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NORMALIZED SOLUTIONS FOR A FRACTIONAL

KIRCHHOFF-SCHRÖDINGER-POISSON SYSTEMS WITH

CRITICAL GROWTH

YU-QIN ZHAO, JIA-FENG LIAO

Abstract. In this article, we study the fractional Kirchhoff-Schrödinger-Poisson system with
Sobolev critical growth(

a+ b

∫
R3

|(−∆)s/2u|2dx
)
(−∆)su+ ϕu = λu+ µ|u|p−2u+ |u|2

∗
s−2u, in R3,

(−∆)sϕ = u2, in R3,

where a, b > 0, s ∈ ( 3
4
, 1), p ∈ (2, 2∗s), and µ > 0 is a parameter, λ ∈ R is an undermined param-

eter. For this problem, under the L2-subcritical, p ∈ (2, 4s
3
+2), we obtain the multiplicity of the

normalized solutions by means of the truncation technique, concentration-compactness princi-
ple, and genus theory. In the L2-supercritical, p ∈ ( 8s

3
+2, 2∗s), we prove a couple of normalized

solutions by developing a fiber map and using the concentration-compactness principle.

1. Introduction

In this article, we study the nonlinear Kirchhoff-Schrödinger-Poisson system with Sobolev crit-
ical growth

(a+ b

∫
R3

|(−∆)s/2u|2dx)(−∆)su+ ϕu = λu+ µ|u|p−2u+ |u|2
∗
s−2u, in R3,

(−∆)sϕ = u2, in R3,

(1.1)

where a, b > 0, s ∈ ( 34 , 1), and p ∈ (2, 2∗s), µ > 0 and λ ∈ R are parameters. Here (−∆)s (s ∈ (0, 1))
is the fractional Laplacian operator which is defined by

(−∆)su(x) = CsP.V.

∫
R3

u(x)− u(y)

|x− y|3+2s
dy = Cs lim

ϵ→0

∫
R3\Bϵ(x)

u(x)− u(y)

|x− y|3+2s
dy,

for u ∈ S(R3), where S(R3) is the Schwartz space of rapidly decaying C∞ functions, Bϵ(x) denote
an open ball of radius ϵ at x and Cs is a normalization constant.

System (1.1) has been motivated by the time-dependent fractional Schrödinger-Poisson system

i
∂Ψ

∂τ
= (−∆)sΨ+ λϕΨ− f(x, |Ψ|), x ∈ R3,

(−∆)tϕ = |Ψ|2, x ∈ R3,
(1.2)

where Ψ : R× R3 → C, s, t ∈ (0, 1), λ ∈ R. It is well-known that, the first equation in system
(1.2) was used by Laskin (see [20, 21]) to extend the Feynman path integral, from Brownian-like
to Lévy-like quantum mechanical paths. This class of fractional Schrödinger equations with a
repulsive nonlocal Coulombic potential can be approximated by the Hartree-Fock equations to
describe a quantum mechanical system of many particles. For more application backgrounds on
the fractional Laplacian see [5, 7, 23].
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When looking for solutions to system (1.1), there are two distinct options regarding the fre-
quency parameter λ. One is to regard the frequency λ as a given constant. Xiang and Wang [32]
first investigated the fractional Kirchhoff-Schrödinger-Poisson system, and obtained the existence,
multiplicity and asymptotic behavior of nonnegative solutions. In recent years, researchers have
shown growing interest in the fractional Kirchhoff-Schrödinger-Poisson system

(a+ b

∫
R3

|(−∆)s/2u|2dx)(−∆)su+ V (x)u+ µϕu = f(x, u), in R3,

(−∆)tϕ = µu2, in R3,

(1.3)

where a > 0, b ≥ 0. When V (x) = 0, f(x, u) = f(u), by utilizing minimax argument, Ambrosio
[1] obtained the existence of a nontrivial solutions for system (1.3) with Berestycki-Lions type
nonlinearities. When V (x) ̸= 0, Wang et.al [30] studied the existence of ground solutions for system
(1.3) with V (x) = 1 and f(x, u) = (|x|−θ ∗F (u))f(u), θ ∈ (0, 3− 2t), and used the Pohozǎev type
manifold; Then, under some assumptions on V and f , by using constraint variational approach and
a quantitative deformation lemma, Meng et.al [24] proved the existence of the least energy sign-
changing solutions for system (1.3). Feng et al. [12] applied a similar method studied the least
energy sign-changing solutions to the following critical fractional Kirchhoff-Schrödinger-Poisson
system with steep potential well(

a+ b

∫
R3

|(−∆)s/2u|2dx
)
(−∆)su+ Vλ(x)u+ ϕu = |u|p−2u+ |u|2

∗
s−2u, in R3,

(−∆)tϕ = u2, in R3,

where s ∈ ( 34 , 1), t ∈ (0, 1), Vλ(x) = λV (x) + 1, λ > 0 and p > 4. Jian et al. [18], deal with the
fractional Kirchhoff-Schrödinger-Poisson system with steep potential well

(a+ b

∫
R3

|(−∆)s/2u|2dx)(−∆)su+ λV (x)u+ µϕu = |u|p−2u, in R3,

(−∆)tϕ = u2, in R3,

where s ∈ [ 34 , 1), t ∈ (0, 1), 2 < p < 4, a > 0 is a constant, and b, λ, µ are positive parameters. By
applying the truncation technique and the parameter-dependent compactness lemma, they first
proved the existence of positive solutions. Furthermore, they investigated the asymptotic behavior
as b→ 0, λ→ ∞ and µ→ 0, respectively. For other existence results, we refer to [11, 28, 29] and
the references therein.

When a = 1, b = 0, system (1.3) reduces to the following fractional Schrödinger-Poisson system

(−∆)su+ V (x)u+ µϕu = f(x, u), in R3,

(−∆)tϕ = µu2, in R3.
(1.4)

Recently, under various potentials and nonlinear terms, most scholars have investigated the exis-
tence and multiplicity of ground state solutions, sign-changing solutions, and nontrivial solutions
for system (1.4). For further details, we refer the interesting readers to see [6, 10, 13, 15, 26] and
so on.

Alternatively, the other one is to regard the frequency λ as an unknown quantity. In such
point of view, it is natural to prescribe the mass, i.e., the L2-norm, so that λ can be interpreted
as a Lagrange multiplier. Solutions of this type are often referred to as normalized solutions.
Nowadays, from a physical point of view, some physicists are very interested in the normalized
solutions, see for example [4, 22, 33]. There a few results are related to the study of normalized
solutions for the fractional Kirchhoff-Schrödinger-Poisson system except Wang et al. [31]. They
considered the fractional Kirchhoff-Schrödinger-Poisson system(

a+ b

∫
R3

|(−∆)s/2u|2dx
)
(−∆)su+ ϕu = f(u) + λu in R3,

(−∆)tϕ = u2 in R3,
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where a, b > 0, s, t ∈ (0, 1), 2s + 2t > 3, λ ∈ R, f ∈ C(R,R) satisfies some general conditions
which contain the case f(u) ∼ |u|p−2u with p ∈ ( 8s+4t−3

s+t , 8s3 + 2) ∪ ( 8s3 + 2, 2∗s), 2
∗
s = 6

3−2s . They
obtained the existence of normalized solutions by using the Pohozǎev manifold and variational
method.

Recently, He and Meng [14] studied the existence and multiplicity of the normalized solutions
for the nonlinear fractional Schrödinger-Poisson system with Sobolev critical exponent

(−∆)su+ αϕu = µ|u|p−2u+ |u|2
∗
s−2u+ λu in R3,

(−∆)tϕ = u2 in R3,

where s, t ∈ (0, 1), 2s+ 2t > 3, p ∈ (2, 2∗s), α, µ > 0 are parameters and λ ∈ R.
Motivated by [14] and [31], a natural question is whether the fractional Kirchhoff-Schrödinger-

Poisson system with the Sobolev critical growth can be applied to obtain the existence and multi-
plicity of normalized solutions for p in distinct ranges. Therefore, we study system (1.1) and give
an affirmative answer. In addition, to recover the compactness, we will take Hs

r (R3) as a working
space.

By using the Lax-Milgram theorem, for any u ∈ Hs
r (R3), a unique ϕsu(x) ∈ Ds,2(R3) is given

by

ϕsu(x) = |x|2s−3 ∗ |u|2 =

∫
R3

u2(y)

|x− y|3−2s
dy,

such that (−∆)sϕ = u2 and that inserting it into the first equation of system (1.1), then system
(1.1) can be transformed into the following single equation(

a+ b

∫
R3

|(−∆)s/2u|2dx
)
(−∆)su+ ϕsuu = λu+ µ|u|p−2u+ |u|2

∗
s−2u, in R3. (1.5)

It can be proved that to find the normalized solutions of system (1.1) is to seek the critical points
of the functional

Iµ(u) =
a

2

∫
R3

|(−∆)s/2u|2dx+
b

4

(∫
R3

|(−∆)s/2u|2dx
)2

+
1

4

∫
R3

ϕsuu
2dx− µ

p

∫
R3

|u|pdx− 1

2∗s

∫
R3

|u|2
∗
sdx,

under the constraint

Sr(c) =
{
u ∈ Hs

r (R3) :

∫
R3

|u|2dx = c2, c > 0
}
.

It is well known that Iµ ∈ C1(Hs
r (R3),R). Here are our main results.

Theorem 1.1. Assume a, b > 0, s ∈ ( 34 , 1) and 2 < p < 4s
3 + 2, for given k ∈ N, then there exist

β > 0, Λ =
(
1
2 − 1

2∗s

)
a

3
2sS

3
2s > 0, D =

(
1
p − 1

2∗s

)
C(p, s)R

pδp,s
1 > 0 independent of k and µ∗

k > 0

large, such that system (1.1) possesses at least k couples (uj , λj) ∈ Hs
r (R3)× R of weak solutions

for µ > µ∗
k and

c ∈
(
0,min

{(β
µ

) 1
p(1−δp,s)

,
( Λ

Dµ

) 1
p(1−δp,s)

})
with

∫
R3 |uj |2dx = c2, λj < 0 for all j = 1, 2, ..., k, δp,s =

3(p−2)
2ps .

Theorem 1.2. Assume a, b > 0, s ∈ ( 34 , 1) and 2 + 8s
3 < p < 2∗s, then there exists µ∗ = µ∗(c) > 0

large, such that as µ > µ∗, system (1.1) possesses a couple (uc, λ) ∈ Hs
r (R3)×R of weak solutions

with
∫
R3 |uc|2dx = c2, λ < 0.

Remark 1.3. To our best knowledge, our results are up to date. On the one hand, the Sobolev
critical exponent leads to the lack of compactness. Even the embedding of the radially symmetric
space ofHs

r (R3) into L2∗s (R3) is not compact. Furthermore, Hs
r (R3) ↪→ L2(R3) is also not compact.

Then, the weak limit of Palais-Smale sequences could leave the constrained manifold Sr(c). Hence,
we need to estimate finely the Lagrange multipliers, which is vital in obtaining compactness. We
shall employ the concentration-compactness principle, mountain pass theorem and the truncation
method to overcome the loss of compactness caused by the critical growth.
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On the other hand, no matter 2 < p < 4s
3 + 2 or 8s

3 + 2 < p < 2∗s, Iµ on the constrained
manifold Sr(c) is all unbounded from below. Hence, it is unlikely to obtain a solution to system
(1.1) by minimizing method. We adopt some ideas from [2] to overcome the difficulty.

