) = (J),(tu), tu), that is

Bu(t) = 12 / (Au2 — gV (@) do — ¢ [ Juf? do - )\t/ Fuds,
Q Q Q
for all u € N,,. So

w;(1)=2/ (JAul* — pV (2)u a:—2*/ |u?" dz — A /fudgc
= /Q (JAul® — pV (2)u?) dz — (2° = 1)

We split V,, into three parts

N ={ueN,:v,(1)> 0},

N ={ue N, :¢,(1) =0},

N, ={ue N, :4,(1) <0}.
We now derive some basic properties of NV,5', NV] B and NV .

Lemma 2.2. Assume that (A1)—(A3) are satisfied and 0 < pp < fi. Then there exists Ay > 0 such
that for any X € (0,\1), N =0 and N #0.

Proof. Arguing by contradiction, we assume that there are A\, — 0 such that N /9 # (), then
/(|Aun|2 C V(@) de = (2 — 1)/ |2 da, (2.1)
and ’ !
/(|Aun|2 —pV(@)ul)de = | |un|?* do+ /\n/ fuy de, (2.2)
by Sobolev inequality, (A3) and ., we obtain ’ ’

AP /|Au |2dx z/ fun? dz > 2 > C/\Aun|2dm
o -

/ |Auy|? dz > CAN*, (2.3)

and so
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N—4

with C = (=) % . Combining (2.1, [2.2) with (2.3), we obtain
271

0= (1 - 2*1_ 1) /Q(|Aun\2 — uV(z)u?)de — \, /Q fup dz

1 2
> (1= 57) =) [ |Audo = Aualllf]- >0

Since A, — 0. This contradiction implies that there is A > 0 such that N = § for any A € (0, A).
Now, for u € H3(Q2) \ {0}, > 0, we consider the function

9(t) :t/ﬂ(‘AUF —/JV(UU)u2)dx—t2*_1/Q|u|2* dx—)\/ﬂfudx.

Let

_ (JolAuf — pV(2)u?) doy ==
tae = N AT )

It is clear that g(t) achieves its maximum at ¢y, and we have

2%—1

ltmen) = (5 )7 = () ) Unllau = ¥ ) do) 72 Sy

2% —1 2% —1 s
[foa P
N+4
A 2 Vv 2 d -8
o U8 vty
74
[[wll5 Q
(1= 0) J|Aufda) ¥
>Cn \|SZ|\ N/ - A qudx
(%)

N+4
> O (1= 0) % ull (VA = Allul ]| .
where Cy = (fl_l)ﬁ _ (2*1_1) 7=
Let

_ COn(1 =) (VA >0

I1£11-

then for A € (0,)), one has that g(tmayx) > 0. Then there exists ¢+ = ¥ (u) such that 0 < tmax <
t*,g(tT) =0 and ¢'(t*) < 0, it follows that t*u € N . In conclusion, for A; = min{X, A} we have

N)=0 and N, #0. o

pedll

3. LOCALIZATION OF CONSTRAINTS

We minimize the functional J,, on some subsets of constraints N,,. For this similar to [10], we
define a map of “Barycenter type” 3; : H3(2) \ {0} — RY as

_ fQ wj($)|AU|2dl’
Biu) = JolAu2dz

for j € {1,2,...,k}

where ¢;(z) = min{dy, |z — a;|}. For ro = %0, we set

Ny ={ue N, ,Bj(u) <ro}, T; ={ueN,,Biu)=ro}
From [I] and [6], we derive the following result.

Proposition 3.1. Let vy be as above, if 5;(u) < ro then

/ |Au|? do > 3/ |Aul? dz.
Q Q\B(a;,ro0)
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Remark 3.2. We deduce from Proposition that if u € HZ(Q)\{0}, 8;(u) < ro and B;(u) < ro,
then ¢ = j. Indeed, notice that if §;(u) < ro, Bi(u) < ro and j # ¢, then by Proposition we

have
2/ |Au|2dx23(/ |Au\2dx+/ \Au|2da:) 23/ |Au|? d,
Q Q\B(a;,ro) Q\B(a;,ro) Q

which is a contradiction.
Now, for j € {1,2,...,k}, we consider the following variational problems
exng = inf{Ju(u),u € N}, &y =inf{J,(u),u €T} }.

For j € {1,2,...,k} fixed, choose the radial cut-off function ¢(z) = ¢(|z|) € C§°(B(0,2dp)) such
that 0 < ¢(x) < 1 in B(0,20) and ¢(z) = 1 in B(0, ).
We set ue j(z) = ¢(z — a;)y-(x — a;j). The following asymptotic properties hold.

