
Electronic Journal of Differential Equations, Vol. 2026 (2026), No. 04, pp. 1–20.

ISSN: 1072-6691. URL: https://ejde.math.txstate.edu, DOI: 10.58997/ejde.2026.04

ERGODIC COMPLEX PLANE AND CYLINDER TRANSFORMATION ON A

PERIODIC TIME SCALE

JOHN M. DAVIS, BILLY J. JACKSON, DYLAN POULSEN

Abstract. We introduce the ergodic complex plane, a global analogue of Hilger’s local complex
plane on time scales, which simultaneously encodes exponential growth and frequency. Averag-

ing the cylinder transformation on a periodic time scale leads to the notions of ergodic growth

rate and ergodic frequency, unifying local and global stability perspectives. This yields the
ergodic cylinder transformation, a univalent map inducing an orthogonal curvilinear coordinate

system on the regressive complex plane. Within this framework, we develop a decomposition

analogous to Hilger’s real and imaginary parts, and define the box plus operation, extending
the circle plus operation globally.

1. Hilger’s complex plane and exponential stability

We begin with a brief summary of the Hilger complex plane [3] on a time scale T. To match
the narrative of later sections, we frame the Hilger complex plane entirely in terms of the cylinder
transformation, which is a different perspective from [3].

Let T be a time scale and let t ∈ T. Define the Hilger complex numbers at t ∈ T, denoted Cµ(t),
by Cµ(t) = C \ {−1/µ(t)}. Defining Ω(µ(t)) := π/µ(t), let the cylinder strip at t ∈ T be defined as

CΩ(µ(t)) := {z ∈ C | −Ω(µ(t)) < Im(z) ≤ Ω(µ(t))}.

Definition 1.1. Let T be a time scale and let t ∈ T. Define the cylinder transformation ξµ(t) :

Cµ(t) → CΩ(µ(t)) by

ξµ(t)(z) :=

{
Log(1+zµ(t))

µ(t) , µ(t) > 0,

z, µ(t) = 0.
(1.1)

Note that ξµ(t) is one-to-one, and so ξ−1
µ(t) exists. In fact, it has the explicit form

ξ−1
µ(t)(z) :=

{
eµ(t)z−1

µ(t) , µ(t) > 0,

z, µ(t) = 0.
(1.2)

The Hilger real part at t ∈ T of z ∈ Cµ(t) can be defined as

Reµ(t)(z) = ξ−1
µ(t)(Re(ξµ(t)(z))).

The Hilger imaginary part at t ∈ T of z is given by

Imµ(t)(z) = Im(ξµ(t)(z)),

while the Hilger pure imaginary part of z at t ∈ T is given by

o
ι Imµ(t)(z) := ξ−1

µ(t)(i Im(ξµ(t)(z))).

It is straightforward to establish the following identities (which are usually taken as definitions).
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Proposition 1.2. Let T be a time scale and let t ∈ T. Then

Reµ(t)(z) = lim
τ↘µ(t)

|1 + τz| − 1

τ
,

Imµ(t)(z) = lim
τ↘µ(t)

Arg(zτ + 1)

τ
,

o
ι Imµ(t)(z) = lim

τ↘µ(t)

ei Imµ(t)(z)τ − 1

τ
,

where Arg is the principal argument satisfying −π < Arg(z) ≤ π.

The circle plus operation ⊕µ(t) is defined by a⊕µ(t) b := a+ b+ µ(t)ab. The circle minus oper-
ation ⊖µ(t) is defined to be the additive inverse of ⊕µ(t). Bohner and Peterson [3, Theorem 2.24]

establish that (Cµ(t),⊕µ(t)) is homomorphic to (CΩ(µ(t)),+(mod 2πi/µ(t))) with group homomor-
phism ξµ(t). Although not explicitly stated in [3], it follows from the fact that ξµ(t) is a bijection

that (Cµ(t),⊕µ(t)) is isomorphic to (CΩ(µ(t)),+(mod 2πi/µ)).
The group isomorphism ξµ(t) implies we can understand the circle plus addition via, for w, z ∈

Cµ(t),

z ⊕µ(t) w = ξ−1
µ(t)(ξµ(t)(z) + ξµ(t)(w) (mod 2πi/µ(t))). (1.3)

Using circle plus, for fixed t ∈ T, every z ̸= − 1
µ(t) has the Hilger decomposition at time t given

by

z = Reµ(t)(z)⊕µ(t)
o
ι Imµ(t)(z).

