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NORMALIZED SOLUTIONS FOR A FRACTIONAL
KIRCHHOFF-SCHRODINGER-POISSON SYSTEMS WITH
CRITICAL GROWTH

YU-QIN ZHAO, JIA-FENG LIAO

ABSTRACT. In this article, we study the fractional Kirchhoff-Schrodinger-Poisson system with
Sobolev critical growth

(a + b/ \(—A)S/2u|2dm)(—A)su + ¢u = Au+ plulP 2w+ [u/? "2y, in R3,
R3
(=A)*¢ =u?, inR3
where a,b > 0, s € (%, 1), p € (2,2%), and p > 0 is a parameter, A € R is an undermined param-
eter. For this problem, under the L2-subcritical, p € (2, 473 +2), we obtain the multiplicity of the
normalized solutions by means of the truncation technique, concentration-compactness princi-

ple, and genus theory. In the L2-supercritical, p € (8—35 +2,2¥), we prove a couple of normalized
solutions by developing a fiber map and using the concentration-compactness principle.

1. INTRODUCTION

In this article, we study the nonlinear Kirchhoff-Schrédinger-Poisson system with Sobolev crit-
ical growth

(a + b/ [(=A)*2udz) (—A)*u + du = Mu~+ plulP~2u+ |u
R3

*_ .
%72y, in R3,

)

(1.1)
(_A)S(b = U2, in RB’

where a,b >0, s € (3,1), and p € (2,2%), p > 0 and A € R are parameters. Here (—A)* (s € (0,1))
is the fractional Laplacian operator which is defined by

u(r) — u(y) . u(r) — u(y)
—A)u(z) = C’SP.V./ ————dy = C, lim ————2dy,
(=8)"u(@) g |z —y[3T2s Y =0 Jra\ B, (z) |7 — Y32 Y

for u € S(R3), where S(R?) is the Schwartz space of rapidly decaying C* functions, B.(z) denote
an open ball of radius € at z and C; is a normalization constant.
System (|1.1)) has been motivated by the time-dependent fractional Schrédinger-Poisson system

v 3
ig- = (AT NGV - f(z,[T]), zeR, (1.2)

(=A)'¢ =V zeR’

where ¥ : R x R3 — C, s,t € (0,1), A € R. It is well-known that, the first equation in system
was used by Laskin (see [20, 21]) to extend the Feynman path integral, from Brownian-like
to Lévy-like quantum mechanical paths. This class of fractional Schrodinger equations with a
repulsive nonlocal Coulombic potential can be approximated by the Hartree-Fock equations to
describe a quantum mechanical system of many particles. For more application backgrounds on
the fractional Laplacian see [5] [7, [23].
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When looking for solutions to system (1.1), there are two distinct options regarding the fre-
quency parameter A. One is to regard the frequency A as a given constant. Xiang and Wang [32]
first investigated the fractional Kirchhoff-Schrodinger-Poisson system, and obtained the existence,
multiplicity and asymptotic behavior of nonnegative solutions. In recent years, researchers have
shown growing interest in the fractional Kirchhoff-Schrodinger-Poisson system

(a+b [ |[(=A)%u?dz)(—A)*u+ V(z)u+ pou = f(z,u), inR3
R3 (1.3)

(—=A)'¢ = pu?, in R3,

where a > 0, b > 0. When V(z) =0, f(z,u) = f(u), by utilizing minimax argument, Ambrosio
[1] obtained the existence of a nontrivial solutions for system with Berestycki-Lions type
nonlinearities. When V' (x) # 0, Wang et.al [30] studied the existence of ground solutions for system
with V(z) = 1 and f(z,u) = (|2|% * F(u)) f(u), 6 € (0,3 — 2t), and used the Pohozéev type
manifold; Then, under some assumptions on V' and f, by using constraint variational approach and
a quantitative deformation lemma, Meng et.al [24] proved the existence of the least energy sign-
changing solutions for system . Feng et al. [12] applied a similar method studied the least
energy sign-changing solutions to the following critical fractional Kirchhoff-Schrédinger-Poisson
system with steep potential well

%2y, in RS,

(a b \(—A)S/2u|2dx) (—A)u + Vi (@)u + du = [ulP~2u + |u

R3
(—=A)'p =% inR3

where s € (3,1), t € (0,1), Va(z) = AV(z) + 1, A > 0 and p > 4. Jian et al. [I8], deal with the
fractional Kirchhoff-Schrodinger-Poisson system with steep potential well

(a+0b | [(—A)2ulPde)(—A)u + AV (z)u + pou = [ulP~2u, in R3,
R3

(—=A)'p =u? inR3

where s € [%, 1),t€(0,1),2 <p<4,a>0is a constant, and b, A, u are positive parameters. By
applying the truncation technique and the parameter-dependent compactness lemma, they first
proved the existence of positive solutions. Furthermore, they investigated the asymptotic behavior
as b — 0, A = oo and p — 0, respectively. For other existence results, we refer to [11] 28] 29] and
the references therein.

When a =1, b = 0, system reduces to the following fractional Schrodinger-Poisson system

(—A)*u+V(x)u+ pou = f(x,u), in R L4

(=A)'p = pu?, in R3. (14)
Recently, under various potentials and nonlinear terms, most scholars have investigated the exis-
tence and multiplicity of ground state solutions, sign-changing solutions, and nontrivial solutions
for system . For further details, we refer the interesting readers to see [6] 10} 13} 5] 26] and
SO on.

Alternatively, the other one is to regard the frequency A as an unknown quantity. In such
point of view, it is natural to prescribe the mass, i.e., the L?-norm, so that A can be interpreted
as a Lagrange multiplier. Solutions of this type are often referred to as normalized solutions.
Nowadays, from a physical point of view, some physicists are very interested in the normalized
solutions, see for example [4] 22| B3]. There a few results are related to the study of normalized
solutions for the fractional Kirchhoff-Schrédinger-Poisson system except Wang et al. [31]. They
considered the fractional Kirchhoff-Schrédinger-Poisson system

(a b |(—A)S/2u|2d3:) (—A)u+du= f(u) +  u in R,
RS

(-A)'p=u* inR?
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where a,b > 0, s,t € (0,1), 2s +2t > 3, A € R, f € C(R,R) satisfies some general conditions
which contain the case f(u) ~ |u[P~2u with p € (Sstﬁ_?’, 8 +2)U (8 +2,2;), 25 = 5% They
obtained the existence of normalized solutions by using the Pohozaev manifold and variational
method.

Recently, He and Meng [14] studied the existence and multiplicity of the normalized solutions

for the nonlinear fractional Schrodinger-Poisson system with Sobolev critical exponent
(=A)u+ agu = plulP~?u + |u/>"2u+ Au  in R?,
(-=A)'p =u? inR3
where s,t € (0,1), 25+ 2t > 3, p € (2,2%), a, pu > 0 are parameters and A € R.

Motivated by [14] and [31], a natural question is whether the fractional Kirchhoff-Schrédinger-
Poisson system with the Sobolev critical growth can be applied to obtain the existence and multi-
plicity of normalized solutions for p in distinct ranges. Therefore, we study system (1.1]) and give
an affirmative answer. In addition, to recover the compactness, we will take H?(R?) as a working

space.
By using the Lax-Milgram theorem, for any u € HZ(R?), a unique ¢%(x) € D%?(R3) is given

by
2
s 25—3 2 u(y)
x) =z * |ul® = —_—
o) =l e = [

such that (—A)*¢ = u? and that inserting it into the first equation of system (1.1]), then system
(1.1) can be transformed into the following single equation

dy,

%2y, mR%.  (1.5)

(a + b/ |(—A)5/2u|2dx) (=A)u + ¢Su = M+ plulP"2u + |u
R3

It can be proved that to find the normalized solutions of system (|1.1)) is to seek the critical points
of the functional

b ' 2
) =5 [ 18y Pupde+ ([ 180 uPd)
1 1
+ f/ dSudr — ﬁ/ |u|Pdx — —/ |u
4 R3 D Jrs 22 R3

Sr(c) = {u € H:(R?): /

R3
It is well known that I, € C'(H:(R3),R). Here are our main results.

.
Zde,

under the constraint
lul?dz = c*, ¢ > O}.