This article is structured as follows: in section 2, we presents some preliminary results that will
be used frequently in the sequel. Theorem 1.1 is proved in section 3, which presents the multiplicity
of normalized solutions for system (1.1) when p ∈ (2, 4s3 + 2). In this section, we address three
main challenges. First, we employ the truncation technique to establish the boundedness of the
(PS) sequence. Subsequently, we apply the concentration compactness principle to restore the
compactness lost of the (PS) sequence due to the critical growth. Finally, we use genus theory to
prove the multiplicity of normalized solutions for system (1.1). In section 4, when the parameter
µ > 0 is large, we give another existence result for system (1.1) with p ∈ ( 8s3 + 2, 2∗s) by using the
fiber map and concentration-compactness principle.
Notation Throughout this paper, we denote ∥ · ∥q the usual norm of the space Lq(R3), 1 ≤
q < ∞, Br(x) denotes the open ball with center at x and radius r, C or Ci(i = 1, 2, ...) denote
various positive constants whose exact values are irrelevant. ⇀ and → mean the weak and strong
convergence.

2. Preliminaries

In this section, we first introduce some notations. For any s ∈ (0, 1), the homogeneous Sobolev
space Ds,2(R3) is defined by Ds,2(R3) = {u ∈ L2∗s (R3) : ∥u∥Ds,2 <∞}, where

∥u∥2Ds,2 =

∫
R3

|(−∆)s/2u|2dx =

∫
R3

∫
R3

|u(x)− u(y)|2

|x− y|3+2s
dx dy.

The fractional space Hs(R3) is defined by

Hs(R3) = {u ∈ L2(R3) : ∥u∥Ds,2 <∞},
endowed with the norm

∥u∥2Hs = ∥u∥22 + ∥u∥2Ds,2 .

The best fractional Sobolev constant S is defined as

S = inf
u∈Ds,2,u̸=0

∥(−∆)s/2u∥22
(
∫
R3 |u|2∗sdx)2/2∗s

. (2.1)

The work space is
Hs

r (R3) = {u ∈ Hs(R3)| u(x) = u(|x|)}.
Let H = Hs

r (R3)×R with the scalar product ⟨·, ·⟩Hs
r
+⟨·, ·⟩R, and the corresponding norm ∥(·, ·)∥2H =

∥ · ∥2Hs
r
+ | · |2R.

Proposition 2.1 (Hardy-Littlewood-Sobolev inequality). Let r, l > 1 and 0 < λ < N with
1
r+

1
l +

λ
N = 2. Let f ∈ Lr(RN ) and g ∈ Ll(RN ). Then there exists a sharp constant C(N,λ, l, r) >

0, independent of f and g, such that∣∣∣ ∫
RN

∫
RN

f(x)g(y)|x− y|−λ dx dy
∣∣∣ ≤ C(N,λ, l, r)∥f∥r∥g∥l.

Moreover, if r = l = 2N
2N−λ , then

C(N,λ, l, r) = πλ/2Γ(
N
2 − λ

2 )

Γ(N − λ
2 )

(Γ(N)

Γ(N2 )

)1− λ
N

.

From Proposition 2.1, with r = l = 6
3+2s , the Hardy-Littlewood-Sobolev inequality implies that∫

R3

ϕsuu
2dx =

∫
R3

(
|x|2s−3 ∗ u2

)
u2dx ≤ Γs∥u∥4 12

3+2s
, (2.2)

where

Γs = C
(
3, 3− 2s,

6

3 + 2s
,

6

3 + 2s

)
= π

3−2s
2

Γ(s)

Γ( 32 + s)

( Γ(3)

Γ( 32 )

) 2s
3

,
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where Γ(t) is the Gamma function with t > 0. Now, we introduce the Pohozǎev manifold associated
to equation (1.5), which can be derived from [25].

Proposition 2.2. Let u ∈ Hs
r (R3) be a weak solution of equation (1.5), then u satisfies

3− 2s

2

(
a+ b

∫
R3

|(−∆)s/2u|2dx
)∫

R3

|(−∆)s/2u|2dx+
3 + 2s

4

∫
R3

ϕsuu
2dx

=
3

2
λ

∫
R3

|u|2dx+
3

p
µ

∫
R3

|u|pdx+
3

2∗s

∫
R3

|u|2
∗
sdx.

Lemma 2.3 ([9]). The embedding Hs
r (R3) ↪→ Lq(R3) is compact for any 2 < q < 2∗s.

Lemma 2.4 (Fractional Gagliardo-Nirenberg inequality). Let 0 < s < 1, and p ∈ (2, 2∗s). Then

there exists a constant C(p, s) = S− δp,s
2 > 0 such that

∥u∥pp ≤ C(p, s)∥(−∆)s/2u∥
3
s (

p
2−1)

2 ∥u∥
3
s (1−

3−2s
6 p)

2 , ∀u ∈ Hs(R3), (2.3)

where δp,s =
3(p−2)
2ps .

Lemma 2.5 ([8]). If un ⇀ u in Hs
r (R3), then∫

R3

ϕsun
u2ndx→

∫
R3

ϕsuu
2dx,

∫
R3

ϕsun
unφdx→

∫
R3

ϕsuuφdx,∀φ ∈ Hs
r (R3).

Lemma 2.6. Let u ∈ Hs
r (R3) be a weak solution of (1.5), then we can construct the Pohozǎev

manifold

Pc = {u ∈ Sr(c) : Pµ(u) = 0},

where

Pµ(u) = s
(
a+ b

∫
R3

|(−∆)s/2u|2dx
)∫

R3

|(−∆)s/2u|2dx+
3− 2s

4

∫
R3

ϕsuu
2dx

− sµδp,s

∫
R3

|u|pdx− s

∫
R3

|u|2
∗
sdx.

Proof. From Proposition 2.2, we know that u satisfies the Pohozǎev identity

3− 2s

2

(
a+ b

∫
R3

|(−∆)s/2u|2dx
)∫

R3

|(−∆)s/2u|2dx+
3 + 2s

4

∫
R3

ϕsuu
2dx

=
3

2
λ

∫
R3

|u|2dx+
3

p
µ

∫
R3

|u|pdx+
3

2∗s

∫
R3

|u|2
∗
sdx.

(2.4)

Moreover, since u is the weak solution of equation (1.5), we have(
a+ b

∫
R3

|(−∆)s/2u|2dx
)∫

R3

|(−∆)s/2u|2dx+

∫
R3

ϕsuu
2dx

= λ

∫
R3

|u|2dx+ µ

∫
R3

|u|pdx+

∫
R3

|u|2
∗
sdx.

(2.5)

Combining this with (2.4) and (2.5), we obtain

s
(
a+ b

∫
R3

|(−∆)s/2u|2dx
)∫

R3

|(−∆)s/2u|2dx+
3− 2s

4

∫
R3

ϕsuu
2dx

− sµδp,s

∫
R3

|u|pdx− s

∫
R3

|u|2
∗
sdx = 0,

which completes the proof. □
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3. Proof of Theorem 1.1

In this section, we show the multiplicity of normalized solutions to system (1.1). To begin by
recalling the definition of genus. Let X be a Banach space and let A be a subset of X. The set A
is said to be symmetric if u ∈ A implies that −u ∈ A. We denote the set

Σ := {A ⊂ X \ {0} : A is closed and symmetric with respect to the origin}.

For A ∈ Σ, define

γ(A) =


0, if A = ∅,
inf{k ∈ N : ∃ an odd φ ∈ C(A,Rk \ {0})},
+∞, if no such odd map exists,

and that Σk = {A ∈ Σ : γ(A) ≥ k}.

Lemma 3.1 ([34]). Let {un} be a bounded sequence in Ds,2(R3) converging weakly and a.e. to
some u ∈ Ds,2(R3). We have that |(−∆)s/2un|2 ⇀ ω and |un|2

∗
s ⇀ ζ in the sense of measures.

Then, there exist some at most a countable set J , a family of points {xj}j∈J ⊂ R3, and families
of positive numbers {ζj}j∈J and {ωj}j∈J such that

ω ≥ |(−∆)s/2u|2 +
∑
j∈J

ωjδxj , (3.1)

ζ = |u|2
∗
s +

∑
j∈J

ζjδxj
, (3.2)

ω({xj}) ≥ Sζ
2/2∗s
j , (3.3)

where δxj
is the Dirac-mass of mass 1 concentrated at xj ∈ R3.

Lemma 3.2 ([34]). Let {un} ⊂ Ds,2(R3) be a sequence in Lemama 3.1 and define

ω∞ := lim
R→∞

lim sup
n→∞

∫
|x|≥R

|(−∆)s/2un|2dx, ζ∞ := lim
R→∞

lim sup
n→∞

∫
|x|≥R

|un|2
∗
sdx.

Then it follows that

ω∞ ≥ Sζ
2/2∗s∞ ,

lim sup
n→∞

∫
R3

|(−∆)s/2un|2dx =

∫
R3

dω + ω∞,

lim sup
n→∞

∫
R3

|un|2
∗
sdx =

∫
R3

dζ + ζ∞.

For u ∈ Sr(c), in view of Lemma 2.4, and the Sobolev inequality, one has

Iµ(u) =
a

2

∫
R3

|(−∆)s/2u|2dx+
b

4

(∫
R3

|(−∆)
s
2u|2dx

)2

+
1

4

∫
R3

ϕsuu
2dx

− µ

p

∫
R3

|u|pdx− 1

2∗s

∫
R3

|u|2
∗
sdx

≥ a

2
∥(−∆)s/2u∥22 +

b

4
∥(−∆)s/2u∥42 −

µ

p
cp(1−δp,s)C(p, s)∥(−∆)s/2u∥pδp,s2

− 1

2∗s
S− 2∗s

2 ∥(−∆)s/2u∥2
∗
s

2

:= h(∥(−∆)s/2u∥2),

where

h(r) =
a

2
r2 +

b

4
r4 − µ

p
cp(1−δp,s)C(p, s)rpδp,s − 1

2∗s
S− 2∗s

2 r2
∗
s .
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Recalling that p ∈ (2, 4s3 + 2), we obtain that pδp,s < 2, and there exists β > 0 such that, if

µcp(1−δp,s) < β, the function h(·) attains its positive local maximum. More precisely, there exist
two constants 0 < R1 < R2 < +∞, such that

h(r) > 0,∀r ∈ (R1, R2), h(r) < 0, ∀r ∈ (0, R1) ∪ (R2,+∞).

Let τ : R+ → [0, 1] be a non-increasing and C∞ function satisfying

τ(r) =

{
1, if r ∈ [0, R1],

0, if r ∈ [R2,+∞).

In the sequel, we consider the truncated functional

Iµ,τ (u) =
a

2

∫
R3

|(−∆)s/2u|2dx+
b

4

(∫
R3

|(−∆)s/2u|2dx
)2

+
1

4

∫
R3

ϕsuu
2dx

− µ

p

∫
R3

|u|pdx− τ(∥(−∆)s/2u∥2)
2∗s

∫
R3

|u|2
∗
sdx.

(3.4)

For u ∈ Sr(c), again by Lemma 2.4, and the Sobolev inequality, it is easy to see that

Iµ,τ (u) ≥
a

2
∥(−∆)s/2u∥22 +

b

4
∥(−∆)s/2u∥42 −

µ

p
cp(1−δp,s)C(p, s)∥(−∆)s/2u∥pδp,s2

− τ(∥(−∆)s/2u∥2)
2∗s

∥(−∆)s/2u∥2
∗
s

2

:= h̃(∥(−∆)s/2u∥2),
where

h̃(r) =
a

2
r2 +

b

4
r4 − µ

p
cp(1−δp,s)C(p, s)rpδp,s − τ(r)

2∗s
S− 2∗s

2 r2
∗
s .