Lemma 3.3. Assume that N > 5 and 0 < p < fi. Then, ase — 0, we have the following estimates

/(m%ﬂ2—ﬁq%”HyM—fw“+0@mw>%, (3.1)
Q J
/ e 52 die = AN/ 4 O(e2 000=)) (3.2)
Q
/ & — 4y Hue P dz = O since a > 2(b(u) — 5. (3.3)
Q
Proof. The proof is similar to [2] and [§]. O

Proposition 3.4. Let (A1), (A2) and (A3) be verified, and 0 < p < fi. Then, there exists Ay > 0,
such that for all A € (0, A2) there holds

erg < —AN/4 X2 (3.4)
Proof. As u. j(z) # 0, from Lemma we can find t_; = ¢t (uc;) > 0, such that for any
A€ (0,A\1) we have t_ju. ; € N . Since

fQ"/’J \Ausj|2dx

0, — 0,
fQ|Aum| d — as &

5 (t7] 5])

it follows that there exists €1 > 0 such that 3;(t_ juc ;) < ro for any € € (0,e1), that is ¢_;u. ; €
./\/j_. Hence, we have

t2 2" .
sup Jy,(tue ;) <sup{ 5 / (|Au57j|2 —,uV(x)ug)j) dx — 2—*/Q|1Lw-|2 d;v} —tmaxA/Qst,j dx,

t>tmax

for t > 0, we consider the function

t2 9 2 o
90) = 5 | (BueyP =V (@)i2,) do = [ fuey ¥ da
Q
Using (|1.3)), we obtain

_ £ u? ; _
g(t)SQ{/QOAUE’jFMp;—stE) dx+u/ﬂ|xfaj\5 4u§jdyc —

On the other hand, from

t? t* 2 nja N
fB_fB):fB B B B >0
238(2 LT 9 P2 Nt 2" 1,B2 >0,
and (3.1)), (3.2) and (3.3)), we obtain
2
sup g(t) < — AN/ 4 o(20W =),

>0 N
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Hence, for all 0 < € < €1, we have

IN

2
sup J,(tuey) < AN+ 0000 ) b [ fucsda
Q

t>tmax

IN

% AN/ | o(2000-0)) _ 0\t =5

for some positive constant Cy independent of € and j. We write
0(52(1’(”)*5)) — k(5)€2(b(u)75)7

where k(e) — 0 as ¢ — 0. Taking

2 C
20b(w)=8) — (2Xy2y2 12 35
= (GO kE) < (5 (35)
and choosing A2 small enough, we have taht ¢ < &1 for all A € (0, A2). Substituting ¢ as above to
B3) gives (3:4). O

Proposition 3.5. For j € {1,...,k}. Let (A1)—(A3) be satisfied and 0 < p < fi. Then there
exists A3 > 0, such that for all X € (0, A3)
R 2
Cx,j > NASIM.
Proof. We argue by contradiction. Suppose that there exists a sequence A, — 0 such that
. 2 N/
Crp,j — C < N‘A’J/
for some 1 < j < k. Hence, we can find a sequence {un}, C Hg(2) with u, € N satisfying
2
Ju(up) = ¢ < NALVM, as n — oo. (3.6)

From {uy}, C Nj~, we have

8w - v @iy ao - [

un|? do = /\n/ fun dz = o(1). (3.7)
Q Q

This means that
c+o(1) = Ju(uy)
1 1 .
= / (|Aun > — pV(2)u?) de — —/ |un|* dx + o(1)
2 Ja 2* Jo
2
— 3 [ 18w = V(@) da+ o)
N Ja
and

/(|Aun|2 — uV(z)u?)de = / lun | dz + o(1)
Q Q

< (W)2*/2+0(1)
I (|Auy|? — pV (2)u2) do\2"/2
( . (1-C)A, ) +o(1),

IN

which together imply that
Nc+1> /(\Aun|2 —uV(x)ul)de > (1 — C)AO)N/4 >0
holds for n large. From (A3), \fvle obtain
(1= O)llunl® < /Q(\Aunl2 — pV (@)up) do < C[lun %,

which provides that
0<vy < |lup|l < v (3.8)
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for some positive constants v and vo. From (3.7), we set

lim [ (|Au,|? — pV(z)u?)dr = lim / lun|? dz =1, > 0.
We define the Levy concentration functions
on(r) = sup/ |un|2 dz,
ye€Q JB(y,r)

since, for every n we have r,, > 0 such that g, (r,) = l—l, then there exists y,, € 2 such that