Theorem 1.1. Assume a,b >0, s € (%, 1) and2<p< % + 2, for given k € N, then there exist
B>0, A= (- 2%)(1%5% >0, D= (% - 5)C(p, S)Rf(s’)’s > 0 independent of k and pj > 0
large, such that system (L.1]) possesses at least k couples (uj, \;) € HE(R3) x R of weak solutions

for p >y and
(BT (A e
ee (0min {(2)(5,)" 7))

with [ lu2de = ¢, X <0 for all j = 1,2,....k, 6, = 222

Theorem 1.2. Assume a,b> 0, s € (3,1) and 2+ %S < p < 2%, then there exists p* = p*(c) >0
large, such that as pn > p*, system (L.1)) possesses a couple (ue, N) € HE(R3) x R of weak solutions
with [gs [ucl*de = ¢*, X < 0.

Remark 1.3. To our best knowledge, our results are up to date. On the one hand, the Sobolev
critical exponent leads to the lack of compactness. Even the embedding of the radially symmetric
space of H?(R?) into L2 (R?) is not compact. Furthermore, H?(R?) < L?(R?) is also not compact.
Then, the weak limit of Palais-Smale sequences could leave the constrained manifold S,.(c). Hence,
we need to estimate finely the Lagrange multipliers, which is vital in obtaining compactness. We
shall employ the concentration-compactness principle, mountain pass theorem and the truncation
method to overcome the loss of compactness caused by the critical growth.
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On the other hand, no matter 2 < p < 45 +2 or S +2 < p < 2, I, on the constrained
manifold S, (c) is all unbounded from below. Hence it 1s unlikely to obtain a solution to system
(1.1) by minimizing method. We adopt some ideas from [2] to overcome the difficulty.

This article is structured as follows: in section 2, we presents some preliminary results that will

be used frequently in the sequel. Theorem|[I.1]is proved in section 3, which presents the multiplicity
of normalized solutions for system (1.1) when p € (2, % + 2). In this section, we address three
main challenges. First, we employ the truncation technique to establish the boundedness of the
(PS) sequence. Subsequently, we apply the concentration compactness principle to restore the
compactness lost of the (PS) sequence due to the critical growth. Finally, we use genus theory to
prove the multiplicity of normalized solutions for system (1.1). In section 4, when the parameter
> 0 is large, we give another existence result for system (1.1) with p € (% + 2,2%) by using the
fiber map and concentration-compactness principle.
Notation Throughout this paper, we denote || - ||, the usual norm of the space LI(R3), 1 <
q < 00, B,(z) denotes the open ball with center at x and radius r, C or C;(i = 1,2,...) denote
various positive constants whose exact values are irrelevant. — and — mean the weak and strong
convergence.

2. PRELIMINARIES

In this section, we first introduce some notations. For any s € (0,1), the homogeneous Sobolev
space D*2(R?) is defined by D*?(R?) = {u € L% (R?) : ||UHDS 2 < oo} where

2
s _ /2 lu(z) — u(y)|®
||u||Ds,2—/ |~ )"/ 22z = /]R /R ‘%y'MS dr dy.

The fractional space H*®(R?) is defined by
HY(RY) = {u € LA(R%) : Jullpes < o0},

endowed with the norm

JullFre = llull3 + llulBe.o-
The best fractional Sobolev constant S is defined as
[(—=A)*"2u|3

S = (2.1)

u€D*s2 ut0 (f]R3 |u s )2/23 '

The work space is

H}(R?) = {u € H*(R)| u(x) = u(lz])}.
Let H = H7(R?) xR with the scalar product (-, -) s+ (-, ), and the corresponding norm ||(-,-)[|% =
Il + 1 &
Proposition 2.1 (Hardy-Littlewood-Sobolev inequality). Let r,l > 1 and 0 < A < N with
14344 =2 Let f € L"(RY) and g € L(RN). Then there exists a sharp constant C(N, A, 1,r) >
0, independent of f and g, such that

\/ / Dl =y dody| < O AL gl
RN JRN

Moreover, if r =1 = 2N sn—x then

C(N, M1, r) = PG = 3) (F(N)>1—%.

DN =) \I(5)
From Proposition with r =1 = 325 +2§, the Hardy-Littlewood-Sobolev inequality implies that
/ pSulde = / (Jz[** 73 % u®) u?dr < Tyllul/*12_, (2.2)
R3 R3 3+2s
where () (3)1 2
6 6 s-2s I'(s )\ %
re{=0C(3,3—-2 = T7( ) )
( $3r253705) " T +5)\T(2)
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where I'(t) is the Gamma function with ¢ > 0. Now, we introduce the Pohozaev manifold associated
to equation ([1.5]), which can be derived from [25].

Proposition 2.2. Let u € H(R3) be a weak solution of equation (1.5), then u satisfies

-2 2
3 s(a+b/ \(fA)S/2u|2dx)/ (=AY 2u2dg + 2128 S/ ¢°ulde
2 R3 R3 4 3

:§A/ |u|2dx+§u/ |u|”dx+i/ |u|? da.
2 Jps P Jrs 25 Jrs

Lemma 2.3 ([9]). The embedding HE(R3) — L4(R3) is compact for any 2 < q < 2%.

Lemma 2.4 (Fractional Gagliardo-Nirenberg inequality). Let 0 < s < 1, and p € (2,2%). Then
dp,s
there exists a constant C(p,s) = S~~2 > 0 such that

2~

3(p_ 3-2s
lull2 < C(p, s)[[(—A)*/ 23 27 =7 Vue HY(RP), (2.3)

3(p—2)
2ps

where 0p s =

Lemma 2.5 ([8]). If u, — u in H:(R?), then

/ ¢ u d;v—>/ PSuPde, / qbinungodm—)/ i updr, Vo € HE(R?).
R3 R3

Lemma 2.6. Let u € H:(R?) be a weak solution of (L.5), then we can construct the Pohozdev
manifold

= {ue S:(c): Bu(u) =0},

where

-2
Puw =s(ab [ (8 PuPds) [ |-y upde+ 22 [ glds
R3 R3 4 R3

—suép,s/ |u|pdx—3/ |u|? d.
R3 R3

Proof. From Proposition we know that u satisfies the Pohozaev identity

3—2 3+2
s 5(a+b/ \(—A)S/2u|2d:n)/ (-2) 2 2 5/ 62 uda
R3 R3 R3

(2.4)
= §)\/ |u|2dx+§u/ |u
2 Jre P Jrs
Moreover, since u is the weak solution of equation ([L.5)), we have
<a +b |(—A)5/2u|2dx) / (= A)2uf2dz +/ ¢oulde
R3 R3 R3 (25)

:)\/ |u\2dx+u/ |u|Pdx +
R3 R3 R3

Combining this with (2.4) and (2.5)), we obtain

3—2
s(a—i— b . |(—A)3/2u|2dx) /R3 [(—A)*2u)?dx + 1 i /}R3 ¢S utde

— SM(SP)S/ |ulPdx — s/ lu|? dz = 0,
R3 RS

which completes the proof. O
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3. PROOF OF THEOREM [I.1]

In this section, we show the multiplicity of normalized solutions to system (|1.1)). To begin by
recalling the definition of genus. Let X be a Banach space and let A be a subset of X. The set A
is said to be symmetric if u € A implies that —u € A. We denote the set

Y :={AcC X\ {0}: Ais closed and symmetric with respect to the origin}.
For A € X, define

0, if A=10,
v(A) = ¢ inf{k € N: Fan odd ¢ € C(A4,R*\ {0})},
400, if no such odd map exists,

and that ¥ = {A € ¥ : v(A) > k}.

Lemma 3.1 ([34]). Let {u,} be a bounded sequence in D*%(R3) converging weakly and a.e. to
some u € D*2(R3). We have that |(=A)*?u,|> = w and |u,|* — ¢ in the sense of measures.
Then, there exist some at most a countable set J, a family of points {z;};cs C R, and families
of positive numbers {(;}jes and {w;}jes such that

w > [(=A)Pul + > w;ids,, (3.1)
jeJ
¢ = |ul® + Zgjéww (3.2)
jeJ
w({z;}) = S¢*, (3.3)

where 0, is the Dirac-mass of mass 1 concentrated at x; € R3.

Lemma 3.2 ([34]). Let {u,} C D*?(R?) be a sequence in Lemama[3.1] and define

2 dx.