Then, by the definition of τ(·), when c ∈
(
0, (βµ )

1
p(1−δp,s)

)
, we have

h̃(r) < 0,∀r ∈ (0, R1), h̃(r) > 0,∀r ∈ (R1,+∞).

In what follows, we assume that c ∈
(
0, (βµ )

1
p(1−δp,s)

)
. Without loss of generality, in the sequel, we

assume that
a

2
r2 +

b

4
r4 − 1

2∗s
S− 2∗s

2 r2
∗
s ≥ 0, ∀ r ∈ [0, R1] (3.5)

Lemma 3.3. The functional Iµ,τ has the following characteristics:

(i) Iµ,τ ∈ C1(Hs
r (R3),R);

(ii) Iµ,τ is coercive and bounded from below on Sr(c). Moreover, if Iµ,τ (u) ≤ 0, then ∥(−∆)s/2u∥2 ≤
R1 and Iµ,τ (u) = Iµ(u);

(iii) Iµ,τ |Sr(c) satisfies the (PS)d condition for all d < min{0,Λ−µcp(1−δp,s)D}, provided that

µ > µ∗
1 > 0 large, where Λ = (12 − 1

2∗s
)a

3
2sS

3
2s , D = ( 1p − 1

2∗s
)C(p, s)R

pδp,s
1 .

Proof. The proofs of (i) and (ii) are easy. To prove item (iii), Let {un} be a (PS)d sequence of
Iµ,τ restricted to Sr(c) with d < min{0,Λ−µcq(1−δp,s)D}. By (ii), we see that ∥(−∆)

s
2un∥2 ≤ R1

for large n, and thus {un} is a (PS)d sequence of Iµ|Sr(c) with d < min{0,Λ− µcp(1−δp,s)D}; i.e.,
Iµ(un) → d and ∥Iµ|′Sr(c)

(un)∥ → 0 as n→ ∞. Then, {un} is bounded in Hs
r (R3). Therefore, up

to a subsequence, there exists u ∈ Hs
r (R3) such that un ⇀ u in Hs

r (R3) and un → u in Lp(R3) for
2 < p < 2∗s and un(x) → u(x) a.e. on R3. From 2 < p < 4s

3 + 2 < 2∗s and Lemma 2.5, we infer to

lim
n→∞

∫
R3

|un|pdx =

∫
R3

|u|pdx,
∫
R3

ϕsun
un

2dx→
∫
R3

ϕsuu
2dx.

Moreover, we have that u ̸≡ 0. Indeed, assume by contradiction that, u ≡ 0, then limn→∞
∫
R3 |un|pdx =

0. From (3.5) and the definition of Iµ,τ , we infer that

0 > d = lim
n→∞

Iµ,τ (un) = lim
n→∞

Iµ(un)
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= lim
n→∞

[a
2
∥(−∆)s/2un∥22 +

b

4
∥(−∆)s/2un∥42 +

1

4

∫
R3

ϕsun
un

2dx

− µ

p

∫
R3

|un|pdx− 1

2∗s

∫
R3

|un|2
∗
sdx

]
≥ lim

n→∞

[a
2
∥(−∆)s/2un∥22 +

b

4
∥(−∆)s/2un∥42

− µ

p

∫
R3

|un|pdx− 1

2∗s
S− 2∗s

2 ∥(−∆)s/2un∥
2∗s
2

]
≥ −µ

p

∫
R3

|u|pdx = 0,

which is absurd. On the other hand, setting the function Θ(v) : Hs
r (R3) → R by

Θ(v) =
1

2

∫
R3

|v|2dx,

it follows that Sr(c) = Θ−1({ c2

2 }). Then, by [27, Proposition 5.12], there exists λn ∈ R such that

∥I ′µ(un)− λnΘ
′(un)∥ → 0, as n→ ∞.

Hence, in H−s
r (R3), we have(

a+ b

∫
R3

|(−∆)s/2un|2dx
)
(−∆)sun + ϕsun

un − µ|un|p−2un − |un|2
∗
s−2un = λnun + o(1),

where H−s
r (R3) is the dual space of Hs

r (R3). Thus, we have for φ ∈ Hs
r (R3), that(

a+ b

∫
R3

|(−∆)s/2un|2dx
)∫

R3

(−∆)s/2un(−∆)s/2φdx+

∫
R3

ϕsun
unφdx

− µ

∫
R3

|un|p−2unφdx−
∫
R3

|un|2
∗
s−2unφdx

= λn

∫
R3

unφdx+ o(1),

(3.6)

and if we choose φ = un, we obtain(
a+ b

∫
R3

|(−∆)s/2un|2dx
)∫

R3

|(−∆)s/2un|2dx+

∫
R3

ϕsun
u2ndx− µ

∫
R3

|un|pdx−
∫
R3

|un|2
∗
sdx

= λn

∫
R3

u2ndx+ o(1),

(3.7)

from (3.7), and the boundedness of {un} in Ds,2(R3), we can deduce that {λn} is bounded in R.
Then we can assume that, up to subsequence, λn → λ for some λ ∈ R.

Next, we shall prove un → u in L2∗s (R3) by using the concentration-compactness principle due
to Lions [19]. Since ∥(−∆)s/2un∥2 ≤ R1, for n large enough, by Lemma 3.1, there exist two
positive measures, ζ, ω ∈ M(R3), such that

|(−∆)s/2un|2 ⇀ ω, |un|2
∗
s ⇀ ζ in M(R3) (3.8)

as n→ ∞. Then, by Lemma 3.1, either un → u in L
2∗s
loc(R3) or there exists a (at most countable)

set of distinct points {xj}j∈J ⊂ R3 and positive numbers {ζj}j∈J such that

ζ = |u|2
∗
s +Σj∈Jζjδxj .

Moreover, there exist some at most a countable set J ⊂ N, a corresponding set of distinct points
{xj}j∈J ⊂ R3, and two sets of positive numbers {ζj}j∈J ⊂ R3 and {ωj}j∈J ⊂ R3 such that items
(3.1)-(3.3) hold. Now, assume that J ̸= ∅. We split the proof into three steps.
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Step 1. We prove that aω({xj}) ≤ ζj , where ω({xj}), and ζj come from Lemma 3.1. We define
φ ∈ C∞

0 (R3) as a cut-off function with φ ∈ [0, 1], φ = 1 in B 1
2
(0), φ = 0 in R3 \ B1(0). For any

ρ > 0, define

φρ(x) := φ
(x− xj

ρ

)
=

{
1, |x− xj | ≤ ρ

2 ,

0, |x− xj | ≥ ρ.

By the boundedness of {un} in Hs
r (R3), we have that {unφρ} is also bounded in Hs

r (R3). Thus,
one has

on(1) = ⟨I ′µ(un), unφρ⟩

=
(
a+ b

∫
R3

|(−∆)s/2un|2dx
)∫

R3

(−∆)s/2un(−∆)s/2(unφρ)dx+

∫
R3

ϕsun
unφρdx

− µ

∫
R3

|un|pφρdx−
∫
R3

|un|2
∗
sφρdx.

(3.9)

It is easy to check that∫
R3

(−∆)s/2un(−∆)s/2(unφρ)dx =

∫ ∫
R6

(un(x)− un(y))(un(x)φρ(x)− un(y)φρ(y))

|x− y|3+2s
dx dy

=

∫ ∫
R6

|un(x)− un(y)|2φρ(y)

|x− y|3+2s
dx dy

+

∫ ∫
R6

(un(x)− un(y))(φρ(x)− φρ(y))un(x)

|x− y|3+2s
dx dy

= T1 + T2 .

For T1, by (3.8), we obtain

lim
ρ→0

lim
n→∞

T1 = lim
ρ→0

lim
n→∞

∫ ∫
R6

|un(x)− un(y)|2φρ(y)

|x− y|3+2s
dx dy

= lim
ρ→0

∫
R3

φρdω = ω({xj}).

From Hölder’s inequality, we have

|T2| =
∣∣∣ ∫ ∫

R6

(un(x)− un(y))(φρ(x)− φρ(x))un(x)

|x− y|3+2s
dx dy

∣∣∣
≤

∫ ∫
R6

∣∣∣ (un(x)− un(y))(φρ(x)− φρ(x))un(x)

|x− y|3+2s

∣∣∣ dx dy
≤

(∫ ∫
R6

|φρ(x)− φρ(x)|2u2n(x)
|x− y|3+2s

dx dy
)1/2(∫ ∫

R6

|un(x)− un(y)|2

|x− y|3+2s
dx dy

)1/2

≤ C1

(∫ ∫
R6

|φρ(x)− φρ(x)|2u2n(x)
|x− y|3+2s

dx dy
)1/2

.

Analogously to the proof of [34, Lemma 3.4], one has

lim
ρ→0

lim
n→∞

∫ ∫
R6

|φρ(x)− φρ(y)|2u2n(x)
|x− y|3+2s

dx dy = 0,

lim
ρ→0

lim
n→∞

∫
R3

(−∆)s/2un(−∆)s/2(unφρ)dx = ω({xj}).
(3.10)

Again by (3.8), we have

lim
ρ→0

lim
n→∞

∫
R3

|un|2
∗
sφρdx = lim

ρ→0

∫
R3

φρdζ = ζ({xj}) = ζj . (3.11)

By the definition of φρ, and the absolute continuity of the Lebesgue integral, one has

lim
ρ→0

lim
n→∞

∫
R3

|un|pφρdx = lim
ρ→0

∫
R3

|u|pφρdx = lim
ρ→0

∫
|x−xj |≤ρ

|u|pφρdx = 0. (3.12)
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Thus, by Proposition 2.1 and Lemma 2.3, we have∫
R3

ϕsun
u2nφρdx ≤ C

(∫
R3

|un|
12

3+2s dx

) 3+2s
6

(∫
R3

|u2nφρ|
6

3+2s dx

) 3+2s
6

≤ C2∥un∥2Hs
r

(∫
R3

|un|
12

3+2s |φρ|
6

3+2s dx
) 3+2s

6

≤ C3

(∫
R3

|un|
12

3+2sφρdx
) 3+2s

6

.

Therefore,

lim
ρ→0

lim
n→∞

∫
R3

ϕsun
u2nφρdx ≤ lim

ρ→0
lim

n→∞
C3

(∫
R3

|un|
12

3+2sφρdx
) 3+2s

6

= lim
ρ→0

C3

(∫
R3

|u|
12

3+2sφρdx
) 3+2s

6

= lim
ρ→0

C3

(∫
|x−xj |≤ρ

|u|
12

3+2sφρdx
) 3+2s

6

= 0.

(3.13)

Summing (3.9)-(3.13), taking the limit as n→ ∞, and then the limit as ρ→ 0, we arrive at

ζj ≥ aω({xj}).

Step 2. We show that aω∞ ≤ ζ∞, where ω∞ and ζ∞ are given in Lemma 3.2. Let ψ ∈ C∞
0 (R3)

be a cut-off function with ψ ∈ [0, 1], ψ = 0 in B 1
2
(0), ψ = 1 in R3 \B1(0). For any R > 0, define

ψR(x) := ψ
( x
R

)
=

{
0, |x| ≤ R

2 ,

1, |x| ≥ R.