2
Iy
‘un
B(yn,rn)

o
dx = n\'n) = 5 -
= on(ra) = 5
Let us define the rescaled functions by

N-4 R
wn(f) =1y’ un(rnx + yn)a

then w, (%) € HZ(,) with Q, = (Q — yn)/rm. By extending w,, (%) to be zero for Z outside €,
we obtain w, (Z) € D*?(RY), with

N—4
[ bwn@Pds = [ 5T Aun(ras + )l do
RN Q

n

:/ PN | Aty (1o + ) |? di
Qp

_ /Q Ay (2) 2 da

Similarly, we obtain

rt Tnd nwzi T = x)u (x T,
| riveaa s pei@) di = [ Vi

Q
[ un@P dz = [ fun(a)
RN Q
Then by (3.8), {w,}n is bounded in D*2(R¥), thus we can assume that

wp (&) = wo(%) in D*2(RY),  w, (%) = wo(Z) a.e in RY.
Set W, (Z) = wy(Z) — wo(Z), we have from
/ (|Awy (B)]* = 1V (rad + yn)wp (2)) di — /
RN

jwn (7)|*" di = o(1), (3.9)
RN

by using Brezis-Lieb lemma, we obtain
/ |Aw(§;)|2di:/ IAwn(i)\Qdi‘—/ | Awo ()2 d + o(1)
RN RN RN
[ wn@F do= [ e @P i [ @ ds o)
RN RN RN

/N AV (ro@ + yn) 02 () dz = /N AV (ra@ + yn)w? (2) dz — /N AV (ro@ + yn)wd (%) dz + o(1).
R R R

Recalling that r,z+y, € Q2 and 2 is bounded, we can assume up to a subsequence, that r, — 7 >0
and y,, — 7 € Q, so we will distinguish two cases. Before doing so, we need to clarify one notation.
Whenever writing r,& + y, € (or ¢)B(a;,do), always mean that there is a natural number Ny
such that for all n > Ny, there holds r,Z + y, € (or ¢)B(a;, o), for any given .

Case (I): If 7,@ + yn ¢ B(aj,dp), then by taking into account the definition of ¢;(x), we obtain

o ) S IR e o () A ()
o oy [Au ()2 dz Jaon [Aw, (2)]? dZ

which is a contradiction to the choice of r.

Case (II): When r,% + y,, € B(a;, o), we distinguish three steps.

%50,
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Step 1. If r, = 7 =0 and § = a;, then we have

N ¥j n~ n A n T 2d~
RN n

which is a contradiction.
Step 2. If r, = 7 > 0, we consider the following two sub-steps:
Sub-step 2.1. If ||@,[|p22@y) — 0, from (1.2)) and (3.9)), we have

/ (|Aw @) - #uﬂ(@) d7
RN " M|T'nf+yn—aj|4 "
> ([ Jwa@

RN

. 2/2*
¥ dz)
~\12 4 ~ 2 N\
A [ (180, @F = iV + )0 @) )

> A [ (18w - n——"—wt@) )"

|rn5~c + Yn — aj|4

Hence, we obtain

(IAwn(fE)I2 — T 4wi(:%)) di > AN/A,
RN [rn@ + Yn — ;]
and so \
[ (18w e @) ae = AN
RN |r7l$ + Yn — a’]|4
Consequently,
1
2
=5 [ (Awa@)F = proV(rad + y)wi (7)) di +o(1)
RN
2 wy ()
> = Aw,, (F 2 .4 Wp\L) di
N Jry (| wn(®)| W"\rn:i—i—yn—aj|4) o

2

bt [ ral a3l @) d5 + ol1)
N ox

2

2 ~
- = V2 W0 @) N
=5 | (|Aw0(x)| i )dx

+yn_aj|4
2 N _ NS
+NM/RN P2|rE + g — a;|* " *wi (2) dF
2 Ny
>NA“ ,

N/4

which contradicts the assumption that J,(u,) < Ay,

Sub-step 2-2. If [[w0,|p22@y) — L > 0, set
Atolt) = [ (1wo(@ = prkV i+ y)ud(@) di = [ (@) d.

then, by we obtain
o) = [ (18w, @F = Vi + (@) o= [ @

Suppose that A > 0 (A < 0 can be considered similarly). We can find ¢, — 1, s, — 1 such that
Wy, = tpwg and v, = S$,W, satisfy