Weo = lim limsup/ [(—A)*2u,|?de, (s := lim limsup/ |t
R 2[R 2[R

—0 n—oco R—oo nooo

Then it follows that

weo > SC*,
limsup [ [(=A)*%u,|?dx = / dw 4 Wee,
n—oo R3 R3
lim sup |un|2:d:c = / d¢ + (oo
n—00 R3 R3

For u € S,(c), in view of Lemma and the Sobolev inequality, one has

a R b s 2 1 s
1) =5 [ 8y Pupan ([ 1-a)ipan) + 5 [ siniar

1
—H/ |u|pdx——/ |u
D Jrs 2: R3

S b S M — 3 S 61)5
I(=A)*2ull3 + (=) ul3 - gcp“ 20 (p, 5) || (—A)* Pz

2 dx

>

e

(—A)/ 2[5

1=
_ is
= h(ll(=2)*%ull2),

where
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Recalling that p € (2, 4?5 + 2), we obtain that pd, s < 2, and there exists # > 0 such that, if
pucP1=9r.2) < B the function h(-) attains its positive local maximum. More precisely, there exist
two constants 0 < Ry < Ry < 400, such that

h(r) > 0,Vr € (R1,Ra), h(r) <0, Vre(0,R1)U(Ra,+00).
Let 7 : RT — [0,1] be a non-increasing and C* function satisfying
1, if
T(’I’) — ’ 1 re [O7R1]7
0, if r € [Ry, +00).

In the sequel, we consider the truncated functional
b 2 1
Li(u)=2 |(—A)S/2u|2dx+f(/ |(—A)5/2u|2d:c) +f/ o u2d
2 R3 4 R3 4 R3
—A s/2
[ g - Ul
P Jrs

2% R3

For u € S,(c), again by Lemma and the Sobolev inequality, it is easy to see that

(3.4)
2 dz.

a S b S Iu’ —O0p.s S 61) s
Ly (w) > S (=) 2ullf + Z11(=2)*2ull3 — ;cp(l 2O (p, )| (=A)* Pully™
_ 7(I(=2)*"2ul.»)
2
= h([[(=2)2ull2),

[(~A)*"2ul)3:

where

~ b 2% .
h(r) = %TQ + 17“4 — Ec”(l_‘;”*s)C’(p, s)rp‘s”“* — 77'(7“) S 2.

Then, by the definition of 7(-), when ¢ € (0, (%)P“j‘%ﬂ), we have
h(r) < 0,¥r € (0,Ry), h(r) > 0,Vr € (Ry,+o0).

In what follows, we assume that ¢ € (0, (g) P67 ) Without loss of generality, in the sequel, we
assume that

a5 b, 1 2z

57" +ZT 7275 27'S>0 VTG[O,RH (35)

Lemma 3.3. The functional I, » has the following characteristics:
(1) 1 € CHH(R®),R);
(ii) I, is coercive and bounded from below on S,.(c). Moreover, if I, (u) < 0, then ||(—A)*/?ul| <
Ry and I, - (u) = I,(u);
(iii) I,,r|s,(c) satisfies the (PS)q condition for all d < min{0, A — ucP(1=%0.5) DY provided that
1> pi >0 large, where A = (3 — 3 Lygzs S35, D = (% - %)C(p,s)szé”'s.

Proof. The proofs of (i) and (ii) are easy. To prove item (iii), Let {u,} be a (PS)4 sequence of
I, - restricted to S, (c) with d < min{0, A — uc?* %) D}. By (ii), we see that ||(=A)Zu, s < Ry
for large n, and thus {u,} is a (PS)4 sequence of I,,|g, (o) with d < min{0, A — pc?(1=%)D}; i.e.,
I, (un) — d and HIMK&(C) (un)| = 0 as n — oco. Then, {u,} is bounded in H?(R3). Therefore, up
to a subsequence, there exists u € H?(R?) such that u,, — u in H?(R?) and u,, — u in LP(R3) for
2 < p <2 and u,(x) — u(z) a.e. on R%. From 2 < p < 4 4+ 2 < 2% and Lemma [2.5| we infer to

l;m/ |un\pdx—/ |u|Pdx, / or un2d1:—>/ PSuPde.

Moreover, we have that u # 0. Indeed, assume by contradiction that, u = 0, then lim,, fRS |up[Pdz =
0. From ({3.5) and the definition of I,, -, we infer that

0>d= nh_)rr;o I+ (up) = n11_>H;O L,(uy)
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. a R b < 1 R
fim (S0 203 + FU-A1Pull+ 1 [ 68, uPde

n— oo

_H P _i/ QId}

. Q) ANs/2, (12 é CANS/2,, |4
> lim | 2= 8) 2§ + ZI(=2) 2w}
_H Pir — L 5= I (—A)2 2:]
Bl = 55 F 1) 2
> L yrdz = o,
P Jrs
which is absurd. On the other hand, setting the function ©(v) : H:(R3) — R by
1 2
o) == [ [vPde,
2 Jgs

it follows that 5, (c) = @_1({§}). Then, by [27, Proposition 5.12], there exists A, € R such that
11, (tn) = Xn® (un)|| = 0, as n — oo.

Hence, in H, *(R?), we have
(a + b/]RS |(—A)S/2un|2dx) (A up + 65wy — plun|Pu, — |t % 2 = Aptn + 0(1),
where H,*(R3) is the dual space of H?(R?®). Thus, we have for ¢ € H?(R?), that
(a +b |(—A)S/2un\2da:> / (=AY 2, (—A)* 2 pda —|—/ By, Unpds
R3 R3 R3

*N/ |un|p72un@d$*/ |un
R3 R3

= /\n/ updz + o(1),
R3

%20, pda (3.6)

and if we choose ¢ = u,,, we obtain

(”b/ |(‘A)S/2unl2d“")/ |(_A)S/2un|2dx+/ ¢Znuidx—ﬂ/ |Un|de_/ | da
R3 R3 R3 RS -

= [ uidz+o(1),
R3
(3.7)

from (3.7), and the boundedness of {u,} in D*?(R?), we can deduce that {),} is bounded in R.
Then we can assume that, up to subsequence, \,, — A for some A € R.

Next, we shall prove u,, — u in L% (R?) by using the concentration-compactness principle due
to Lions [19]. Since ||(—A)%/?u,||2 < Ry, for n large enough, by Lemma there exist two
positive measures, ¢, w € M(R3), such that

(=) Pun? = w, [un

% ¢ in M(R?) (3.8)

as n — oco. Then, by Lemma either uw,, — u in LIQEC(R3) or there exists a (at most countable)
set of distinct points {z;};c; C R® and positive numbers {(;};es such that

(=lu

Moreover, there exist some at most a countable set J C N, a corresponding set of distinct points
{x;};es C R3, and two sets of positive numbers {¢;}jes C R and {w;};c; C R? such that items
(3-1)-(3.3) hold. Now, assume that J # (). We split the proof into three steps.

2 + Zj€J<j5Ij~
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Step 1. We prove that aw({z;}) < ¢;, where w({z;}), and {; come from Lemman We define
¢ € C§°(R3) as a cut-off function with ¢ € [0,1], ¢ = 1 in By 1(0), ¢ =01in R3\ B1(0). For any

p > 0, define
T — 1, |lz—z;| <%
Pp(z) :=w<7])= o=l < g
p 0, |z—uz;|>p.