Using again the boundedness of {un} and {unψR} in Hs
r (R3), we have

on(1) = ⟨I ′µ(un), unψR⟩

=
(
a+ b

∫
R3

|(−∆)s/2un|2dx
)∫

R3

(−∆)s/2un(−∆)s/2(unψR)dx

+

∫
R3

ϕsun
u2nψRdx− µ

∫
R3

|un|pψRdx−
∫
R3

|un|2
∗
sψRdx.

(3.14)

It is easy to derive that∫
R3

(−∆)s/2un(−∆)s/2(unψR)dx

=

∫ ∫
R6

(un(x)− un(y))(un(x)ψR(x)− un(y)ψR(y))

|x− y|3+2s
dx dy

=

∫ ∫
R6

|un(x)− un(y)|2ψR(y)

|x− y|3+2s
dx dy

+

∫ ∫
R6

(un(x)− un(y))(ψR(x)− ψR(y))un(x)

|x− y|3+2s
dx dy = T3 + T4 .

For T3, by (3.8) and Lemma 3.2, we infer that

lim
R→∞

lim
n→∞

T3 = lim
R→∞

lim
n→∞

∫ ∫
R6

|un(x)− un(y)|2ψR(y)

|x− y|3+2s
dx dy = ω∞.

From Hölder’s inequality, we have

|T4| =
∣∣∣ ∫ ∫

R6

(un(x)− un(y))(ψR(x)− ψR(y))un(x)

|x− y|3+2s
dx dy

∣∣∣
≤

∫ ∫
R6

∣∣∣ (un(x)− un(y))(ψR(x)− ψR(y))un(x)

|x− y|3+2s

∣∣∣ dx dy
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≤
(∫ ∫

R6

|ψR(x)− ψR(x)|2|un(x)|2

|x− y|3+2s
dx dy

)1/2(∫ ∫
R6

|un(x)− un(y)|2

|x− y|3+2s
dx dy

)1/2

≤ C
(∫ ∫

R6

|ψR(x)− ψR(y)|2|un(x)|2

|x− y|3+2s
dx dy

)1/2

.

Combining the above, we conclude that

lim
R→∞

lim
n→∞

∫ ∫
R6

|ψR(x)− ψR(y)|2|un(x)|2

|x− y|3+2s
dx dy

= lim
R→∞

lim
n→∞

∫ ∫
R6

|[1− ψR(x)]− [1− ψR(y)]|2|un(x)|2

|x− y|3+2s
dx dy = 0.

Hence,

lim
R→∞

lim
n→∞

∫
R3

(−∆)s/2un(−∆)s/2(unψR)dx = ω∞. (3.15)

By Lemma 3.2, one has

lim
R→∞

lim
n→∞

∫
R3

|un|2
∗
sψRdx = ζ∞. (3.16)

Analogous the proof of [34, Lemma 3.3], we infer that

lim
R→∞

lim
n→∞

∫
R3

|un|pψRdx = lim
R→∞

∫
R3

|u|pψRdx = lim
R→∞

∫
|x|≥R

2

|u|pψRdx = 0. (3.17)

Moreover, we can obtain

lim
R→∞

lim
n→∞

∫
R3

ϕsun
u2nψRdx ≤ lim

R→∞
lim
n→∞

C3

(∫
R3

|un|
12

3+2sψRdx
) 3+2s

6

= lim
R→∞

C3

(∫
R3

|u|
12

3+2sψRdx
) 3+2s

6

= lim
R→∞

C3

(∫
|x|≥R

2

|u|
12

3+2sψRdx
) 3+2s

6

= 0.

(3.18)

Summing up, from (3.14)-(3.18), taking the limit as n → ∞, and then the limit as R → ∞, we
have

ζ∞ ≥ aω∞.

Step 3. We claim that ζj = 0 for any j ∈ J and ζ∞ = 0. Suppose by contradiction that, there
exists j0 ∈ J such that ζj0 > 0 or ζ∞ > 0. Then step 1, step 2, Lemma 3.1 and Lemma 3.2 imply
that

ζj0 ≤ (S−1ω({xj0}))
2∗s
2 ≤ (S−1a−1ζj0)

2∗s
2 , ζ∞ ≤ (S−1ω∞)

2∗s
2 ≤ (S−1a−1ζ∞)

2∗s
2 .

Consequently, we obtain ζj0 ≥ (aS)
3
2s or ζ∞ ≥ (aS)

3
2s . If ζj0 ≥ (aS)

3
2s , one has

d = lim
n→∞

[
Iµ(un)−

1

2∗s
⟨I ′µ(un), un⟩

]
= lim

n→∞

[(1
2
− 1

2∗s

)
a∥(−∆)s/2un∥22 +

(1
4
− 1

2∗s

)
b∥(−∆)s/2un∥42

+
(1
4
− 1

2∗s

)∫
R3

ϕsun
u2ndx−

(1
p
− 1

2∗s

)
µ

∫
R3

|un|pdx
]

≥ lim
n→∞

[(1
2
− 1

2∗s

)
a∥(−∆)s/2un∥22 −

(1
p
− 1

2∗s

)
µ

∫
R3

|un|pdx
]

≥ lim
n→∞

(1
2
− 1

2∗s

)
aS∥un∥22∗s − lim

n→∞

(1
p
− 1

2∗s

)
µcp(1−δp,s)C(p, s)∥(−∆)s/2un∥

pδp,s
2

≥
(1
2
− 1

2∗s

)
aS lim

ρ→0
lim
n→∞

(∫
R3

|un|2
∗
sφρdx

)2/2∗s
−

(1
p
− 1

2∗s

)
µcp(1−δp,s)C(p, s)R

pδp,s
1
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=
(1
2
− 1

2∗s

)
aS(ζj0)

2
2∗s −

(1
p
− 1

2∗s

)
µcp(1−δp,s)C(p, s)R

pδp,s
1

≥
(1
2
− 1

2∗s

)
a

3
2sS

3
2s −

(1
p
− 1

2∗s

)
µcp(1−δp,s)C(p, s)R

pδp,s
1

= Λ− µcp(1−δp,s)D,

which contradicts d < min{0,Λ− µcp(1−δp,s)D}. If ζ∞ ≥ (aS)
3
2s , we have

d = lim
n→∞

[
Iµ(un)−

1

2∗s
⟨I ′µ(un), un⟩

]
= lim

n→∞

[(1
2
− 1

2∗s

)
a∥(−∆)s/2un∥22 +

(1
4
− 1

2∗s

)
b∥(−∆)s/2un∥42

+
(1
4
− 1

2∗s

)∫
R3

ϕsun
u2ndx−

(1
p
− 1

2∗s

)
µ

∫
R3

|un|pdx
]

≥ lim
n→∞

[(1
2
− 1

2∗s

)
a∥(−∆)s/2un∥22 −

(1
p
− 1

2∗s

)
µ

∫
R3

|un|pdx
]

≥ lim
n→∞

(1
2
− 1

2∗s

)
aS∥un∥22∗s − lim

n→∞

(1
p
− 1

2∗s

)
µcp(1−δp,s)C(p, s)∥(−∆)s/2un∥

pδp,s
2

≥
(1
2
− 1

2∗s

)
aS lim

R→∞
lim

n→∞

(∫
R3

|un|2
∗
sψRdx

)2/2∗s
−

(1
p
− 1

2∗s

)
µcp(1−δp,s)C(p, s)R

pδp,s
1

=
(1
2
− 1

2∗s

)
aS(ζ∞)2/2

∗
s −

(1
p
− 1

2∗s

)
µcp(1−δp,s)C(p, s)R

pδp,s
1

≥
(1
2
− 1

2∗s

)
a

3
2sS

3
2s −

(1
p
− 1

2∗s

)
µcp(1−δp,s)C(p, s)R

pδp,s
1

= Λ− µcp(1−δp,s)D,

which also contradicts d < min{0,Λ−µcp(1−δp,s)D}. Therefore, ζj = 0 for any j ∈ J and ζ∞ = 0.

As a result, by Lemma 3.1, we obtain that un → u in L
2∗s
loc(R3). Combining with Lemma 3.2, we

know that un → u in L2∗s (R3).
Now, we prove there exists µ∗

1 > 0 independently on n ∈ N such that if µ > µ∗
1, the Lagrange

multiplier λ < 0. Indeed, note that {un} ⊂ Sr(c) and ∥(−∆)s/2un∥2 ≤ R1 for large n, as can be
seen from the previous proof of this Lemma, and (2.2)-(2.3) that, there existsQ1 > 0 independently
on n, such that for large n

Q1 ≤
∫
R3

|un|pdx

≤ C(p, s)∥(−∆)s/2un∥
pδp,s
2 ∥un∥

p(1−δp,s)
2

≤ C(p, s)R1
pδp,scp(1−δp,s),

(3.19)

∫
R3

ϕsun
u2ndx ≤ Γs∥un∥4 12

3+2s
≤ ΓsC(ps, s)

3+2s
3 ∥(−∆)s/2un∥

3−2s
s

2 ∥un∥
6s−3

s
2

≤ ΓsC(ps, s)
3+2s

3 R
3−2s

s
1 c

6s−3
s

:= Q2,

(3.20)

where ps :=
12

3+2s and Q2 = Q2(s,R1, c) > 0. We define the constant

µ∗
1 =

p(6s− 3)Q2

2[6− p(3− 2s)]Q1
. (3.21)

By (3.19)-(3.21), we have

µ∗
1 > lim

n→+∞

p(6s− 3)
∫
R3 ϕ

s
un
u2ndx

2[6− p(3− 2s)]
∫
R3 |un|pdx

=
p(6s− 3)

∫
R3 ϕ

s
uu

2dx

2[6− p(3− 2s)]
∫
R3 |u|pdx

> 0. (3.22)
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Set B := limn→∞ ∥(−∆)s/2un∥22 ≥ 0, then, 0 < ∥(−∆)s/2u∥22 ≤ B. For any φ ∈ Hs
r (R3), it follows

by un ⇀ u in Hs
r (R3) and λn → λ, that∫

R3

(−∆)s/2un(−∆)s/2φdx→
∫
R3

(−∆)s/2u(−∆)s/2φdx and λn

∫
R3

unφdx→ λ

∫
R3

uφdx

as n → ∞. Since {|un|2
∗
s−2un} is bounded in L

2∗s
2∗s−1 (R3), {|un|p−2un} is bounded in L

2∗s
p−1 (R3),

and un(x) → u(x) a.e. in R3, we obtain that

|un|2
∗
s−2un ⇀ |u|2

∗
s−2u in L

2∗s
2∗s−1 (R3) and |un|p−2un ⇀ |u|p−2u in L

2∗s
p−1 (R3),

and so∫
R3

|un|2
∗
s−2unφdx→

∫
R3

|u|2
∗
s−2uφdx and

∫
R3

|un|p−2unφdx→
∫
R3

|u|p−2uφdx,

as n→ ∞. Recall from Lemma 2.5 that∫
R3

ϕsun
unφdx→

∫
R3

ϕsuuφdx, ∀φ ∈ Hs
r (R3).