The Hilger complex plane, Cµ(t), is shown in Figure 1 for µ(t) ̸= 0. Important components of
Cµ(t) are the Hilger disk at t ∈ T, given by

Hµ(t) := {z ∈ Cµ(t) | Reµ(t)(z) < 0},

which can be thought of as the preimage of the left half-plane of CΩ(µ(t)) under ξµ(t). The Hilger
circle at t ∈ T is the boundary of Hµ(t), which we denote by Iµ(t). The Hilger circle can be thought

of as the preimage of the imaginary axis of CΩ(µ(t)) under ξµ(t).
The cylinder transformation maps contours of equal Hilger imaginary part (which are rays

emanating from −1/µ(t)) to horizontal lines in CΩ(µ(t)). Also, contours of equal Hilger real part
(which are circles centered at −1/µ(t)) are mapped to vertical lines in CΩ(µ(t)). In particular,
these contours form an orthogonal curvilinear coordinate system on Cµ(t).

Remark 1.3. The cylinder transformation is strongly related to the concepts of growth rate and
frequency on time scales with constant graininess. On the time scale T = hZ, the contours of
equal Hilger imaginary part correspond to frequency given by

ωh(z) := Imh(z) = Im(ξh(z)) =
Arg(1 + zh)

h
. (1.4)

This is the same quantity that represents frequency in Hilger’s definition of the time scale sinusoids
[5]. Moreover, the contours of equal Hilger real part all have the same exponential growth rate
corresponding to the Lyapunov exponent

γh(z) :=
ln(1 + hReh(z))

h
= ξh(Reh(z)) = Re(ξh(z)) =

ln |1 + hz|
h

. (1.5)

Similarly, on the time scale T = R, ξ0(z) = z, and the contours of equal exponential growth
rate are vertical lines determined by the Lyapunov exponent γ0(z) := Re(z), while the contours
of equal frequency are horizontal lines given by ω0(z) = Im(z).

We say that p : T → R is regressive if 1 + µ(t)p(t) ̸= 0 for all t ∈ T. For regressive p, the time
scale exponential function ep(t, s) is defined by

ep(t, s) := exp
(∫ t

s

ξµ(t)(p(τ))∆τ
)
.



EJDE-2026/04 ERGODIC COMPLEX PLANE AND CYLINDER TRANSFORMATION 3
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o
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θ = Imµ(t)(z)∆t = µ(t) Imµ(t)(z)

Aµ Rµ

Figure 1. Hilger’s complex plane, CH. The z inside the circle have negative
Hilger real part, the z on the circle have zero Hilger real part, and the z outside
the circle have positive Hilger real part. Points z on the Hilger real axis Rµ(t)

(the solid ray on the real axis) are such that ez(t, t0) > 0 for all t, while points on
the Hilger alternating axis Aµ(t) (the dotted ray on the real axis) are such that
ez(t, t0) changes sign at each t ∈ T.

Following Karpuz [8], denote the set of all regressive points in the complex plane by

Cµ(T) := {z ∈ C | 1 + µ(t)z ̸= 0 for all t ∈ T}.
The definitions related to Hilger’s complex plane are local and dynamic in nature; that is, they

depend on and change in t. In 2003, Pötzsche, Siegmund, and Wirth introduced the concept of a
global and static exponential growth rate for the time scale exponential function.