A= / (A, [* — praV (ro® + yn)ws) di — / lwn|? dE, (3.10)
RN RN

2" dz.
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—A :/ (JAD, |2 — praV (ro + yn)02) d:cf/ |0, % di. (3.11)
RN RN

Now for v = 0, = t(8, W), t € (0,1), we have

/ (|AV]> = prtV (rp@ + y,)v?) dz = / lv|?" di.
RN

RN
We denote
~ 1 1 .
Ju(w) = 7/ (JAw|* — praV (rp@ + yp)w?) di — — |w|? di.
2 RN 2* RN
Then, we have
- 2
Ju(v) = N/ (|Av> = prpV(rp@ + y, )v*) d
= —tz/ |Avn|2 — V(1@ + yn )0 ) dx
=2 4 ~ 2\ 7~
< N/N (AT |* = prp V (rn@ + yn)v5) di
1 9 1 g .
= - (\Avn| — pr, V(Tnac—I—yn) ) da:——( [T ] dm—A)
2 RN 2 RN
~ 1
= J 7,”‘ D
P«(v ) + 2*
= 1 1 1
- . 1 1
< Ju(wo) + Ju(wn) + (27 - §>A +o(1).
Thus, we obtain
- . ~ 1 1
Ju(wo) + Ju(in) > Ju(0) + (5 = 37 )4
Using an argument as in sub-step 2-1, we obtain
~ 2
Ju(v) > NA5/4~
It follows that
7 7ol 2 N/ o1 2 N/
Ju(wo) + Ju(in) + 0(1) = AV + (5 - 2—*>A > AN (3.12)

On the other hand, we have

1 N
J“(Un)zi/R (|Aw0|27,ur V(rnZ + yn) wo :L'——/ \wg\ dero( )

1

+ 5/ (‘Awn|2 - NT V(Tnx + yn dZL' - *\/ |wn|2* dCE
RN

= Ju(wo) + Ju(i.) + o(0).
Using (3.12)), we obtain
2

That is absurd in contrast to (3.6). When A = 0, the proof is similar. Using (3.10)), (3.11]) with
A = 0, we obtain from the same argument as above that

) . 9 2 2
Jyu(upn) = Ju(wo) + Jyu(wn) +0(1) > NAIJYM + NA’J:[M > NA{:/M.

Again, we obtain a contradiction.
Step 3. If r,, = 7 =0 and § # a;, then
T;LL 4 =~ a—4
eV (rn® +yn) < ———"—— — 70 [rpd + yn — a;|" " — 0.
|7nnx + Yn — a’j|
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Thus, we obtain
1 1 -
Ju(uy) = 7/ |Aw, |*dz — 7/ lw,|? di + o(1). (3.13)
2 RN 2* RN

We also divide this step into two sub-steps.
Sub-step 3.1. When ||, | p22@~) — 0, we have

. 2/2* 2/2*
/ |Awn|2d§32AO(/ | d2) :AO(/ Aw, )
RN RN RN

hence, we obtain
/ |Aw,|? di > AN,
]RN

It follows from (3.13]) that
1 1 .
Ju(un) = 7/ |Aw, |? dz — —/ lw,|* di + o(1)
2 RN 2* RN
2 2 g~ 2 4N/a 2 4N
= N/RN |[Aw, | dZ + o(1) > NAO > NA“/ ,

which also contradicts (3.6)).

Sub-step 3.2. If ||i0,[|p22@y) — L > 0, then the proof is similar. Using (3.12)), we obtain from
the same arguments as above that

Tu(un) = Ju(wo) + Ju(@n) + o(1)
N/4 .

- %A?MJF (3 —N%)A, if A+#0,

= 24N 2 AN if A=0.

2 N/4
>NA“/'

Again, we obtain a contradiction.
This completes the proof of Proposition [3.5 O

4. PROOF OF THEOREM [L.]
To obtain the existence of multiple solutions for the problem (|1.1)), we need several lemmas.

Lemma 4.1. For each u € ./\/j_ there exist a number p, > 0 and a continuous function h > 0
defined on {w € HZ(Q) : |w| < pu}, satisfying

h(0) =1, h(w)(u—w) € Nj, for [lw] < pu,

and

(0 2 o (AuAw — pV (z)uw) dx —2* [, [ul* vwdx — A [, fudx
(' (0), w) = Jo (Au? — pV(z)u?) de — (2* = 1) [, [u|?>" dz '

Proof. Define H : R x HZ(2) — R as follows
H(t,w) = Alu—w)|? — puV —w)?) d
() =t( [ (1A= w)P = wV (@) u—w)?) do)
—t2*_1/9|u—w\2*dﬂc—)\/9f(u—w)dx.