Thus, by (3.6), for all φ ∈ Hs
r (R3), we have

(a+ bB)

∫
R3

(−∆)s/2u(−∆)s/2φdx+

∫
R3

ϕsuuφdx

− µ

∫
R3

|u|p−2uφdx−
∫
R3

|u|2
∗
s−2uφdx

= λ

∫
R3

uφdx,

(3.23)

we can derive that u solves the equation

(a+ bB)(−∆)su+ ϕsuu− µ|u|q−2u− |u|2
∗
s−2u = λu. (3.24)

Moreover, by Lemma 2.6, u satisfies

s(a+ bB)

∫
R3

|(−∆)s/2u|2dx+
3− 2s

4

∫
R3

ϕsuu
2dx− sµδp,s

∫
R3

|u|pdx− s

∫
R3

|u|2
∗
sdx = 0. (3.25)

Combining (3.24) and (3.25), one has

sλ∥u∥22 =
6s− 3

4

∫
R3

ϕsuu
2dx+ sµ

(3− 2s)p− 6

2p

∫
R3

|u|pdx. (3.26)

Now, if µ > µ∗
1, we conclude from (3.22), that

µ >
p(6s− 3)

∫
R3 ϕ

s
uu

2dx

2[6− p(3− 2s)]
∫
R3 |u|pdx

.

Thus, from (3.26), we infer to limn→+∞ λn = λ < 0. By (3.7) and (3.23), we derive

lim
n→∞

[(
a+ b

∫
R3

|(−∆)s/2un|2dx
)∫

R3

|(−∆)s/2un|2dx+

∫
R3

ϕsun
u2ndx− λn

∫
R3

u2ndx
]

= lim
n→∞

[
µ

∫
R3

|un|pdx+

∫
R3

|un|2
∗
sdx

]
= µ

∫
R3

|u|pdx+

∫
R3

|u|2
∗
sdx

= (a+ bB)

∫
R3

|(−∆)s/2u|2dx+

∫
R3

ϕsuu
2dx− λ

∫
R3

u2dx.

(3.27)
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Since λ < 0 for µ > µ∗
1 large, by Fatou’s Lemma we obtain,

lim
n→∞

[(
a+ b

∫
R3

|(−∆)s/2un|2dx
)∫

R3

|(−∆)s/2un|2dx+

∫
R3

ϕsun
u2ndx− λn

∫
R3

u2ndx
]

= lim
n→∞

[
(a+ bB)

∫
R3

|(−∆)s/2un|2dx+

∫
R3

ϕsun
u2ndx− λ

∫
R3

u2ndx
]

≥ (a+ bB)

∫
R3

|(−∆)s/2u|2dx+

∫
R3

ϕsuu
2dx− lim inf

n→∞
λ

∫
R3

u2ndx,

(3.28)

and from (3.27)-(3.28), one has

−λ
∫
R3

u2dx ≥ lim inf
n→∞

(
− λ

∫
R3

u2ndx
)
. (3.29)

But by Fatou’s Lemma, we have

lim inf
n→∞

(
− λ

∫
R3

u2ndx
)
≥ −λ

∫
R3

u2dx. (3.30)

Combining (3.29) with (3.30), we obtain

lim
n→∞

(
− λ

∫
R3

u2ndx
)
= −λ

∫
R3

u2dx;

that is,

lim
n→∞

∫
R3

u2ndx =

∫
R3

u2dx.

Thus, by (3.27), one gets

lim
n→∞

∥(−∆)s/2un∥22 = ∥(−∆)s/2u∥22.

Therefore, un → u in Hs
r (R3) and ∥u∥2 = c. This completes the proof. □

For ϵ > 0, we introduce the set

I−ϵ
µ,τ = {u ∈ Sr(c) : Iµ,τ (u) ≤ −ϵ} ⊂ Hs

r (R3).

Because Iµ,τ is continuous and even on Hs
r (R3), I−ϵ

µ,τ is closed and symmetric.

Lemma 3.4. For any fixed k ∈ N, there exist ϵk = ϵ(k) > 0 and µ := µ(k) > 0 such that, for any
0 < ϵ ≤ ϵk and µ ≥ µk, one has that γ(I−ϵ

µ,τ ) ≥ k.

The proof of Lemma 3.4 is similar to [2, Lemma 3.2], so we omit it here. We define the set

Σk := {Ω ⊂ Sr(c) : Ω is closed and symmetric, γ(Ω) ≥ k},

and by Lemma 3.3-(ii), we know that

dk := inf
Ω∈Σk

sup
u∈Ω

Iµ,τ > −∞

for all k ∈ N. To prove Theorem 1.1, we introduce the critical value, we define

Kd = {u ∈ Sr(c) : I
′
µ,τ (u) = 0, Iµ,τ (u) = d}.

Then, we can derive the following conclusion.

Lemma 3.5. If d = dk = dk+1 = · · · = dk+l,

c ∈
(
0,min

{(β
µ

) 1
p(1−δp,s) ,

( Λ

Dµ

) 1
p(1−δp,s)

})
,

µ > µ∗
k = max{µ∗

1, µk}, then one has γ(Kd) ≥ ℓ + 1. Especially, Iµ,τ (u) admits at least ℓ + 1
nontrivial critical points.



EJDE-2026/03 FRACTIONAL KIRCHHOFF-SCHRÖDINGER-POISSON SYSTEM 15

Proof. For ϵ > 0, it is easy to check that I−ϵ
µ,τ ∈ Σ. For any fixed k ∈ N, by Lemma 3.4, there exists

ϵk := ϵ(k) > 0 and µk := µ(k) > 0 such that, if 0 < ϵ < ϵk and µ ≥ µk, we have γ(I−ϵk
µ,τ ) ≥ k.

Thus, I−ϵk
µ,τ ∈ Σk, and moreover,

dk ≤ sup
u∈I

−ϵk
µ,τ

Iµ,τ (u) = −ϵk < 0.

Assume that 0 > d = dk = dk+1 = · · · = dk+l, since c ∈
(
0,min

{(
β
µ

) 1
p(1−δp,s) ,

(
Λ
Dµ

) 1
p(1−δp,s)

})
, by

Lemma 3.3-(iii), when µ > µ∗
1 > 0 large, Iµ,τ (u) satisfies the (PS)d condition at the level d < 0.

So, Kd is a compact set. By [17, Theorem 2.1], we know that the restricted function Iµ,τ |Sr(c)

possesses at least ℓ+ 1 nontrivial critical points. The proof is complete. □

Proof of Theorem 1.1. Let

c ∈
(
0,min

{(β
µ

) 1
p(1−δp,s) ,

( Λ

Dµ

) 1
p(1−δp,s)

})
,

µ ≥ µ∗
k = max{µ∗

1, µk}. From Lemma 3.3-(ii), we see that the critical points of Iµ,τ found in
Lemma 3.5 are the critical points of Iµ, which completes the proof. □

4. Proof of Theorem 1.2

From Lemma 2.6, we see that any critical point of Iµ|Sr(c) belongs to Pc. Consequently, the
properties of the manifold Pc have relation to the mini-max structure of Iµ|Sr(c). For u ∈ Sr(c)
and θ ∈ R, we introduce the transformation:

(θ ⋆ u)(x) := e
3θ
2 u(eθx), x ∈ R3, θ ∈ R.

It is easy to check that the dilations preserve the L2-norm such that θ ⋆ u ∈ Sr(c), by direct
calculation, one has

I(u, θ) = Iµ((θ ⋆ u))

:=
a

2
e2sθ

∫
R3

|(−∆)s/2u|2dx+
b

4
e4sθ

(∫
R3

|(−∆)s/2u|2dx
)2

+
1

4
e(3−2s)θ

∫
R3

ϕsuu
2dx− µ

p
e

3(p−2)
2 θ

∫
R3

|u|pdx− 1

2∗s
e

3(2∗s−2)

2 θ

∫
R3

|u|2
∗
sdx.

Lemma 4.1. Let u ∈ Sr(c), then

(i)
∫
R3 |(−∆)s/2(θ ⋆ u)|2dx→ 0 and Iµ((θ ⋆ u)) → 0 as θ → −∞;

(ii)
∫
R3 |(−∆)s/2(θ ⋆ u)|2dx→ +∞ and Iµ((θ ⋆ u)) → −∞ as θ → +∞.

Proof. A direct computation shows that∫
R3

|(−∆)s/2(θ ⋆ u)|2dx = e2sθ
∫
R3

|(−∆)s/2u|2dx,∫
R3

|(−∆)s/2(θ ⋆ u)|2dx→ 0 as θ → −∞,∫
R3

|(−∆)s/2(θ ⋆ u)|2dx→ +∞ as θ → +∞.

Notice that

Iµ((θ ⋆ u)) :=
a

2
e2sθ

∫
R3

|(−∆)s/2u|2dx+
b

4
e4sθ

(∫
R3

|(−∆)s/2u|2dx
)2

+
1

4
e(3−2s)θ

∫
R3

ϕsuu
2dx− µ

p
e

3(p−2)
2 θ

∫
R3

|u|pdx− 1

2∗s
e

3(2∗s−2)

2 θ

∫
R3

|u|2
∗
sdx,

by
3(2∗s−2)

2 > 3(p−2)
2 > 4s > 2s > 3− 2s, we infer that

Iµ((θ ⋆ u)) → 0 as θ → −∞, Iµ((θ ⋆ u)) → −∞ as θ → +∞.

This completes the proof. □



16 Y.-Q. ZHAO, J.-F. LIAO EJDE-2026/03

Lemma 4.2. There exist K = Kc > 0 and c̃ > 0 such that for all 0 < c < c̃,

0 < sup
u∈Ac

Iµ(u) < inf
u∈Bc

Iµ(u), (4.1)

where Ac = {u ∈ Sr(c) :
∫
R3 |(−∆)s/2u|2dx ≤ Kc}, Bc = {u ∈ Sr(c) :

∫
R3 |(−∆)s/2u|2dx = 2Kc}.

Proof. By Lemma 2.4, for any p ∈ (2, 2∗s), we have

∥u∥pp ≤ C(p, s)∥(−∆)s/2u∥
3
s (

p
2−1)

2 ∥u∥
3
s (1−

3−2s
6 p)

2 , ∀u ∈ Hs(R3). (4.2)

By the Sobolev inequality (2.1) and (4.2), for u, v ∈ Sr(c), one has

Iµ(v)− Iµ(u) =
a

2

∫
R3

|(−∆)s/2v|2dx− a

2

∫
R3

|(−∆)s/2u|2dx

+
b

4

(∫
R3

|(−∆)s/2v|2dx
)2

− b

4

(∫
R3

|(−∆)s/2u|2dx
)2

+
1

4

∫
R3

ϕsvv
2dx− 1

4

∫
R3

ϕsuu
2dx+

µ

p

∫
R3

|u|pdx

− µ

p

∫
R3

|v|pdx+
1

2∗s

∫
R3

|u|2
∗
sdx− 1

2∗s

∫
R3

|v|2
∗
sdx

≥ a

2

(∫
R3

|(−∆)s/2v|2dx−
∫
R3

|(−∆)s/2u|2dx
)

+
b

4

[( ∫
R3

|(−∆)s/2v|2dx
)2

−
(∫

R3

|(−∆)s/2u|2dx
)2]

− 1

4
ΓsC(ps, s)

3+2s
3 ∥(−∆)s/2u∥

3−2s
s

2 c
6s−3

s

− µ

p
C(p, s)∥(−∆)s/2v∥pδp,s2 c

6−p(3−2s)
2s − S− 2∗s

2

2∗s
∥(−∆)s/2v∥2

∗
s

2 .