Theorem 1.4 (Pötzsche, Siegmund, and Wirth [9]). Let T be a time scale which is unbounded
above and let λ ∈ C. Then the scalar equation

x∆(t) = λx(t), x(t0) = x0,

is exponentially stable if and only if one of the following conditions is satisfied for arbitrary t0 ∈ T:
(C1) γ(λ) := lim supT→∞

1
T−t0

∫ T

t0
lims↘µ(t)

ln |1+λs|
s ∆t < 0,

(C2) For every T ∈ T, there exists a t ∈ T with t > T such that 1 + µ(t)λ = 0,

where we use the convention ln 0 = −∞ in (C1).

Note that condition (C1) can be restated using (1.5) as

(C1*) lim supT→∞
1

T−t0

∫ T

t0
lims↘µ(t) γs(λ)∆t < 0.

This theorem naturally leads to the following definition.

Definition 1.5 ([9]). Given a time scale T which is unbounded above, for arbitrary t0 ∈ T, define
the sets

SC(T) := {λ ∈ C : (C1) holds},
SR(T) := {λ ∈ R : (C2) holds}.
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Then the set of exponential stability for T is given by

S(T) := SC(T) ∪ SR(T).

The calculation of the set of exponential stability is simplified for periodic time scales [[9,
Lemma 3.4(b)], , which will be a focus of this paper.

Definition 1.6. A time scale T is periodic if there exists L > 0 such that t ∈ T implies t+L ∈ T
and µ(t+ L) = µ(t) for all t ∈ T. We call L a period of the time scale.

Remark 1.7. Throughout this paper, we will illustrate various results on the following prototyp-
ical time scales.

(1) For µ1, µ2, . . . , µn > 0, set L = µ1 + µ2 + · · · + µn. Then Tµ1,µ2,...,µn is the time scale
starting at 0 whose graininesses form the periodic sequence {µ1, µ2, . . . , µn}, i.e.,

Tµ1,µ2,...,µn
=
{
0, µ1, µ1 + µ2, . . . , µ1 + · · ·+ µn︸ ︷︷ ︸

L

, L+ µ1, L+ µ1 + µ2, . . . , 2L, . . .
}
.

(2) Pa,b is the periodic time scale starting at 0 with an interval of length a followed by a gap
of length b, i.e.,

Pa,b = [0, a] ∪ [a+ b, 2a+ b] ∪ [2a+ 2b, 3a+ 2b] ∪ · · ·

A key insight for this paper is that since the cylinder transformation is linked to both growth
rate (via the Hilger real part) and frequency (via the Hilger imaginary part) on constant graininess
time scales, and since the average of the real part of the cylinder transformation is related to global
exponential growth rate, it seems reasonable that the average of the imaginary part of the cylinder
transformation is related to the global frequency.

2. Ergodic growth rate and frequency

To solidify the connection between the average of the cylinder transformation and the growth
rate and frequency of the time scale exponential, notice for λ ∈ Ch that the time scale exponential
function decomposes as

eλ(t, t0) = exp
(∫ t

t0

ξµ(τ)(λ)∆τ
)

= exp
(∫ t

t0
ξµ(τ)(λ)∆τ

t− t0
(t− t0)

)
= exp

(∫ t

t0
Re(ξµ(τ)(λ))∆τ

t− t0
(t− t0)

)
exp

(
i

∫ t

t0
Im(ξµ(τ)(λ))∆τ

t− t0
(t− t0)

)
(1.4),(1.5)

= exp
(∫ t

t0
γµ(τ)(λ)∆τ

t− t0
(t− t0)

)
exp

(
i

∫ t

t0
ωµ(τ)(λ)∆τ

t− t0
(t− t0)

)
= exp

(∫ t

t0
γµ(τ)(λ)∆τ

t− t0
(t− t0)

)
×
[
cos
(∫ t

t0
ωµ(τ)(λ)∆τ

t− t0
(t− t0)

)
+ i sin

(∫ t

t0
ωµ(τ)(λ)∆τ

t− t0
(t− t0)

)]
.