Since u € N}, we have

H(l,O):/Q(\AuP—uV(x)uz) dx—/ﬂ|u|2* dx—)\/qudw:().

and
aH 2 2 * 2%
E(l,()):/g(mm C V(@) W)?) de — (2 —1)/Q\u| dz £ 0,

We obtain the result by applying the implicit function Theorem at the point (1,0). O
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Lemma 4.2. Assume that (A1)—(A3) are verified, and 0 < p < fi. Then, for any sequence
{u},} C Ny, satisfying
. 2
Ju(ul) = m < NAQIM — A2,

and

J(u),) =0, in H (), (4.1)
{ud} is relatively compact in HZ ().

Proof. Since {u}} C /\fj_ and J,(u,) — m as n — oo, we can assume from a similar argument to
Proposition [3.5] that
0<ws < |ulll <va

for some positive constants v3 and v4. Going if necessary to a subsequence, we can assume that
uw), — ) in HZ(Q) and a.e. in Q. Using (4.1)) then for any ¢ € HZ(1Q),

o(1) = (J,,(u},), )

:/ (A, Ap — pV (z)ul @) dx—/ |u%|2*_2u£¢dx—A/ fodz
Q ) Q

= / (AW Ap — pV (z)ul @) da —/ w2 2l o da — /\/ fodx +o(1)
Q Q Q
= (J,(w?), ) + (1),
that is, u/ is a weak solution of (L.1), and

uij xujz Xr — ujz* Xr — ’U,j xr = U. .
/Q(\AI pV (@)(w’)?) d /Q||d )\/Qfd 0 (4.2)

Now, we claim that v’/ # 0. Arguing by contradiction, we assume that v/ = 0, then lim,,_, fQ fuldr =
Jq fu/dz = 0 and therefore, from {u},} C N we have

u‘j2* xujZ T — U‘jz* T = 0
[ (80 = wv@d)?) o~ [ 1 de= o),

thus, we obtain

lim [ (AW |2 — pV (z)(ul)?) de = lim / Wl |2 de =1y > 0,

n— oo Q n—oo

and we find y,, € Q, 7, > 0 such that

/ 7% do = 2
B(yn,rn) 2
N-—4

Again denoting w,, (%) = rn? ul (r,@ + yn), by extending w,, (%) to be zero for Z outside Q,,, we
obtain w,, (%) € D*2(RY) with

[ (80, =tV (i + )0 (3)) di [ wa@F di = o).
]RN RN
We divide the discussion into two cases.

Case IIL. If r,Z + y,, ¢ B(a;,do), it follows from the definition of 5;(u), ¥, and ro that

@ — e — ﬂ(uj) fﬂ j ()| Avd, (2)|* d _ I]RN V;(rnd + yn )| Aw, (2)]? dE
0 Jo 1A (@) 2 da Jon [Aw, (2)]2 di

— 0
3 05

which is a contradiction.
Case IV. If r,Z + y, € B(aj,00), then
. 1 . . 1 -
Tutui) =5 [ 18w = V@) do = o [ g da o)
Q
1

2*

I
N |

(18w @)F = sV (e +y )l @) i = 5 [ (D i +o()
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2
o N RN
= Ju(wy) +o(1),
The proof is divided into several steps: step 1: 7, — 7 = 0 and § = a;; step 2: r, — 7 > 0; step
3:rp, =7 =0and gy # a;.
We use the same arguments as those in the corresponding steps in the proof of Proposition [3.5

to get that J, (w,) > %Aﬁ[/ *. Here, we only sketch the argument for step 2. It follows from (11.2),

that

(JAw, (2)]* — prpV (1@ + yn)wZ(2)) di + o(1)

4
n

Aw, ()2 — p——— (7)) di
L (8@ = i)

> AH</RN o (@) d:E)Q/Q*

_ AH</RN (18w (@) — @tV (e + o) () d@)w

4

> ([ (18w @ - p @) )

rn + yn — aj|4

So, that
2

Aw, (7)]? — p—————w? (7)) dz > AN/
[, (12un@) @) e > 4]
Thus, from (A2) it follows that

/ (|Aw, (2)]* = prpV(rad + yn)w2 (2)) d > AY/4
Then, we have

2 N4 2 T iN— Tim T 2 4N/
NA“ — XA >m—nh_>n;OJN(un)— lim J,(w,) > NA“ ,

n—oo

which is a contradiction. In sum, we have proved that u? # 0.