Let ∥(−∆)s/2u∥22 ≤ Kc and ∥(−∆)s/2v∥22 = 2Kc, here Kc will be determined later. Set

c̃ =
( K

4s−3
2s

c

4ΓsC(ps, s)
3+2s

3

a
) s

6s−3

,

by a direct computation, we obtain

Iµ(v)− Iµ(u)

≥ a

2
Kc +

3b

4
K2

c − 1

4
ΓsC(ps, s)

3+2s
3 K

3−2s
2s

c

( K
4s−3
2s

c

4ΓsC(ps, s)
3+2s

3

a
) s

6s−3 ·
6s−3

s

− µ

p
C(p, s)(2Kc)

pδp,s
2

( K
4s−3
2s

c

4ΓsC(ps, s)
3+2s

3

a
) s

6s−3 ·
6−p(3−2s)

2s − S− 2∗s
2

2∗s
(2Kc)

2∗s
2

≥ a

2
Kc −

a

16
Kc −

µ

p
2

pδp,s
2 C(p, s)

( 1

4ΓsC(ps, s)
3+2s

3

a
) 6−p(3−2s)

2(6s−3)

K
(4s−3)(6−p(3−2s))

4s(6s−3)
c K

3(p−2)
4s

c

− S− 2∗s
2

2∗s
2

2∗s
2 (Kc)

2∗s
2

=
7

16
aKc −

µ2
3(p−2)

4s C(p, s)a
6−p(3−2s)
2(6s−3)

p(4ΓsC(ps, s)
3+2s

3 )
6−p(3−2s)
2(6s−3)

Kγ1
c Kc −

2
2∗s
2

2∗sS
2∗s
2

K
2∗s−2

2
c Kc

≥ 5

16
aKc > 0,

(4.3)

where

γ1 =
[6− p(3− 2s)][4s− 3] + [3(p− 2)− 4s][6s− 3]

4s(6s− 3)
.
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If we take

Kc = min
{(p(4ΓsC(ps, s)

3+2s
3 )

6−p(3−2s)
2(6s−3)

16µ2
3(p−2)

4s C(p, s)a
6−p(3−2s)
2(6s−3)

a
)γ2

,
(2∗sS 2∗s

2

2
2∗s
2 16

a
) 2

2∗s−2
}
,

with

γ2 =
4s(6s− 3)

[6− p(3− 2s)][4s− 3] + [3(p− 2)− 4s][6s− 3]
,

then, by (4.3) we deduce that (4.1) holds. The proof is complete. □

From Lemma 4.2 we can deduce the following conclusion.

Corollary 4.3. Let Kc and c̃ be given in Lemma 4.2, and u ∈ Sr(c) with ∥(−∆)s/2u∥22 ≤ Kc,
then Iµ(u) > 0.

Proof. A direct computation shows that

Iµ(u) ≥
a

2
∥(−∆)s/2u∥22 +

b

4
∥(−∆)s/2u∥42 −

µ

p
C(p, s)c

6−p(3−2s)
2s ∥(−∆)s/2u∥

3(p−2)
2s

2

− S− 2∗s
2

2∗s
∥(−∆)s/2u∥2

∗
s

2 > 0,

if ∥(−∆)s/2u∥22 ≤ Kc, and the conclusion holds. □

Next, we study the characterizations of the mountain pass levels for I(u, θ) and Iµ(u). We
denote the closed set Idµ := {u ∈ Sr(c) : Iµ(u) ≤ d}.

Proposition 4.4. Assuming that 8s
3 + 2 < p < 2∗s, we define

c̃µ(c) := inf
γ̃∈Γ̃

max
t∈[0,1]

I(γ̃(t)), cµ(c) := inf
γ∈Γ

max
t∈[0,1]

Iµ(γ(t)),

where

Γ̃c = {γ̃ ∈ C([0, 1], Sr(c)× R) : γ̃(0) ∈ (Ac, 0), γ̃(1) ∈ (I0µ, 0)},
Γc = {γ ∈ C([0, 1], Sr(c)) : γ(0) ∈ Ac, γ(1) ∈ I0µ}.

Then we have c̃µ(c) = cµ(c) > 0.

Proof. On the one hand, for any γ̃ ∈ Γ̃c, we can write it into

γ̃(t) = (γ̃1(t), γ̃2(t)) ∈ Sr(c)× R.
We set γ(t) = γ̃2(t) ⋆ γ̃1(t), then γ ∈ Γc, and

max
t∈[0,1]

I(γ̃(t)) = max
t∈[0,1]

Iµ(γ̃2(t) ⋆ γ̃1(t)) = max
t∈[0,1]

Iµ(γ(t)),

which implies c̃µ(c) ≥ cµ(c) > 0, using Corollary 4.3. On the other hand, for any γ ∈ Γc, if we set

γ̃(t) = (γ(t), 0), then we obtain γ̃ ∈ Γ̃c and

max
t∈[0,1]

I(γ̃(t)) = max
t∈[0,1]

Iµ(γ(t)).

This infers that c̃µ(c) ≤ cµ(c). So, c̃µ(c) = cµ(c) > 0. □

Next, we show the existence of the (PS)cµ(c)-sequence for I(u, θ) on Sr(c)×R ⊂ H. It is obtained
by a standard argument using Ekeland’s variational principle and constructing pseudo-gradient
flow, see [16, Proposition 2.2].

Lemma 4.5. Let {h̃n} ⊂ Γ̃c satisfy that

max
t∈[0,1]

I(h̃n(t)) ≤ c̃µ(c) +
1

n
,

then there exists a sequence {(vn, θn)} ⊂ Sr(c)× R such that

(i) I(vn, θn) ∈ [c̃µ(c)− 1
n , c̃µ(c) +

1
n ],

(ii) mint∈[0,1] ∥(vn, θn)− h̃n(t)∥H ≤ 1√
n
; and
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(iii) ∥(I|Sr(c)×R)
′(vn, θn)∥ ≤ 2√

n
, that is,

|⟨I ′(vn, θn), z⟩|H−1×H ≤ 2√
n
∥z∥H,

for all

z ∈ T̃(vn,θn) = {(z1, z2) ∈ H : ⟨vn, z1⟩L2 = 0}.

It follows from the above proposition, we can obtain a special (PS)cµ(c)-sequence for Iµ(u) on

Sr(c) ⊂ Hs
r (R3).

Lemma 4.6. Under the assumption 2 + 8s
3 < p < 2∗s, there exists a sequence {un} ⊂ Sr(c) such

that

(1) Iµ(un) → cµ(c) as n→ ∞;
(2) Pµ(un) → 0 as n→ ∞;
(3) (Iµ|Sr(c))

′(un) → 0 as n→ ∞, i.e., ⟨I ′µ(un), z⟩H−s
r ×Hs

r
→ 0, uniformly for all z satisfying

∥z∥Hs
r
≤ 1, where z ∈ Tun := {z ∈ Hs

r (R3) : ⟨un, z⟩L2 = 0}.

Proof. Let {hn} ⊂ Γc satisfy

max
t∈[0.1]

Iµ(hn(t)) ≤ cµ(c) +
1

n
, (4.4)

we define h̃n(t) = (hn(t), 0),∀t ∈ [0, 1]. It is easy to see that h̃n ∈ Γ̃c and Iµ(hn(t)) = I(h̃n(t)).
By Proposition 4.4, we have c̃µ(c) = cµ(c), then it follows from (4.4) that

max
t∈[0.1]

I(h̃n(t)) ≤ c̃µ(c) +
1

n
.

It follows from Lemma 4.5 that, there exists a sequence {(vn, θn)} ⊂ Sr(c)×R such that as n→ ∞,
one has

I(vn, θn) → cµ(c), θn → 0, (4.5)

(I|Sr(c)×R)
′(vn, θn) → 0. (4.6)

Set un = θn ⋆ vn. Then, Iµ(un) = I(vn, θn), and by (4.5), item (1) holds. To prove conclusion (2),
we utilize

∂θI(vn, θn) = ase2sθn∥(−∆)s/2vn∥22 + bse4sθn∥(−∆)s/2vn∥42 +
3− 2s

4
e(3−2s)θn

∫
R3

ϕsvn
v2ndx

− µ

p

3(p− 2)

2
e

3(p−2)
2 θn

∫
R3

|vn|pdx− 3(2∗s − 2)

22∗s
e

3(2∗s−2)

2 θn

∫
R3

|vn|2
∗
sdx

= s(a+ b∥(−∆)s/2un∥22)∥(−∆)s/2un∥22 +
3− 2s

4

∫
R3

ϕsun
u2ndx

− 3(p− 2)

2p
µ

∫
R3

|un|pdx− s

∫
R3

|un|2
∗
sdx

= Pµ(un),

which implies item (2) by (4.6). To show item (3), we set zn ∈ Tun
. Then,

⟨I ′µ(un), zn⟩ = a

∫
R3

∫
R3

(un(x)− un(y))(zn(x)− zn(y))

|x− y|3+2s
dx dy

+ b

∫
R3

∫
R3

(un(x)− un(y))
2

|x− y|3+2s
dx dy

∫
R3

∫
R3

(un(x)− un(y))(zn(x)− zn(y))

|x− y|3+2s
dx dy

+

∫
R3

ϕsun
unzndx− µ

∫
R3

|un|p−2unzndx−
∫
R3

|un|2
∗
s−2unzndx

= a

∫
R3

∫
R3

(e
3θn
2 vn(e

θnx)− e
3θn
2 vn(e

θny))(zn(x)− zn(y))

|x− y|3+2s
dx dy
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+ b

∫
R3

∫
R3

(e
3θn
2 vn(e

θnx)− e
3θn
2 vn(e

θny))2

|x− y|3+2s
dx dy

×
∫
R3

∫
R3

(e
3θn
2 vn(e

θnx)− e
3θn
2 vn(e

θny))(zn(x)− zn(y))

|x− y|3+2s
dx dy

+ e
3−4s

2 θn

∫
R3

ϕsvnvnzn(e
−θnx)dx− µe

3(p−3)
2 θn

∫
R3

|vn|p−2vnzn(e
−θnx)dx

− e
3(2∗s−3)

2 θn

∫
R3

|vn|2
∗
s−2vnzn(e

−θnx)dx

= e2sθna

∫
R3

∫
R3

(vn(x)− vn(y))e
− 3

2 θn(zn(e
−θnx)− zn(e

−θny))

|x− y|3+2s
dx dy

+ e4sθnb

∫
R3

∫
R3

(vn(x)− vn(y))
2

|x− y|3+2s
dx dy

×
∫
R3

∫
R3

(vn(x)− vn(y))e
− 3

2 θn(zn(e
−θnx)− zn(e

−θny))

|x− y|3+2s
dx dy

+ e
3−4s

2 θn

∫
R3

ϕsvnvnzn(e
−θnx)dx− µe

3(p−3)
2 θn

∫
R3

|vn|p−2vnzn(e
−θnx)dx

− e
3(2∗s−3)

2 θn

∫
R3

|vn|2
∗
s−2vnzn(e

−θnx)dx.

Denoting z̃n(x) = e−
3θn
2 zn(e

−θnx), we obtain

⟨I ′µ(un), zn⟩H−s
r ×Hs

r
= ⟨I ′(vn, θn), (z̃n, 0)⟩H−1×H.

It is easy to check that

⟨vn, z̃n⟩L2 =

∫
R3

vn(x)e
− 3θn

2 zn(e
−θnx)dx =

∫
R3

vn(e
θnx)e

3θn
2 zn(x)dx =

∫
R3

un(x)zn(x)dx = 0.