(2.1)

Therefore, over an interval [t, t0]T, the growth rate and frequency of the time scale exponential
function are averages (in the integral sense) of γµ(τ) and ωµ(τ), respectively.

Since we are averaging the cylinder transformation, which is a logarithm for µ(t) > 0, we want
to be careful about the branch cut. We begin by defining a subset of the complex plane which
avoids the branch cuts of (1.1) for all τ ∈ T. Assuming (P), µmax := max{µ(t) | t ∈ T} exists, so
define

B := (−∞,−1/µmax], Bc = C \B.

Motivated by the form (2.1), we now formalize the averaged quantities introduced above.
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Definition 2.1. Let T be a time scale and x, y ∈ R such that x + iy ∈ Bc. The ergodic growth
rate of ex+iy(t, t0) on [t0, t]T off the branch cut is given by

γBc(x, y, t0, t) :=
1

t− t0

∫ t

t0

γµ(τ)(x+ iy)∆τ (2.2)

Similarly, the ergodic frequency of ex+iy(t, t0) on [t0, t]T off the branch cut is given by

ωBc(x, y, t0, t) :=
1

t− t0

∫ t

t0

ωµ(τ)(x+ iy)∆τ. (2.3)

Remark 2.2. Several remarks are in order regarding γBc(x, y, t0, t) and ωBc(x, y, t0, t).
(1) We use the term ergodic to describe the growth rate and frequency here because, if one

considers the space X = µ∗(T) of all extended graininesses of T [6] in the order that they appear
in T, then the global (spatial) averages of the growth rates and frequencies derived from X are
the pointwise limit of the local (time) averages of the local growth rates and frequencies derived
from X as defined above. We may treat the collection of asymptotic extended graininesses as an
irreducible Markov chain, which guarantees the ergodicity of the associated stochastic process.
See [10].

(2) By (1.5), γh(x+iy) has a few useful forms. The choice of form gives different interpretations
to the equation. Writing γh(x + iy) = ξh(Reh(x + iy)) is useful when a characterization of
growth rates in terms of the Hilger real part of x + iy is advantageous. By contrast, writing
γh(x+ iy) = Re(ξh(x+ iy)) is in line with Pötzsche, Siegmund, and Wirth’s condition.

(3) Using properties of the logarithm, we get

γh(x+ iy) = ln(1 + hReh(x+ iy))1/h.

This implies γBc(x, y, t0, t) is the natural log of the geometric mean (in the time scales sense) on
[t0, t]T of

lim
s↘µ(t)

(1 + Res(λ)s)
1/s = lim

s↘µ(t)
|1 + λs|1/s. (2.4)

Thus, (2.4) can be interpreted as a type of local growth rate of ex+iy(t, t0) at time t. Since
the geometric mean is the best measure of average local growth rates, expressing γh(x + iy) in
this way shows that (2.2) is an effective measure of the average growth rate of the time scale
exponential function over [t0, t]T. This observation was made earlier in [4, 6] –albeit from the
geometric perspective– by geometrically averaging Hilger circles.

(4) The formulation in (2.1) is similar to the one provided by Karpuz [8]:

ez(t, t0) = eReµ(t)(z)(t, t0)
[
cos
(∫ t

t0

Imµ(η)(z)∆η
)
+ i sin

(∫ t

t0

Imµ(η)(z)∆η
)]

.

To use the terminology of [7], Karpuz gave a type II (time scale) exponential representation
whereas (2.1) is a type I (continuous) exponential representation.

(5) In this new notation, condition (C1*) becomes

lim sup
T→∞

γBc(x, y, t0, T ) < 0, (2.5)

and thus (C1*) is indeed a requirement that the largest cluster point of the average exponential
growth rate over the tail of the time scale is negative. Therefore, (2.5) is a condition on the global
exponential growth rate. Moreover, the formulation here ties γBc(x, y, t0, t) to the local Lyapunov
exponent γµ(t), in the spirit of Pötzsche, Siegmund, and Wirth’s (C1) condition.