By the boundedness of {u,} in H:(R?), we have that {u,¢,} is also bounded in H$(R?). Thus,
one has

e A2, Pdx 200, (= A2 (unp, ) da i Un P pd
+b/| |d)/(A) (-4) (w)d+/R3¢n Podt (39

—u/ gy = |

It is easy to check that

[ a8 ayta = [ [ ) =0 hl) 0D
R3 R6

|x — y|3t+2s

] [,
L / (1n(x) = n (1)) (2(@) = 2p(@)n(x) W

|l‘ _ y|3+2s

gopdac

=T +1T5.
For Ty, by (3.8, we obtain

_ 2
lim lim T} = lim lim / / [un (@) = n W) 2¥) . 4
]R()

p—0n—oo p—0n—oco |x — y|3+25

=lim [ gydw = w({z;}).

p—0 JRs3

From Hoélder’s inequality, we have

|T2| _ ‘ //RG (un(zzr) - un(y))(%(z) - ‘Pp(x))un(x) da dy’

|x_y|3+23
<[]
RG
o) — P 03(0) 4, ) ([ [ onl) = N
// |x—y\3+25 i ay) // |:c—y|3+2s dady)

o ()| (2) 1/2
< //}R |x y|3+28 dudy) "

Analogously to the proof of [34, Lemma 3.4], one has

. . ‘Qop )2 %(l‘) _
tim Jim_ [ /R \m— \3+2s drdy =0,

lim lim [ (=A)2u,(=A)2(upp,)dz = w({z;}).

p—0n—00 [p3

Again by (3.8), we have

lim lim / |un|% ppda = iii% /R 0,d¢ = C({z;}) = ¢ (3.11)

p—0n—00 [pa

(un () —un(y&)(_wp'(%)% ep(x))u ‘ d dy

(3.10)

By the definition of ¢,, and the absolute continuity of the Lebesgue integral, one has

lim lim / |un [Po,de = lim/ lulPp,dz = lim lulPp,dx = 0. (3.12)
p—0 Jrs

p—=0n=00 Jps P20 )|z —a;]<p
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Thus, by Proposition and Lemma [2.3] we have

6
/ o5 udppdr < C (/ unlaﬁsdx> (/ luZep, |3+25dx)
R3 )

< Callunl ([ ol ¥ oyl )

3+2s

<Cal [ Junl )
R3

lim lim / gb ngapdx< hm lim Cg / [ty |3+25¢ dz)

p—0n—oo0 R3 p—0n—oo

’3+2s 3+2s

Therefore,
3+2s

+2s
6

—th3 / \u|3+23 dgc (3.13)

3+2s
1< 6
= lim Cj (/ | 55 wpdx) =0.
p=0 |lz—a;|<p
Summing (3.9))-(3.13]), taking the limit as n — oo, and then the limit as p — 0, we arrive at
G = aw({z;}).

Step 2. We show that aws, < (o, Where wy, and (o, are given in Lemma Let ¢ € C5°(R3)
be a cut-off function with ¢ € [0,1], ¢ =0 in B1(0), ¢ = 1 in R*\ B;(0). For any R > 0, define

P - _ 0’ ‘.Tl S E7
vr(@) =9 () = {1’ o

Using again the boundedness of {u,} and {u,¥r} in H(R3), we have
on(1) = (I}, (tn), untr)

- (a+b R3|(—A)S/Qunl2dx) /R3(—A)S/Qun(—ﬁ)sm(un%)dx (3.14)

+ [ ot utvnds = [ ualPinds = [ junvpda,
It is easy to derive that
8 0= 8) )
R3
[ [ enle) e aalelonte) - walghints) o,

o =y

//RG |un |‘;:ln32stR(y) dﬂf dy
un (%) — un () (Wr(z) = Yr(Y))un () _
+//RG dvdy =Ts + Ty .

o =y

For T3, by (3.8) and Lemma we infer that

_ 2
lim lim T3 = lim lim // [ (@) —unWPVRG) g
RS —y[¥t2s

R— o0 n—o0 R— o0 n—o0

From Hoélder’s inequality, we have

= | [ [ ko) = talo ) —nlun(e)

|.’L‘ y|3+28
RS

(un (@) = un(y))(Wr(x) — Yr(y))u

o =yl

‘dac dy
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(] ] R | )

<c( //RG Wl <|3)+25|“"( il d;vdy)l/2.

Combining the above, we conclude that

2 2
R—o00 n—o0 R6 ‘l‘ - |3—"_25

P ) 1) [ LA LG
=1 1 //}R6 dx dy = 0.

R—o00 n—o0 ‘.’E _ y|3+2s

Hence,

lim lim [ (—A)?un(=A)*?(uptpr)dz = weo.

R—ocon—o0 [p3

By Lemma one has

Rdm = (oo-

R—o00 n—00
Analogous the proof of [34, Lemma 3.3], we 1nfer that
lim lim / |t [Ptprde = 11m / |u|Pipda = hm / |u|Peprdx = 0.
|22 %

R—o00 n—o0

Moreover, we can obtain

3+42s

lim lim/ ¢, uivrdr < lim lim 03 / |un|%szdx) °
3 R3

R—ocon—oo [p 00 N—00

3+2s
6

12
lim 03( / |u| 55 szd:c)
R— o R3
342s

lim C3(/|I R|u|%¢}%d$) 6 = 0.
T|>5

R—o0

11

(3.15)

(3.16)

(3.17)

(3.18)

Summing up, from (3.14)-(3.18)), taking the limit as n — oo, and then the limit as R — oo, we

have
(oo > QWoo-

Step 3. We claim that (; = 0 for any j € J and ( = 0. Suppose by contradiction that,
exists jo € J such that (j, > 0 or (s, > 0. Then step 1, step 2, Lemma [3.T] and Lemma
that

34

g

G < Sz ) T < (577G, G 2 (5Tww) T < (57010 F
Consequently, we obtain ¢, > (aS)% or (s > (aS)2. If (;, > (aS)3*, one has

g () )

=l [(5 = gl -ar g+ (= 5 )M =A) "2,

n— oo
1 1 1 1
-3 [k (- Do ]
+(4 2;) O, Unde p 2 /”L/Rs‘u‘ o
a1 . 11
N [ L CNEE Y CE S Py e

1 1 1 1
> lim (5f2—)asnun||2* - lim (~ 2*)ucp“ ) p,s) (=) 2un 157

n—oo p

d= lim [I#(un)—

n—oo

2/23 1
N

> (- 3oy
—\2 2: p—0n—o0

there
imply
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= (1 — i)aS(Cjo)% - (1 _ 1 )uc”(l .8) C(p, S)Rpﬁpb

2 2 p 2
1 1 3 3 1 1 Op,s
Z (5 — 27)0125 S2s — (Z; — 2*)ILLCP(1 5;0 S)C’(p7 S)RZ{ s

which contradicts d < min{0, A — puc?A=%.2) D} If (oo > (aS)2=, we have

g () )

= Jim [(l—é)a||<—A>s/2un||§+ (5= 55 M=)

n—oo L\2

T ox / ¢un idx— 5-%) / |un|pda:}
> JLH;O [(% - g )l Ay Pl = (5= 5 [ ]

1 1 1 1
> Jim (5-5;) 5 = Jim (0= o0 Jue 0O (- 8)

= i, [Tutoe) -

% wRdw)z/Z: N (% N 21*)%”“ o) (p, s) Ry

(5 5:)o Jim_tim ([
= 1_ il S(COO)Q/Z: _ 1 _ cP(1=05, ‘)C(p S)Rp‘s‘”
(2 2*) (p 2*)

(

A

1 1 3 3 1 d.
- = 3593 — (= — p(1— 5PS)C Rppe
2 2;)a ( 2*)”0 (p:)

_ MCp(175p’S)D,

p

which also contradicts d < min{0, A — uc?=%.2) D}, Therefore, ¢j =0forany j € J and (o = 0.
As a result, by Lemma [3.1) we obtain that u, — u in L?EC(R?’). Combining with Lemma we
know that u, — u in L% (R3).

Now, we prove there exists ] > 0 independently on n € N such that if 4 > pj, the Lagrange
multiplier A < 0. Indeed, note that {u,} C S;(c ) and [[(—=A)*/2u, ||z < Ry for large n, as can be
seen from the previous proof of this Lemma, and (2.2 . 2.3)) that, there exists @1 > 0 independently
on n, such that for large n

Q1 S/ |t |Pdex
R3
< C(p, )| (=A) 2un |57 |Ju

< O(p, )Ry Pore P1=0n)

3+2s
/ Onudde < Tllunltyy < T )™ (=) unlly ™ Jlunly ™

s 3=2s gs_ 3.20
Srsc(ps,s)w—; Rl . 6633 ( )

= Q27
and Q2 = Q2(s, R1,¢) > 0. We define the constant

p(1-5,..) (3.19)
nll2

where ps := m

* p(65 B 3)@2
_ , 3.21
M7 56— p(3 - 29 @ (3:21)
By (3.19)-(3.21), we have
3) fRS o U u?dx B p(6s — fR5 ¢S ulde

*> lim = > 0. 3.22
= 2 2[6 — p(3 — 25)] fRs |t |Pdx [6 p(3 — 2s)] fR3 |u|Pdx ( )
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Set B := lim,, o0 [|(—A)*/?u,||3 > 0, then, 0 < ||(—A)*/?u||3 < B. For any ¢ € H2(R?), it follows
by u, — u in H(R?) and \,, — ), that
[ (-t
R3