Next, we prove that the limit u/ is indeed strong. Suppose by contradiction that |uf — u?| —
vs > 0 and denote v, = u/, — v/, then we have v, — 0 in HZ(Q) and |v,| — v5 > 0. It follows
from Brezis-Lieb Lemma and , that

/ (1Avn(@)]? — V(2)o2(2) do — [ Jon(@)? dz
Q Q

- / (18w, (2)2 — V() () () da /Q i ()] d

Q

- / (|Auj(x)|2 - riV(x)(uj)Z(x)) dx —|—/ |uj(z)|2* dz + o(1)
Q Q

:)\/ fuildzf)\/ fu? dz 4 o(1)
Q Q
=o(1).
Similarly to the previous proof, we can find y,, € €, r, > 0 such that

Lok [
/ lul > dz = 2 > 0.
B(yn:rn) 2
N—4

Letting 2,(Z) = 7 ? vn(rnd + yn), and extending z, to be zero for & outside 2, = 7,1 (2 — y,,),
we can write 2, (%) € D*2(RY) and we have that

[ (820@F =iV s+ w)2@) di = [ Jau@P di = o(1), (4.3)
RN RN

We will distinguish two cases.
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Case V. If r,@ + y, ¢ B(a;,d0), we can use similar arguments as those in case III to obtain a
contradiction, so we omit the details here.

Case VI. If r,@ + y,, € B(aj,dp), then

- 1 1 « )
Tu(u) = 5 [ (80P = V@) do = g [ ol do+ () + o)

2
1 1 . .

— 7/ (|Azn(i‘)|2 — ,m‘ﬁV(rni‘ + yn)zi(i)) dz — —/ |2 (2)|* di + Ju(u?) + o(1)
2 RN 2* RN

= Ju(zn) + Ju(u?) + o(1).
Now, we need to distinguish three steps.
Step 1. If r,, — 7 > 0, it follows from (1.2]) and (4.3]), that
4

| (8@ - it @) d
RN |7"nx + Yn — aj‘
N 2/2%
zAM</ 12 (2)[2 ) 7
]RN
4

2/2*
> AH(/RN D@ 2@) e

|rni' + yn — aj|4 "

Thus, we obtain
2

~ 2
Ju(zn) = = | (1A20(2)]2 — praV (rn@ + yn)22(2)) di > — AN/ (4.4)
N ]RN N
Step 2. If r,, — 7 =0 and y # a; then we have
4
rﬁV(Tna? +yn) < ™ ri [Pn@ 4 yn — aj|a_4 — 0.

N |7‘ni + Yn — aj|4

Thus, we obtain J,,(2,) = % Jan Az, (%)|* dZ. Then, we obtain

. 2/2" 2/2*
/ |Azn|2daﬁ2A0(/ eal? d2) :AO(/ Az Paz)
RN RN RN

2 2
Ju(2n) > N-A(J)V/4 > NAQWI- (4.5)

hence

Step 3. If r, = 7 =0 and § = a;, then similarly, we can obtain

2 N/ 2
Ju(zn) > NAO/ > NA;JY/4~ (4.6)
It follows from (4.4]), (4.5) and (4.6) that
~ 2

Since u’ is a solution of (1.1)) then from Lemma we obtain
Ju(u?) > —x 2.

Therefore,

) . 2
Ju(u,) = Ju(zn) + Ju (W) +o(1) = N-A,IXM — X%,

which is a contradiction with the choice of {u }.
This completes the proof of Lemma [4.2] O

Proof of Theorem[I.1} Fix \* = min{\, A2, \3}. For any j € {1,...,k}, we obtain ./\f =N U

I';. Propositions and imply that

2
Crj < NASIM — X)\2 < é)\7j.
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Thus, cx; = inf{J,(u),u € /\T} By the Ekeland variational principle, we can obtain the

minimizing sequence {u’} C /\fj_ satisfying
exng < Ju(ul) <exj+— and J(u)) =0, in H2(Q).
n

Therefore, by Lemma up to a subsequence we have u/, — u? and v/ # 0 in H3(Q) and so u/
is a solution of (|1.1)). Moreover, from Remark we know that v’ and u/ are distinct if i # j.
This implies that problem (1.1)) has at least k solutions u’/ € ./\/j_. O
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