(6) Note that the dynamic equation

z∆(t) = λz(t), z(t0) = z0, (2.6)

for λ ∈ Bc has a growth rate of γBc(x, y, t0,∞) rather than a growth rate of λ. Furthermore,
unlike on R where the terms growth rate and exponential order are often used synonymously, these
two quantities will be distinct in general. Indeed, if λ in (2.6) is real and positive, then λ is best
described as the exponential order of the equation.
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We now see that we can understand the global growth rate and frequency of the time scale
exponential function by understanding the asymptotic behavior of the ergodic growth rate and
ergodic frequency as t → ∞. Since this asymptotic behavior is complicated in general (indeed, the
limit as t → ∞ may not exist), we begin by studying the asymptotic behavior with the following
simplifying assumption:

T is a periodic time scale with a period of L > 0 and 0 ∈ T. (P)

Under this assumption, we have

lim
t→∞

γBc(x, y, t, 0) = γBc(x, y, L, 0),

and similarly

lim
t→∞

ωBc(x, y, t, 0) = ωBc(x, y, L, 0).

Therefore, we can simplify notation by rewriting (2.2), (2.3), for x+ iy ∈ Bc, as

γBc(x, y) :=
1

L

∫ L

0

lim
s↘µ(τ)

γs(x+ iy)∆τ, (2.7)

ωBc(x, y) :=
1

L

∫ L

0

lim
s↘µ(τ)

ωs(x+ iy)∆τ. (2.8)

Remark 2.3. While the assumption of periodicity may appear to be limiting, a larger class of
aperiodic time scales can be analyzed using periodic techniques. We will call a time scale simple
if there is a representative periodic time scale which has the same limiting functions γBc and ωBc .

To illustrate this, consider the symmetric time scale TPTM = {0, t1, t2, . . .} with the graini-
ness function µ(tn) equal to the nth term of the celebrated Prouhet-Thue-Morse sequence on the
symbols one and two [1]. Since the Prouhet-Thue-Morse sequence is aperiodic, TPTM is also ape-
riodic. Additionally, since the symbols of the sequence appear with equal weight in the limit as
the sequence length increases,

lim sup
T→∞

γBc(x, y, t0, T ) = lim sup
T→∞

1

T − t0

∫ T

t0

ln |1 + (x+ iy)s|
s

∆τ

=
1

3
[ln |1 + (x+ iy)|+ ln |1 + 2(x+ iy)|] .

This last expression is equal to γBc(x, y) on the periodic time scale T1,2. Similar results hold for
calculating the limiting value of ωBc .

In this paper, any result which assumes (P) can be extended to a simple time scale via its
representative (asymptotically equivalent) periodic time scale since our arguments rely only on
the limiting values of γBc and ωBc rather than the precise nature of T itself.

In light of the definitions above, the level curves of γBc(x, y) are the curves along which
ex+iy(t, t0) has a constant global exponential growth rate. The level curves of ωBc(x, y) are the
curves along which ex+iy(t, t0) has a constant global (signal) frequency. As we will see, these two
families of level curves induce a natural coordinate system on Cµ(T).

Using these definitions, we can reformulate SC(T) as

SC(T) = {x+ iy ∈ C | γBc(x, y) < 0}. (2.9)

Equation (2.9) is reminiscent of condition (C1) and SC(T) has been thought of as an average of
Hilger circles [4].

Finally, since γBc and ωBc are the average value of Re(ξµ(τ)) and Im(ξµ(τ)), respectively, it
makes sense to study directly the complex function given by the average of ξµ(τ). In the next sec-

tion, we will define and study the properties of a map ξ, called the ergodic cylinder transformation,
from the xy plane to the γω plane, i.e., a mapping from the pair (x, y) to the pair (γ(x, y), ω(x, y))
for periodic time scales.
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3. The ergodic cylinder transformation

We begin by defining the codomain of the ergodic cylinder transformation. We define

Ω := sup
x+iy∈Bc

ωBc(x, y),

CΩ := {z ∈ C | −Ω < Im(z) ≤ Ω}.