(=A)*2u(=A)*?pdz  and )\n/

Unppdr — )\/ updx
R3

R3 R3

. 2 2%
as n — oo. Since {|up|? ~2u,} is bounded in LT (R3), {|u,|P~%u,} is bounded in L7 (R3),
and u,(r) — u(x) a.e. in R?, we obtain that

2% 2%
272, = %% in LT T (RY) and  |un [P 2w, — Ju[P"2u in LTt (RP),

|un

and so

Lo
RS

as n — 00. Recall from Lemma 2.5 that

/ ¢Z,I,Un80dxﬁ/ Piupdr, Vo € HE(R®).
R3 R3

2572un<pd$—>/ |u
R3

% 2updr  and /|un\p72un<pdx—>/ lulP~?updz,
R3 R3

Thus, by (3.6), for all ¢ € H:(R?), we have

(@+bB) [ (-8)"u(-a)Tpdn+ | Giupdo
R3 R3

—u/ |u\p72ugpdm—/ |u
R3 R3
= )\/ wpdz,

R3

we can derive that u solves the equation

% 2upda (3.23)

(a+bB)(—=A)*u+ ¢3u — plu)?%u — |u)® ~2u = \u. (3.24)

Moreover, by Lemma [2.6] u satisfies
3-2
(=A)* ) dx + 1 i / PSuldr — s,u(Spys/ |ulPdx — s/ |u
R3 R3 R3
Combining (3.24) and ([3.25)), one has

6s—3 3—2s)p—6
sA||ul|3 = 84 /}R3 ¢Zu2dx+su% /R3 |u|Pdx. (3.26)

s(a+bB) %dr =0. (3.25)

|
R3

Now, if g > pi, we conclude from (3.22)), that

p(6s — 3) [pu P uda
2[6 — p(3 — 25)] [gs |ulPdz’

Thus, from (3.26[), we infer to lim,,_, 1. An = A < 0. By (3.7) and (3.23]), we derive
lim [(a+ b |(7A)S/2un|2dx)/ \(fA)S/zuan:ch/ gbsunufld:v - )\n/
R3 R3 R3

n— 00 R3

= lim {u/ |un|pd1:+/ |un|2:das}
n—o0 R3 R3

—u [ pupda [ Ju
R3 R3

= (a+bB) (—A)S/2u|2dw+/ gbiuzdm—)\/ u?dz.
R3 R3

>

uidx}

(3.27)
2 da

|
R3
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Since A < 0 for p > pj large, by Fatou’s Lemma we obtain,
lim [(a +0b |(—A)S/2un|2dx) / [(—A)* 2w, | da —|—/ o5 ulidr — )\n/ uidm}
R3 R3 R3 R3

n—oo
= lim {(a+b3) (—A)s/zun\de+/ o8 uidx—A/
RS R

n—oo

uidx} (3.28)

R3| 3

> (a—l—bB)/ |(—A)s/2u|2dx+/ dSudr — liminf A [ w’dz,
RS RS

n—oo R3
and from (3.27)-(3.28)), one has

f)\/ u?dz > lim inf ( - )\/ uidx) (3.29)
R3 n—oo R3
But by Fatou’s Lemma, we have
liminf(f )\/ uidx) > f/\/ u?dz. (3.30)
n—oo R3 R3

Combining (3.29) with (3.30)), we obtain

lim (—)\/ uidx) = —)\/ u?dx;
n—oo R3 R3

lim uddr = u?dz.
R3 R3

n— oo

that is,

Thus, by (3.27)), one gets
lim [|(=2)"2un|3 = [I(=2)*"ull3.

n—oo

Therefore, u,, — u in H(R3) and ||u||z = c¢. This completes the proof. O

For € > 0, we introduce the set
IS ={ue S(c): I, (u) < —€} C HY(R?).
Because I, is continuous and even on H:(R3), I ¢ is closed and symmetric.

BT

Lemma 3.4. For any fived k € N, there exist e, = €(k) > 0 and p:= pu(k) > 0 such that, for any
0 <e<e and p > py, one has that v(1,.5) > k.

The proof of Lemma [3.4] is similar to [2, Lemma 3.2], so we omit it here. We define the set
Yp:={Q C S.(c) : Qis closed and symmetric, y(Q) > k},
and by Lemma [3.3}(ii), we know that

dy = inf supl,, > —o0
QeTk yen o

for all kK € N. To prove Theorem we introduce the critical value, we define
Kg={ue€ S.(c): I}, (u) =0,1,,(u) = d}.
Then, we can derive the following conclusion.

Lemma 3.5. Ifd=dy =dj+1 = = dgy1,

cE (0,min{(§)v<1+‘ipys>, (Diu)p(l%%)}),

o> py = max{uy, ur}, then one has v(Kq) > ¢+ 1. Especially, I, (u) admits at least £ + 1
nontrivial critical points.
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Proof. For € > 0, it is easy to check that I, 7 € X. For any fixed k € N, by Lemma there exists
er = €(k) > 0 and pg := p(k) > 0 such that, if 0 < € < ¢, and p > g, we have y(I; %) > k.
Thus, I, %+ € X, and moreover,

dip < sup I, ,(u) = —e, <O0.

u€l, ¥

1 1
Assume that 0 > d = dy = dgy1 = -+ - = dg4y, since ¢ € (O,min{(g) PO=3p.5) (DAH) P(1=8p,s) }), by
Lemma [3.3}(iii), when p > pf > 0 large, I, - (u) satisfies the (PS)4 condition at the level d < 0.
So, Kq4 is a compact set. By [I7, Theorem 2.1}, we know that the restricted function I, -|s, ()
O

possesses at least £ 4 1 nontrivial critical points. The proof is complete.

Proof of Theorem[1.1 Let

c (O,min{(ﬁ)ipu—%p,g’ (i)ipu—%p,w })
I Dp
w > pr = max{uf, pur}. From Lemma (ii), we see that the critical points of I, , found in
Lemma [3.5] are the critical points of I,,, which completes the proof. O

4. PROOF OF THEOREM 1.2

From Lemma we see that any critical point of I,|g, () belongs to P.. Consequently, the
properties of the manifold P. have relation to the mini-max structure of I,,|g, (). For u € S,(c)
and 0 € R, we introduce the transformation:

(0 xu)(z) = e%u(eex), reR? 0 cR.

It is easy to check that the dilations preserve the L?-norm such that § x u € S,(c), by direct
calculation, one has

1(u,0) = L((0 % u))

b 2
= 2620 [ (=) ) de + 76489(/ |(—A)5/2u|2dm>
2" e 4 R?

1 3 o, , 3(p—2) 1 sei-2 *
4+ —eB=290 [ 32y — B 2o |ulPde — ——e™ 2 0 |u|?s dzx.
4 R3 p R3 23 R3

Lemma 4.1. Let u € S,(c), then
1) Josl(— A)*2(0 % u)2dx — 0 and I,((xu)) — 0 as § — —oo;
(i) fgs (= 5/2 (0 xu)|*dz — +o0 and I,((6 % u)) = —o0 as § — +oc.

Proof. A direct computation shows that
/ [(=A)2(0 % u)| dm—eQSG/ [(—A)*2u)?d,
[(=A)*2(0 % u)[?dz — 0 as O — —oo,
[(—A)*/2(0 % u)|?de — +oo  as 6 — +oc.

Notice that

2
1((0 %)) 2‘59/| Ay Pupda+ 2t / |(—A)S/2u|2dx>
+ 3 25)0/ ¢s de .UJ d(p 2)9/ |u|pdgj—— (23 2)9

byw>@>45>25>3725,Weinferthat

7

I.((@*u)) -0 as @ — —oo, I,((0*u))— —o0asd — +oo.