Therefore, (z̃n, 0) ∈ T̃(vn,θn). On the other hand,

∥(z̃n, 0)∥2H = ∥z̃n∥2Hs
r
= ∥zn∥22 + e−2sθn∥zn∥2Ds,2 ≤ C∥zn∥2Hs

r
,

where the last inequality follows by θn → 0. Consequently, we conclude item (3). The proof is
complete. □

Lemma 4.7. The (PS) sequence {un} ⊂ Sr(c) for Iµ(u) with the level cµ(c) mentioned in Lemma
4.6 is bounded in Hs

r (R3).

Proof. From Lemma 4.6 (1), we see that Iµ(u) is bounded. In fact, by Pµ(un) → 0 as n → ∞,
one obtains

|(1 + 2s)Iµ(un) + Pµ(un)| ≤ 3cµ(c),

which implies that

−3cµ(c) ≤
1 + 4s

2
a∥(−∆)s/2un∥22 +

1 + 6s

4
b∥(−∆)s/2un∥42 +

∫
R3

ϕsun
u2ndx

− µ(
1 + 2s

p
+ sδp,s)

∫
R3

|un|pdx− (
1 + 2s

2∗s
+ s)

∫
R3

|un|2
∗
sdx.

(4.7)

In view of the boundedness of Iµ(u), we have

a∥(−∆)s/2un∥22 +
b

2
∥(−∆)s/2un∥42 +

1

2

∫
R3

ϕsun
u2ndx

≤ 6cµ(c) +
2µ

p

∫
R3

|un|pdx+
2

2∗s

∫
R3

|un|2
∗
sdx.

(4.8)

By (4.7) and (4.8), we obtain

µ
(pδp,s − 4)s

p

∫
R3

|un|pdx+
(2∗s − 4)s

2∗s

∫
R3

|un|2
∗
sdx+

(6s− 3)

4

∫
R3

ϕsun
u2ndx ≤ 3(2 + 6s)cµ(c).
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Note that s ∈ ( 34 , 1), p >
8s
3 + 2, we have that pδp,s − 4 > 0, and so∫
R3

|un|pdx,
∫
R3

|un|2
∗
sdx and

∫
R3

ϕsun
u2ndx

are all bounded. Thus, ∥(−∆)s/2un∥2 ≤ R3 for some R3 > 0 independently on n ∈ N. Since
{un} ⊂ Sr(c), we see that {un} is bounded in Hs

r (R3). This completes the proof. □

Now, we set the functional Φ : Hs
r (R3) → R as

Φ(u) =
1

2

∫
R3

|u|2dx,

then Sr(c) = Φ−1( c
2

2 ). As a result, it can be derived from [27, Proposition 5.12] that there is a
sequence {λn} ⊂ R such that

I ′µ(un)− λnΦ
′(un) → 0, in H−s

r (R3) as n→ ∞.

That is, in H−s
r (R3), we have(

a+ b∥(−∆)s/2un∥22
)
(−∆)sun + ϕsun

un − µ|un|p−2un − |un|2
∗
s−2un = λnun + on(1). (4.9)

Therefore, for any φ ∈ Hs
r (R3), one has(

a+ b∥(−∆)s/2un∥22
)∫

R3

(−∆)s/2un(−∆)s/2φdx+

∫
R3

ϕsun
unφdx

−
∫
R3

µ|un|p−2unφdx−
∫
R3

|un|2
∗
s−2unφdx

= λn

∫
R3

unφdx+ on(1).

(4.10)

Next, we study the asymptotical behavior of the mountain pass level value cµ(c) as µ → +∞,
and the properties of the (PS)cµ(c)-sequence {un} ⊂ Sr(c) as n→ +∞.

Lemma 4.8. The limit limµ→+∞ cµ(c) = 0 holds.

Proof. Recall Lemma 4.1 and Corollary 4.3, we see that for fixed u0 ∈ Sr(c), there exists two
constants θ1, θ2 satisfying θ1 < 0 < θ2 such that u1 = θ1 ⋆ u0 ∈ Ac and Iµ(u2) = Iµ((θ2 ⋆ u0)) < 0.
Then, we can define a path

η0 : t ∈ [0, 1] → ((1− t)θ1 + tθ2) ⋆ u0 ∈ Γc.

Therefore,

0 < cµ(c) ≤ max
t∈[0,1]

Iµ(η0(t))

≤ max
r≥0

{a
2
r2s∥(−∆)s/2u0∥22 +

b

4
r4s∥(−∆)s/2u0∥42

+
1

4
r3−2s

∫
R3

ϕsu0
u20dx− µ

p
r

3(p−2)
2

∫
R3

|u0|pdx
}

:= max
r≥0

g(r).

Note that 3(p−2)
2 > 4s > 2s > 3 − 2s, we have that limr→0+ g(r) = 0+, limr→+∞ g(r) = −∞.

Then, there exists a unique maximum point r0 > 0 such that maxr≥0 g(r) = g(r0) > 0. Hence, we
distinguish two cases: r0 ≥ 1 and 0 ≤ r0 < 1.

If r0 ≥ 1, then by s ∈ ( 34 , 1), we have

max
t∈[0,1]

Iµ(η0(t)) ≤ g(r0)

≤
{a
2
r4s0 ∥(−∆)s/2u0∥22 +

b

4
r4s0 ∥(−∆)s/2u0∥42

+
1

4
r4s0

∫
R3

ϕsu0
u20dx− µ

p
r

3(p−2)
2

0

∫
R3

|u0|pdx
}
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≤ max
r≥0

{
3max

{a
2
∥(−∆)s/2u0∥22,

b

4
∥(−∆)s/2u0∥42,

1

4

∫
R3

ϕsu0
u20dx

}
r4s

− µ

p
r

3(p−2)
2

∫
R3

|u0|pdx
}

= 3m(rmax)
4s − µ

p
n(rmax)

3(p−2)
2

=
m(3p− 6− 8s)

p− 2

[
8psm

(p− 2)µn

] 8s
3p−6−8s

,

where rmax =
[

8psm
(p−2)µn

] 2
3p−6−8s

, m = max
{

a
2∥(−∆)s/2u0∥22, b4∥(−∆)s/2u0∥42, 14

∫
R3 ϕ

s
u0
u20dx

}
, n =∫

R3 |u0|pdx. Therefore, for 8s
3 + 2 < p < 2∗s, we have a positive constant C̃ independent of µ such

that

cµ(c) ≤ C̃µ− 8s
3p−6−8s → 0, as µ→ +∞.

If 0 ≤ r0 < 1, we infer to

max
t∈[0,1]

Iµ(η0(t)) ≤ g(r0)

≤
{a
2
r3−2s
0 ∥(−∆)s/2u0∥22 +

b

4
r3−2s
0 ∥(−∆)s/2u0∥42

+
1

4
r3−2s
0

∫
R3

ϕsu0
u20dx− µ

p
r

3(p−2)
2

0

∫
R3

|u0|pdx
}

≤ max
r≥0

{
3max

{a
2
∥(−∆)s/2u0∥22,

b

4
∥(−∆)s/2u0∥42,

1

4

∫
R3

ϕsu0
u20dx

}
r3−2s

− µ

p
r

3(p−2)
2

∫
R3

|u0|pdx
}

= 3m(rmax)
3−2s − µ

p
n(rmax)

3(p−2)
2

=
m(3p+ 4s− 12)

p− 2

[2pm(3− 2s)

(p− 2)µn

] 6−4s
3p+4s−12

,

where rmax = [ 2pm(3−2s)
(p−2)µn ]

2
3p+4s−12 . Therefore, for 2 + 8s

3 < p < 2∗s, and s ∈ ( 34 , 1), we can deduce

that 3p+ 4s− 12 > 0, then there exists a positive constant C̄ independent of µ such that

cµ(c) ≤ C̄µ− 6−4s
3p+4s−12 → 0, as µ→ +∞.

This completes the proof. □

Lemma 4.9. There exists a constant C = C(p, s) > 0 such that

lim sup
n→∞

∫
R3

F (un)dx ≤ Ccµ(c), lim sup
n→∞

∫
R3

f(un)undx ≤ Ccµ(c),

lim sup
n→∞

∫
R3

ϕsun
u2ndx ≤ Ccµ(c), lim sup

n→∞

∫
R3

|(−∆)s/2un|2dx ≤ Ccµ(c),

lim sup
n→∞

(

∫
R3

|(−∆)s/2un|2dx)2 ≤ Ccµ(c),

where f(u) = µ|u|p−2u+ |u|2∗s−2u, F (u) =
∫ u

0
f(s)ds.
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Proof. Since Iµ(un) → cµ(c) and Pµ(un) → 0 as n→ ∞, one obtains

3cµ(c) + on(1) = 3Iµ(un) + Pµ(un)

=
3 + 2s

2
a

∫
R3

|(−∆)s/2un|2dx+
3 + 4s

4
b
(∫

R3

|(−∆)s/2un|2dx
)2

+
3− s

2

∫
R3

ϕsun
u2ndx− 3

2

∫
R3

f(un)undx

≤ 3 + 4s

2
a

∫
R3

|(−∆)s/2u|2dx+
3 + 4s

4
b
(∫

R3

|(−∆)s/2u|2dx
)2

+
3− s

2

∫
R3

ϕsun
u2ndx− 3

2

∫
R3

f(un)undx

= (3 + 4s)
(
− 1

4

∫
R3

ϕsun
u2ndx+

∫
R3

F (un)dx+ cµ(c) + on(1)
)

+
3− s

2

∫
R3

ϕsun
u2ndx− 3

2

∫
R3

f(un)undx

= (3 + 4s)
(∫

R3

F (un)dx+ cµ(c) + on(1)
)

− 6s− 3

4

∫
R3

ϕsun
u2ndx− 3

2

∫
R3

f(un)undx

≤ (3 + 4s)
(∫

R3

F (un)dx+ cµ(c) + on(1)
)
− 3

2

∫
R3

f(un)undx

≤ (3 + 4s)(cµ(c) + on(1))−
3

2
p

∫
R3

F (un)dx+ (3 + 4s)

∫
R3

F (un)dx.

(4.11)

Hence,

4scµ(c) + on(1) ≥
3p− 6− 8s

2

∫
R3

F (un)dx,

which implies that

lim sup
n→∞

∫
R3

F (un)dx ≤ 8s

3p− 6− 8s
cµ(c) ≤ Ccµ(c) (4.12)

and then

lim sup
n→∞

∫
R3

f(un)undx ≤ Ccµ(c). (4.13)

Then, from (4.11)-(4.13), one has

lim sup
n→∞

{3 + 2s

2
a

∫
R3

|(−∆)s/2un|2dx+
3 + 4s

4
b(

∫
R3

|(−∆)s/2un|2dx)2 +
3− s

2

∫
R3

ϕsun
u2ndx

}
= lim sup

n→∞

{3

2

∫
R3

f(un)undx+ 3cµ(c)
}

≤ Ccµ(c).

Consequently, the proof is complete. □

Lemma 4.10. Let {un} ⊂ Sr(c) be the (PS) sequence for the constrained functional Iµ|Sr(c) at

level cµ(c) ∈
(
0,
(

1
4 − 1

2∗s

)
(aS)

3
2s

)
with Pµ(un) → 0 as n→ ∞. Then

(i) {λn} is bounded in R, and lim supn→∞ |λn| ≤ C
c2 cµ(c) has the estimation

λn =
1

c2

[6s− 3

4s

∫
R3

ϕsun
u2ndx+ µ

p(3− 2s)− 6

2ps

∫
R3

|un|pdx
]
+ on(1).