If Ω = ∞, then CΩ = C.

Definition 3.1. Assume (P). Suppose x+iy ∈ Bc. We define the ergodic cylinder transformation
off the branch cut, ξBc : Bc → CΩ, by

ξBc(x+ iy) :=
1

L

∫ L

0

ξµ(t)(x+ iy)∆t.

It is straightforward to show from (2.1), for x+ iy ∈ Bc,

ξBc(x+ iy) = γBc(x, y) + i ωBc(x, y). (3.1)

Our goal is to extend ξBc to a map ξ : Cµ(T) → CΩ that induces an orthogonal curvilinear
coordinate system on Cµ(T) for which the contours are given by the level curves of γ and ω. We

will first show that this is the case for ξBc , and then we will define the extension.
Analytic functions that are globally injective, or univalent, induce an orthogonal coordinate

system as the preimage of the rectangular coordinate system in the complex plane via the Cauchy-
Riemann equations. Therefore, we begin by showing ξBc : Bc → CΩ is analytic and univalent. To
do so, we need the following result, in the form first presented in [2, Theorem 8].

Theorem 3.2 (Noshiro-Warschawski criterion). If f is analytic and nonconstant in a convex
domain D, and

Re(eiαf ′(z)) > 0

for all z ∈ D and for α ∈ R fixed, then f is univalent in D.

Theorem 3.3. Suppose (P) holds. Then

(1) ξBc : Bc → CΩ is analytic, and
(2) ξBc : Bc → CΩ is univalent.

Proof. Let z = x+ iy ∈ Bc.
(1) Since the principal logarithm is analytic, ez is analytic for z ∈ Cµ(T) [8], and the nonregres-

sive points lie in B, it follows that ξBc is analytic.
(2) To show univalence, from [8], the function mz : Cµ(T) → C,

mz(s, t) =

∫ t

s

∆τ

1 + zµ(τ)
,

is analytic in z, so

ξ
′
Bc(z) =

1

L

∫ L

0

∆τ

1 + zµ(τ)

=
1

L

∫ L

0

(1 + xµ(τ))∆τ

|1 + (x+ iy)µ(τ)|2
− i

L

∫ L

0

yµ(τ))∆τ

|1 + (x+ iy)µ(τ)|2
.

(3.2)

If T = R, univalence follows immediately since ξBc(z) = z. If T ̸= R, we consider three cases:
y < 0, y = 0, and y > 0. If y > 0, let U := {x+ iy ∈ C | y > 0}. Then, for x+ iy ∈ U ,

Re(i ξ
′
Bc(x+ iy)) =

1

L

∫ L

0

yµ(τ)∆τ

|1 + (x+ iy)µ(τ)|2
> 0,

since the integrand is nonnegative and not identically zero over [0, L]T due to the fact that µ(t) ̸≡ 0,
y > 0, and (crucially) that

inf
τ∈[0,L]T

1

|1 + (x+ iy)µ(τ)|2
> 0,
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by [8, Lemma 2.1]. Since U is convex, by the Noshiro-Warschawski criterion (with α = π/2), ξBc

is univalent on U .
Similarly, if y < 0, ξBc is univalent on the lower half-plane. Note that if z1, z2 ∈ C with Im(z1) >

0 while Im(z2) < 0, then ξBc(z1) ̸= ξBc(z2) since ωBc(x, y) > 0 for y > 0 and ωBc(x, y) < 0 for
y < 0.