This completes the proof. O
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Lemma 4.2. There exist K = K, > 0 and ¢ > 0 such that for all 0 < ¢ < ¢,

0< sup I,(u) < inf I,(u), (4.1)
ueA, u€B.
where Ac = {u € S,(c) ¢ [gs [(=A)*?u?dz < K.}, B. = {u € S,(c) : [os [(=A)*/?ul?dz = 2K.}.
Proof. By Lemma. for any p € (2,2%), we have
3(1_8=2s
ully < (. >||<—A>’ U7 vue HU®Y). (42)
By the Sobolev inequality (2.1)) and ( . for u,v € S,(c), one has
L(v) ~ L(w) = 2 / [(—~A)/202da - / (~A)/2ufda
2 Jas
Jré( [(—A )S/2v\2dx - | 5/2u\2dx>2
A\ Jos

1
+= | ¢tvidx — 7/ d)iqu:v + B |u|Pdx
4 R3 4 R3 P Jrs

. 1

2

sdr — —
x %

3 5 Jr3 " JR3
> ([ 1-ay /s - / () 2uds)
2\ Jas
b 2
Z —A)/ 22 s/2 2
+3l( [ oyt dr)’ / (~2)2uf?de) |

1 3 6
- Ersc(p& S)

+2s s
s (=A )/2u|| :

6=p(3=2s)
2s

H s §p,s
— ;¢ 8l(=4) 2oll3 e

5%
- “A
5=

Let ||(=A)*/?u|j3 < K, and ||(=A)*/?v||3 = 2K, here K, will be determined later. Set

4s—3

- ( K. % )m

C=|—T—""—==;0a )
4TsC(ps, ) a2

by a direct computation, we obtain
Ty (v) = Ly (u)

4s—3
3b s KCT — ,65;3
> gf( K2 FSC(pS’ )3+2 K or (—%a>6 3
2 4ATC(ps,s) 3
4s—3
2s s 6=p(B=2s) -
S R o (R K Lo b F o
p 41_\50(17575) 3 23
—p(3-25) s—¢ —p(3—2s _
>0k, - Lk, Momp C(va)(;ﬂzva) 35 - aal )
2 16 P AT,C(ps,s) 5 (4.3)
-
5™ o2
P* 27 (KC)
8(p-2) 6-p(3-25) 2 )
ZlaK B u2- % C(p,s)a 2065=3) KIK, _LK%Q—QK
¢ 6—p(3—2s o Lie ¢
» P C(p,, 5) ) 2 2:5%
)
> —akK,
Z 1% > 0,
where

[6 —p(3—2s)][4s — 3] + [3(p — 2) — 4s][6s — 3]
4s5(6s — 3) '

71 =
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If we take
342s 767“?’:25) 2%
. (4F C(ps, ) 3 ) 2(6s—3) Y2 /2*S T s
K, = min {( e e a) , ( = a) : },
162 C(p, s)a 2(65—3) 23516
with
_ 4s5(6s — 3)
T 6 —p(3—29)][4s — 3] + [3(p — 2) — 45][65 — 3]’
then, by (4.3) we deduce that (4.1)) holds. The proof is complete. O

From Lemma we can deduce the following conclusion.

Corollary 4.3. Let K. and ¢ be given in Lemma and u € S,(c) with ||(—A)%/?u|j3 < K.,
then I,,(u) > 0.

Proof. A direct computation shows that

a s b s [
Lu(u) > SII(=2)"2ulf + L [(=A)?ull; - EO(p,s)c

6-p(3=2s) 3p=2)
e

S22l

S** *
(—A) 25 >0,

if ||(—A)%%u|3 < K, and the conclusion holds. O

Next, we study the characterizations of the mountain pass levels for I(u,6) and I,(u). We
denote the closed set I := {u € S,(¢) : I,(u) < d}.
Proposition 4.4. Assuming that 8'; +2<p<2},

Culc) == ireli gl[afi]f( Y()), cule) == ;ggtgl[%f( (1),

we define

where
Lo = {7 € O([0, 1], Sr(c) x R) : 7(0) € (A, 0),7(1) € (1}, 0)},
Lo = {y € C((0,1], Sx(c)) : 7(0) € Ac,¥(1) € I}
Then we have ¢,(c) = c,(c) > 0.

Proof. On the one hand, for any 7 € T, we can write it into

F(t) = (1(1),%2(t)) € Sr(c) xR
We set y(t) = A2(t) * 31(t), then v € T, and

trgl[%f( ())—tren[gx]f( ()*%(t))—tren[%lu( 7(8)),

which implies ¢,(c) > ¢,(c) > 0, using Corollary On the other hand, for any v € T, if we set
A(t) = (v(t),0), then we obtain 4 € I, and

tIen[g,’)iI]I(")/(t)) = Iax I,(v(t)).

This infers that ¢,(c) < c,(c). So, é.(c) = cu(c) > 0. O
Next, we show the existence of the (PS),, (.)-sequence for I(u, §) on S,.(c) xR C H. It is obtained
by a standard argument using Ekeland’s variational principle and constructing pseudo-gradient
flow, see [16], Proposition 2.2].
Lemma 4.5. Let {h,} C T, satisfy that
~ 1
I(hn(t) < & -,
o I(hn(t)) < Gul) +
then there exists a sequence {(vy,0,)} C Sr(c) X R such that
(1) I(vnaan) € [5H(C) - ivcu(c) + %];
(ii) mingepo,1) [[(vn, 0n) = ha(t)lle < =5 and
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(iii) ”(I‘ST(C)XR)/(vman)” < %; that 1is,

‘<I/(vn79n)az>‘ﬂ-ﬂ*1x]}[{ <

2
ﬁHZHHv
for all
2 € Ty, 6,) = {(21,22) € H: (vp, 21) 12 = 0}.

It follows from the above proposition, we can obtain a special (PS),, (c)-sequence for I,,(u) on
S-(c) C H:(R3).
Lemma 4.6. Under the assumption 2+ 3 < p < 23, there exists a sequence {u,} C Sy(c) such
that
(1) I.(un) = culc) as n — oo;
(2) P,(un) = 0as n— oo;

“w
(3) (Luls,(e)) (un) = 0 as n — o0, i.e., (I},(un), 2) =+ o — 0, uniformly for all z satisfying

I2llgs <1, where z € Ty, :={z € HX(R®): (up,z)r2 = 0}.

Proof. Let {hy,} C T, satisfy
1
1 < — 4.4
s (0 (1) < u0) + 1. (14
we define hy,(t) = (hn(t),0),Vt € [0,1]. Tt is easy to see that h, € T, and I,(h,(t)) = I(hn(t)).
By Proposition we have ¢,(c) = c,(c), then it follows from (4.4) that
1

h <é =
B < 6l 4y

It follows from Lemma[d.5|that, there exists a sequence {(vn, 6,,)} C S;(c) xR such that as n — oo,
one has

I(vp, 0pn) = culc), 6, =0, (4.5)
(I S,-(C)XR)/(UN? en) — 0. (46)
Set w, = 0, xv,,. Then, I,,(u,) = I(vp,6,), and by (4.5), item (1) holds. To prove conclusion (2),

we utilize

3—25 (5 o, s
00T (0. 00) = ase®*™ (=) 2un [+ bseh ™ | (=) P2, [ + 226020 [ g5 vt
R

_ ﬁ?’(p - 2)673“’;2) 9n/ vp|Pda — 3(25 — 2)673(2:2’72)971/ vy
p 2 R3 22% R3
s/2, 112 s/2, 2, 028 s .2
= s5(a + 0 (=2)*Fun[2)I(=A)" unllz + = [, Puntinde

-2
_Mu/ |un|pdx—s/ .
2p R3 R3
:Pﬂ(un)’

which implies item (2) by (4.6)). To show item (3), we set z, € Ty, . Then,
oy =a [ [ Gl = ta0en(0) =20
R3 JR3

Iz |z — y|3t2s

+ b/RS /RS (unéca:)_— un(y))? dmiy/]RS /RS (un () — un(y)) (20 (2) — 2 (y)) Loy

y[3+2s |z — y|3+2s

—|—/ o8 unzndx—,u/ |un|p_2unzndm—/ |un\2:_2unznda¢
RS RS R3

—a / / (€ n(e2) = e a(y)(en(@) = 20®)) 4 o
RS ]R3

o =y

2idx

.
2 dx
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36 30n
ez uy(e "a:) —e v, (efy))?
b dzx d
+ /RB /R3 EERSE zay

egTvn e "1’) — e%vn(ea"y))(zn(ﬂ”) - zn(y))
% /R3 /RS dx dy

|x — y|3t2s

3(p=3) g

70 / By, Vnzn(e” " w)dr — pe” 2 "/ |0 |P~20p 20 (e~ ) de
R3

3>9/

_ 20n —On ) —0,
o [ [ D) mli) N enle ) ™) g,
R3 JR3

|z — y[3+2s

4450, (vn(x) —va(y))?
b/]R?’ /R3 Ix—yl?’“s der dy

Un () = va(y))e ™20 (2 (e x) — 20 (e~"ny))
X /Rg /RS dx dy

|z — y[3+2s

“2opzn (e r)de

( 3)

/ @5 Vnzn(e M a)da — pe
3(2%-3)
— efgn/ |’Un|25_2vnzn(e_9nx)dw'
R3

30, _
> 2n(e70n

On / [Un|P~2vp 20 (e~ ) dx

Denoting z,(z) = e x), we obtain
<I;IL(’U'TL)7 Zn>H:5><Hf, = <Il<vn’ 9n)? (27“ 0)>H*1><H'

It is easy to check that
36n

(Un, Zn) L2 :/ vn(:c)e*T/zn(e*e”x)dx:/ vn(ea”x)e%zn(x)dm:/ U ()2 (z)dz = 0.
R? R? R?