Moreover, there exists some µ∗
2 := µ∗

2(c) > 0 such that limn→+∞ λn = λ < 0, if µ > µ∗
2

large;
(ii) there exist u ∈ Sr(c) such that, up to a subsequence, un → u strongly in Hs

r (R3) as µ > µ∗
2

large and u is a solution of system (1.1) for some λ < 0.
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Proof. We split the proof into three steps.

Step 1. We assert that u ̸≡ 0. From Lemma 4.7, we know that {un} is a bounded (PS) sequence
for Iµ in Hs

r (R3), and by Lemma 2.3, up to a subsequence, there exists u ∈ Hs
r (R3) such that

un ⇀ u weakly in Hs
r (R3), un → u strongly in Lp(R3), for p ∈ (2, 2∗s), un(x) ⇀ u(x) a.e. on R3.

In view of 2 + 8s
3 < p < 2∗s, and Lemma 2.3 and Lemma 2.5, then

lim
n→∞

∫
R3

|un|pdx =

∫
R3

|u|pdx, lim
n→∞

∫
R3

ϕsun
u2ndx =

∫
R3

ϕsuu
2dx. (4.14)

Suppose by contradiction that, u ≡ 0. Then, by (4.14) and Pµ(un) = on(1), we deduce that

on(1) =
(
a+ b

∫
R3

|(−∆)s/2un|2dx
)∫

R3

|(−∆)s/2un|2dx+
3− 2s

4s

∫
R3

ϕsuu
2dx

− µδp,s

∫
R3

|un|pdx−
∫
R3

|un|2
∗
sdx

=
(
a+ b

∫
R3

|(−∆)s/2un|2dx
)∫

R3

|(−∆)s/2un|2dx−
∫
R3

|un|2
∗
sdx+ on(1).

Without loss of generality, we assume that

a

∫
R3

|(−∆)s/2un|2dx+ b
(∫

R3

|(−∆)s/2un|2dx
)2

→ l ≥ 0,

∫
R3

|un|2
∗
sdx→ l,

as n → ∞. If l = 0, then we can deduce from the expression of Iµ(un) that cµ(c) = 0, which is
absurd since cµ(c) > 0. Hence, l > 0. By the definition of S, we have

S ≤
∫
R3 |(−∆)s/2un|2dx

∥un∥22∗s
≤ 1

a

a
∫
R3 |(−∆)s/2un|2dx+ b

( ∫
R3 |(−∆)s/2un|2dx

)2

(∫
R3 |un|2∗sdx

)2/2∗s → 1

a
l
2s
3

as n→ ∞. It follows that l ≥ (aS)
3
2s . Consequently, by (4.14) we have

cµ(c) = lim
n→∞

Iµ(un)

= lim
n→∞

{a
2

∫
R3

|(−∆)s/2un|2dx+
b

4

(∫
R3

|(−∆)s/2un|2dx
)2

+
1

4

∫
R3

ϕsun
u2ndx− µ

p

∫
R3

|un|pdx− 1

2∗s

∫
R3

|un|2
∗
sdx

}
≥

(1
4
− 1

2∗s

)
l

≥
(1
4
− 1

2∗s

)
(aS)

3
2s ,

which contradicts Iµ(un) → cµ(c) <
(

1
4 − 1

2∗s

)
(aS)

3
2s . Therefore, u ̸≡ 0.

Step 2. We prove that un → u in L2∗s (R3). Again by Lemma 4.7, we can obtain {∥(−∆)s/2un∥2}
is bounded in R, by Prohorov’s theorem [3], there exist two positive measures, ζ, ω ∈ M(R3),
such that

|(−∆)s/2un|2 ⇀ ω, |un|2
∗
s ⇀ ζ in M(R3)

as n→ ∞. Then, by Lemma 3.1, either un → u in L
2∗s
loc(R3) or there exists a (at most countable)

set of distinct points {xj}j∈J ⊂ R3 and positive numbers {ζj}j∈J such that

ζ = |u|2
∗
s +Σj∈Jζjδxj

.

Moreover, there exist some at most a countable set J ⊂ N, a corresponding set of distinct points
{xj}j∈J ⊂ R3, and two sets of positive numbers {ζj}j∈J ⊂ R3 and {ωj}j∈J ⊂ R3 such that items
(3.1)-(3.3) hold. Now, assume that J ̸= ∅.

Similar to the proof in step 1 and step 2 of Lemma 3.3, we can obtain

aω({xj}) ≤ ζj , aω∞ ≤ ζ∞. (4.15)
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Next, we claim that ζj = 0 for any j ∈ J and ζ∞ = 0.
Suppose by contradiction that, there exists j1 ∈ J such that ζj1 > 0 or ζ∞ > 0. By (4.15),

Lemma 3.1 and Lemma 3.2, we obtain

ζj1 ≥ (aS)
3
2s or ζ∞ ≥ (aS)

3
2s .

If the former case occurs, one has(1
4
− 1

2∗s

)
(aS)

3
2s > cµ(c) = lim

n→∞

[
Iµ(un)−

1

4s
Pµ(un)

]
= lim

n→∞

[1
4
a∥(−∆)s/2un∥22 +

(1
4
− 3− 2s

16s

)∫
R3

ϕsun
u2ndx

+
(3(p− 2)

8ps
− 1

p

)
µ

∫
R3

|un|pdx+
(1
4
− 1

2∗s

)∫
R3

|un|2
∗
sdx

]
= lim

n→∞

[1
4
a∥(−∆)s/2un∥22 +

6s− 3

16s

∫
R3

ϕsun
u2ndx

+
3(p− 2)− 8s

8ps
µ

∫
R3

|un|pdx+
(1
4
− 1

2∗s

)∫
R3

|un|2
∗
sdx

]
≥ lim

n→∞

(1
4
− 1

2∗s

)∫
R3

|un|2
∗
sdx

≥
(1
4
− 1

2∗s

)
lim
ρ→0

lim
n→∞

∫
R3

|un|2
∗
sφρdx

=
(1
4
− 1

2∗s

)
ζj1

≥
(1
4
− 1

2∗s

)
(aS)

3
2s ,

which is a contradiction. If the latter case happens, we have(1
4
− 1

2∗s

)
(aS)

3
2s > cµ(c) ≥ lim

n→∞

(1
4
− 1

2∗s

)∫
R3

|un|2
∗
sdx

≥
(1
4
− 1

2∗s

)
lim

R→∞
lim
n→∞

∫
R3

|un|2
∗
sψRdx

=
(1
4
− 1

2∗s

)
ζ∞

≥
(1
4
− 1

2∗s

)
(aS)

3
2s .

This is also a contradiction. Therefore, ζj = 0 for any j ∈ J and ζ∞ = 0. As a result, by Lemma

3.1, we obtain that un → u in L
2∗s
loc(R3). Combining this with Lemma 3.2, we know that un → u

in L2∗s (R3).

Step 3. We prove that there exists some µ∗
2 := µ∗

2(c) > 0 such that limn→+∞ λn = λ < 0, if
µ > µ∗

2 large.
By (4.9) and the fact that un ∈ Sr(c), one has

a

∫
R3

|(−∆)s/2un|2dx+ b
(∫

R3

|(−∆)s/2un|2dx
)2

+

∫
R3

ϕsun
u2ndx−

∫
R3

f(un)undx

= λn

∫
R3

|un|2dx+ on(1)

= λnc
2 + on(1).

It indicates that

λn =
1

c2

[
a

∫
R3

|(−∆)s/2un|2dx+ b
(∫

R3

|(−∆)s/2un|2dx
)2
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+

∫
R3

ϕsun
u2ndx−

∫
R3

f(un)undx
]
+ on(1).

By Lemma 4.7, we know that {un} is bounded in Hs
r (R3), and so, {λn} is bounded in R. By

Lemma 4.9 we know that lim supn→∞ |λn| ≤ C
c2 cµ(c). From this and Pµ(un) → 0 as n → ∞, we

derive that

λn =
1

c2

[
a

∫
R3

|(−∆)s/2un|2dx+ b
(∫

R3

|(−∆)s/2un|2dx
)2

+

∫
R3

ϕsun
u2ndx−

∫
R3

f(un)undx− 1

s
Pµ(un)

]
+ on(1)

=
1

c2

[6s− 3

4s

∫
R3

ϕsun
u2ndx+ µ

p(3− 2s)− 6

2ps

∫
R3

|un|pdx
]
+ on(1).

By (4.14) and similar arguments to that of (3.19)-(3.22), we see that there exists µ∗
2 := µ∗

2(c) > 0,
such that

λ = lim
n→∞

λn

= lim
n→∞

1

c2

{6s− 3

4s

∫
R3

ϕsun
u2ndx+ µ

p(3− 2s)− 6

2ps

∫
R3

|un|pdx
}

=
1

c2

{6s− 3

4s

∫
R3

ϕsuu
2dx+ µ

p(3− 2s)− 6

2ps

∫
R3

|u|pdx
}
< 0,

(4.16)

for µ > µ∗
2 large.

With the help of the above step 1, step 2, step 3, we can prove un → u strongly in Hs
r (R3). Let

µ > µ∗
2, set B := limn→∞ ∥(−∆)s/2un∥22 ≥ 0, by the weak convergence of un ⇀ u in Hs

r (R3) and
(4.10), one obtains

(a+ bB)

∫
R3

(−∆)s/2u(−∆)s/2φdx+

∫
R3

ϕsuuφdx

− µ

∫
R3

|u|q−2uφdx−
∫
R3

|u|2
∗
s−2uφdx

= λ

∫
R3

uφdx.

(4.17)

Therefore, from (4.14), (4.16), and (4.17) and un → u in L2∗s (R3), it follows that

lim
n→∞

[(
a+ b

∫
R3

|(−∆)s/2un|2dx
)∫

R3

|(−∆)s/2un|2dx+

∫
R3

ϕsun
u2ndx− λ

∫
R3

u2ndx
]

= lim
n→∞

[
µ

∫
R3

|un|pdx+

∫
R3

|un|2
∗
sdx

]
= µ

∫
R3

|u|pdx+

∫
R3

|u|2
∗
sdx

= (a+ bB)

∫
R3

|(−∆)s/2u|2dx+

∫
R3

ϕsuu
2dx− λ

∫
R3

u2dx.

Since λ < 0, as in the proof of Lemma 3.3, we can derive that

lim
n→∞

∫
R3

u2ndx =

∫
R3

u2dx, lim
n→∞

∥(−∆)s/2un∥22 = ∥(−∆)s/2u∥22.

Therefore, un → u in Hs
r (R3) and ∥u∥2 = c. The proof is complete. □

With the help of the above technical lemmas, we can prove Theorem 1.2 as follows.

Proof of Theorem 1.2. From Lemmas 4.1 and 4.2, the functional Iµ satisfies the Mountain pass
geometry. By Lemmas 4.5 and 4.6, there exist a (PS)cµ(c)-sequence {un} ⊂ Sr(c) satisfying

Pµ(un) → 0 as n → ∞, (4.9), and (4.10), which is bounded in Hs
r (R3). Furthermore, by Lemma

4.8, there exists µ∗
3 := µ∗

3(c) large enough such that 0 < cµ(c) <
(

1
4 − 1

2∗s

)
(aS)

3
2s for µ > µ∗

3.
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Then, by Lemma 4.10, there exist u ∈ Sr(c) and λ < 0 such that passing to a subsequence un → u
in Hs

r (R3) if µ > µ∗(c) := max{µ∗
2, µ

∗
3}. This completes the proof. □
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