Therefore, (%,,0) € T(vmgn). On the other hand,

—2s6,

1z, OlE = 120l = ll2all3 + €72 |2nl|De.2 < CllznllZe

where the last inequality follows by 6,, — 0. Consequently, we conclude item (3). The proof is
complete. O

Lemma 4.7. The (PS) sequence {u,} C S,(c) for I,(u) with the level ¢, (c) mentioned in Lemma
is bounded in H2(R?).

Proof. From Lemma (1), we see that I,(u) is bounded. In fact, by P,(u,) — 0 as n — oo,
one obtains
(14 28) 1, (un) + Pu(un)| < 3eu(e),

which implies that

~30,(0) < (=8Pl + A P+ [ 6w
_/14(1—;28 ps/ P ( 1+2s / P, (4.7)
In view of the boundedness of I,,(u), we have
all (=8 + (- 5/2un||2 / o5, whda
(4.8)

< 6eu(c)
By (4.7) and , we obtain
Op.s — 2t —4
e =8 [ gy G |
p R3 25 R3

(6s

% dx + 7_3)/ ¢5 uZdr < 3(2+ 65)cy(c).
4 R3 "
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Note that s € (2,1), p > %S + 2, we have that pd, ; —4 > 0, and so

/|un|pdx7/ lun|?dz  and /qSZnuidx
R3 R3 R3

are all bounded. Thus, [|(=A)%/?u,|lz < Rz for some Rz > 0 independently on n € N. Since
{un} C S,(c), we see that {u,} is bounded in H3Z(R?). This completes the proof. O

Now, we set the functional ® : H3(R?) — R as

1
d(u) = [ |ufde,
2 Jps

then S,(c) = @fl(g). As a result, it can be derived from [27, Proposition 5.12] that there is a
sequence {\,} C R such that

. —s (T3
I (un) = An® (un) = 0, in H*(R°) as n — oc.
That is, in H,*(R?), we have
(a+ BI(=2)"2un3) (~A) un + 65w = prlun ] 2up = Juy
Therefore, for any ¢ € H2(R?), one has

O B e ) R

—/ u|un|p_2un<pdx—/ || % 2w pda (4.10)
RS RS

2520 = Aptn + on(1). (4.9)

=M | upedz+op(1).
R3

Next, we study the asymptotical behavior of the mountain pass level value ¢, (c) as p — +oo,
and the properties of the (PS)., ()-sequence {u,} C Sy(c) as n — +00.

Lemma 4.8. The limit lim,,_, ;o ¢, (c) = 0 holds.

Proof. Recall Lemma and Corollary we see that for fixed uy € S,(c), there exists two
constants 01, 0 satisfying 61 < 0 < 65 such that u; = 6y xug € Ac and I, (us) = I,,((62 xug)) < 0.
Then, we can define a path

o : te [0, 1] — ((1 — t)@l + t92) *Ug € FC.
Therefore,

0 < ufe) < max L(m(®)

a .. b
< max { 57| (=) ug 3 + 17~4S||<—A>S/2uol|;*

r>0
1 3 25/ o5 %dzfﬁ e 2’/ |u0|1’d1’

= max g(r
r>0

Note that (p 2 > 4s > 2s > 3 — 2s, we have that lim, o+ g(r) = 07, lim,_, 1 g(r) = —o0.
Then, there ex1sts a unique maximum point 7o > 0 such that max,>o g(r) = g(r¢) > 0. Hence, we
distinguish two cases: 79 > 1 and 0 < rg < 1.

If ro > 1, then by s € (2,1), we have

tgl[gwf]f( m0(t)) < g(ro)

a S S 4s S
< {f (=AY ugl + Srill(~2)* ul}

3(p—2)
/ o Odm—fro 2 / |u0|pd:v}
Rf}
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a s/2. 2 b ) 2
< mase {3 mac { G- 20 . 1 8) ol [ 8,8
M 3(p=2)

—*TT/ |u0|pdx}
p R3

= 3m(rmax)4s — %n(rmax)

21

3(p—2)

_ m(3p—6—8s) [ 8psm r,p%s

where rna = (25| ™ m = max {3~
Jgs [uo|Pdzx. Therefore, for 32

A)*Pugl|3, B[(—A)*/2
that

uO”Qa 1 Jr3 Zgu(%dx} y =
+ 2 < p < 2%, we have a positive constant C independent of u such

cu(c) < Cu~m=6-5 — 0, as p — +oo.
If 0 <rg < 1, we infer to

tgl[gf]f u(mo(t)) < g(ro)

a — xS S b S S
< {§r3 »(-a) /2u0||2+4r0 2 (=2) 2o 3

3(p—2)
+ 7’8 25/ o5, ugdr — 77*0 2 / |u0|pdm}
R3

S b S
< max {3max { S)1(-2) %Héﬂ(— Puall g [ eiudd
_Hrd(p 2)/ ‘uO|PdJU

3725

_ 3m(rmax)372s . Hn(""max) 3(p2—2)
p
m(3p + 4s — 12) [me(?) — 25)] T2
p—2 (p—2)un ’

where rpax =

2pm(3—-2s) 13 +425712
[ (p—2)un ]

Therefore, for 2+ 8 < p < 2%, and s € (2,1), we can deduce
that 3p 4+ 4s — 12 > 0, then there exists a positive constant C independent of p such that

cu(c) < Cumi5-12 — 0, as p — +00.

This completes the proof.

Lemma 4.9. There ezists a constant C = C(p,s) > 0 such that

lim sup/ F(up)dz < Cey(c),
n— 00 R3

lim sup
n—oo R3

lim sup
n— 00 R3

flup)undax < Cey(c),
¢ uidr < Ceu(c), limsup [ |(—A
3

n—oo

)%/, 2dz < Cey(c),
lim sup(

n—0o0

. (—A)*uy [P dz)® < Cey(o),

where f(u) = plu|P~2u + |u|? 2

= fou f(S)dS
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Proof. Since I,,(u,) — c,(c) and P,(u,) — 0 as n — 0o, one obtains
3cu(c) + 0n(1) = 31, (upn) + Pyu(uy)

3 2 4 2
; S“/i 8 2P+ S [ 1) )
R3
-5
/q’) dx—f/ f(up)upde
R3
Sa (- 8/2 |2d +3+4s / (- s/2u|2dx)2
R3

u”undx — f/ fup)upde
— (3 4s) ( / 0%, tunda + / Flun)do +,(0) + on(1)) (4.11)

s 2
O, Undr — 7/ fup)upde

= (3 +4s) (/ (up)dz + ¢, (c )—i—on(l))

657 / P, U fbdx— - f(un)undx
< (3+45)(/RSF(un)dx+cu(c) +0n(1)) - ;/R () unda

< (34 48)(cu(c) + on(1)) — ;p/Ra F(un)dx+(3+4s)/ Fuy)da.

R3
Hence,
3p—6-8
4scy(c) +on(1) > PR F(uy)dz,
2 -
which implies that
8s

li Flup)de < ———— <C 4.12

msup | (un)dz < 3p_6_850u(c) < Ceulc) (4.12)
and then

limsup | f(un)undz < Ccy(c). (4.13)

n—00 R3

Then, from (4.11)-(4.13)), one has

2 4
limsup{3J; %a |(=A)* 2w, |dx + 32 Sb(/ [(=A)* 2wy, |?da)?
RS RS

n— oo

Un

= lim sup {; / fup)updx + 30#(0)}
R3

n—oo
< Ceulc).
Consequently, the proof is complete. O
Lemma 4.10. Let {u,} C S,(c) be the (PS) Sp(c) Ot
level ¢, (c) € (O, (% - —)(aS) 25) with P, (up) = 0 as n — 0o. Then
(i) {A\n} is bounded in R, and limsup,,_, . |An| < %cu(c) has the estimation
6 - 3—25)—6
M= [T [ e B0 PEZ2I 0 [ funee] + 0 (1),
c2 " 2ps R3
Moreover, there exists some 3 := ps(c) > 0 such that lim, 100 Ay = X <0, if p > ud

large;
(i) there exist u € S,.(c) such that, up to a subsequence, u, — u strongly in H:(R?®) as p > u3
large and w is a solution of system (L.1)) for some A < 0.
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Proof. We split the proof into three steps.

Step 1. We assert that u # 0. From Lemma [£.7] we know that {u,} is a bounded (PS) sequence
for I, in H:(R?), and by Lemma up to a subsequence, there exists u € Hf(R3) such that
un — u weakly in HS(R?), u,, — u strongly in LP(R3), for p € (2,2%), u,(x) — u(z) a.e. on R3.
In view of 2 + % < p < 2%, and Lemma and Lemma then

lim/ \un\pd:c:/ |u|Pdx, lim/ o u%d:z::/ S ulda. (4.14)
n—oo [p3 R3 n—oo Jp3 o R3

Suppose by contradiction that, u = 0. Then, by (4.14) and P,(u,) = 0,(1), we deduce that

on()) = (atb [ (=A)/2u[*dr) / () 20 P+ 2222
R3 R3

4s
by [ -
RS

= (oo [ 8y ) [ 18y P~
R3 R3

2dx + 0,(1).

Without loss of generality, we assume that
2 *
a | (=AY u,|2de + b(/ \(—A)S/zun|2dx> —1>0, / lup |2 dz — 1,
R3 R3 R3

as n — oo. If I = 0, then we can deduce from the expression of I,,(u,) that ¢,(c) = 0, which is
absurd since ¢, (c) > 0. Hence, [ > 0. By the definition of S, we have

2
S/Qu |2dx < 1 a [gs (= 2)2up|dz + b(f]R3 |(—A)s/2un|2dx) 1 2
e (Juo lun s dz) “

as n — oo. It follows that [ > (aS)2=. Consequently, by ([4.14) we have
cu(c) = lim I, (un)
n— 00

S<fR3 —

= lim { [ l-a )S/Qun|2dx+9 / |(—A)S/2un\%zx)2
ey .

+ i/}Rs gbunundx - / |t |Pdx — 2:dx}

= (55

- G-

which contradicts I, (un) — cu(c) < (% - Qi) (aS)3:. Therefore, u % 0.

Step 2. We prove that u, — u in L% (R?). Again by Lemma we can obtain {[|(—=A)*/2uy |2}
is bounded in R, by Prohorov’s theorem [3], there exist two positive measures, ¢, w € M(R3),
such that

(~A) 2 =, Jua|% = ¢ in M(R?)

as n — 00. Then, by Lemma either u,, = u in LZOC(R?’) or there exists a (at most countable)
set of distinct points {z;};c; C R?® and positive numbers {(;};es such that
%+ YiesCilu,-
Moreover, there exist some at most a countable set J C N, a corresponding set of distinct points
{x;};es C R3, and two sets of positive numbers {¢;}jes C R and {w;};c; C R? such that items
(3.1)-(3.3) hold. Now, assume that J # .

Similar to the proof in step 1 and step 2 of Lemma we can obtain

aw({z;}) < ¢, awoo < (oo (4.15)

:|u
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Next, we claim that (; = 0 for any j € J and (. = 0.
Suppose by contradiction that, there exists j; € J such that ¢;, > 0 or {( > 0. By (4.15)),
Lemma [3.1] and Lemma [3.2] we obtain

G = (a8)F o (oo > (aS)%.

If the former case occurs, one has

1 1 3 . 1
ﬁ*gﬂﬁﬁ>%@zﬁehwwfgﬂwﬂ
% 5/2 i
nl;m [ all(—A)*u, |3 + 165 / by, unde

1 6s — 3
: s/2 2 E
= lim [faH(—A) un||2 + 65 /3 ¢u”undx

3(p 8 1 N
+¥ / |un|pdx+(ﬁ7)/ e
28 R3
> lim 77—/
n—oo

appdx

(l_i)(a‘g)% > cu(c) > lim Z =

4 2;‘ n— 00
>(1 lim i /| 2 pd
- = — 1m 1m
—\4 R—>oon—><>o Un ROT
1 1
—(1‘27)400

This is also a contradiction. Therefore, ¢; =0 for any j € J and (,, = 0. As a result, by Lemma
we obtain that u, — u in LlOC(R3). Combining this with Lemma we know that u, — u
in L2 (R3).

Step 3. We prove that there exists some pj := p3(c) > 0 such that lim, 100 A = A <0, if

> ps large.
By (4.9) and the fact that u, € S,(c), one has
|

2
a/ |(—A)S/2un|2daz+b</ ( A)S/Qun|2dx) —|—/ qﬁinuidx—/ flup)updx
R3 R3 R3 R3
:)\n/ || ?da + 0, (1)
R3

= A&+ 0,(1).

2
M=o [ 18 Pun e b [ (-0, )
C R3 R3

It indicates that
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+/Ra 65 ulde — /R  (tn)indz] + 0a(1).

By Lemma we know that {u,} is bounded in H?(R3), and so, {\,} is bounded in R. By
Lemma we know that limsup,,_,  |An| < C%c#(c). From this and P,(u,) — 0 as n — oo, we

derive that
1 2
_ o s/2 2 - s/2 2
A= [a/RSK A 2| da:+b(/Rs\( A)* 2| da:)
+/ qbinuid:c — fup)upde — 1Pﬂ(un)} + on(1)
k R3 S

6 — p(3—2s)—6
= i / by, U dw—i—,u(is)/ |un\pdx} + o,(1).
c? 2ps R3

By (4.14) and similar arguments to that of (3.19)-(3.22)), we see that there exists p3 = p3(c) > 0,
such that

A= lim A,
n—0o0
L 65—3 p(3—25)—6 »
_nli)n;oc—z / s undm—&—ui/ [tn] dm (4.16)
_ 6s — 3 s 9 p(3 — 2s) »
_02{ s /3¢uuda:+,u / | dx <0,

for p > p3 large.
With the help of the above step 1, step 2, step 3, we can prove u,, — u strongly in H?(R3). Let
w> p3, set B = lim, o ||(—A)S/2un\|2 > 0, by the weak convergence of u,, — u in H$(R?) and

(4.10), one obtains

(@+bB) [ (-8)u(-a) pdn+ | Giupdo
R3 R3

—,u/ |u\q72u<pdx7/
R3 R3
= )\/ updz.

R3

Therefore, from (4.14), [@.16), and [(#.17) and u,, — u in L% (R3), it follows that

2€*2ug0dx (4.17)

lim [(a—l—b/ |(—A)S/2un\2dx)/ |(—A)S/2un|2da:+/ ¢S uZdr — A uidm}
n—oo R3 R3 R3 " R3
= lim [u/ |t [Pdx + n Z:dx}
n— oo R3 R3
= ,u/ |ulPdx —|—/ u|? dz
R3 RS
= (a + bB) [(—A)*2uldx + / piutdr — \ | uPde.
RS RS RS
Since A < 0, as in the proof of Lemma [3:3] we can derive that
i [ o= [ e, lim (-0l = (-A)ul
n—00 R3 R3 n—oo
Therefore, u, — u in H(R3) and |lullz = c¢. The proof is complete. O

With the help of the above technical lemmas, we can prove Theorem as follows.

Proof of Theorem[1.2. From Lemmas [£.1] and .2} the functional I, satisfies the Mountain pass

geometry. By Lemmas 4.5 5 and - there exist a (PS).,()-sequence {u,} C S.(c) satisfying
P, (un) — 0 as n — oo, 1 , and ( , which is bounded in H(R3). Furthermore, by Lemma

there exists pj := p3(c) large enough such that 0 < ¢,(c) < (i - —)(aS) 2s for p > pi.
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Then, by Lemma there exist u € S,.(c) and A < 0 such that passing to a subsequence u,, — u
in H3(R3) if p > p*(c) :== max{us, ui}. This completes the proof. O
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