Finally, if y = 0 and x > −1/µmax, ωBc(x, 0) = 0 while ξ
′
Bc(x) > 0, which implies ξBc is one-

to-one for x > −1/µmax. Since ωBc is positive in the upper half-plane, negative in the lower-half
plane, and zero on the ray (−1/µmax,∞), and since ξBc is univalent on each of these spaces, it
follows that ξBc is globally univalent. □

We now show that ξBc can be extended to a map ξ : Cµ(T) → C which is globally univalent. We

will call ξ the ergodic cylinder transformation. To do so, we treat the behavior along the branch
cut B carefully. Since the branch cut consists of intervals between nonregressive points, and since
the properties of these intervals depend on properties of the time scale, we establish some notation
and technical lemmas to aid in the proof.

Let M = {µn} be the collection of distinct, positive graininesses of T ̸= R, ordered as

µmax = µ1 > µ2 > · · · .

Let µ∗ = infn µn so that

− 1

µ∗
< · · · < − 1

µ2
< − 1

µ1
< 0.

Let

In :=
(
− 1

µn+1
,− 1

µn

)
, n = 1, 2, . . . ,

I0 :=

{
(−∞,−1/µ∗), µ∗ > 0,

∅, µ∗ = 0.

Lemma 3.4. Assume (P). Then M is either finite or countably infinite. Moreover,

(1) If M is finite,

B \
{
− 1

µn

}
= I0 ∪

(
N−1⋃
n=1

In

)
.

(2) If M is countably infinite,

B \
{
− 1

µn

}
=

∞⋃
n

In.

Proof. An arbitrary time scale has at most countably many graininesses.

(1) If M is finite, then µ∗ > 0 so I0 ̸= ∅ and the result follows.
(2) If M is countably infinite, then we still have L =

∑
n µn < ∞, so it must be that µ∗ = 0.

Hence, I0 = ∅ and the result follows.

□

Theorem 3.5. ξBc : Bc → CΩ can be extended to a globally univalent function ξ : Cµ(T) → CΩ.

Proof. We present the proof in two cases.

Case 1: M finite. Since M is finite, we can list the N distinct graininesses in order as

µmax = µ1 > µ2 > µ3 > · · · > µN ,

so that the corresponding non-regressive points satisfy

− 1

µN
< · · · < − 1

µ2
< − 1

µ1
< 0.
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Then, by Lemma 3.4, we have

B \
{
− 1

µn

}
= I0 ∪

(
N−1⋃
n=1

In

)
.

To extend ξBc , we consider

ξ
+

Bc(x) := lim
y→0+

ξBc(x+ iy), for x ∈ B \ {−1/µn}. (3.3)

Taking real and imaginary parts of ξ
+

Bc(x) gives

γB(x) := Re ξ
+

Bc(x) =
1

L

∫
{t∈[0,L]:µ(t)=0}

x∆t+
1

L

∫
{t∈[0,L]:µ(t)>0}

ln |1 + µ(t)x|
µ(t)

∆t,

ωB(x) := Im ξ
+

Bc(x) =
π

L

∫
{t∈[0,L]:µ(t)>0}

1{x<−1/µ(t)}
µ(t)

∆t

=
π

L

∑
{t∈[0,L]:µ(t)>0}

1{x<−1/µ(t)}

=
π

L

{∑
{t∈[0,L]:µ(t)≥µn} 1, x ∈ In,∑
{t∈[0,L]:µ(t)>0} 1, x ∈ I0,

where 1A denotes the characteristic function on the set A. Thus, ωB is constant on each In; write
ωn := ωB(x) for any x ∈ In. Also, ωB is constant on I0 as well, so we let ω0 := ωB(x) for x ∈ I0.
Then

ω1 < ω2 < · · · < ωN−1 < ω0.

For x ∈ B \ {−1/µn}, differentiating under the integral yields

γ′
B(x) =

1

L

∫
{[0,L]:µ(t)=0}

1∆t+
1

L

∫
{[0,L]:µ(t)>0}

1

1 + µ(t)x
∆t

= p0 +
1

L

∫
{[0,L]:µ(t)>0}

1

1 + µ(t)x
∆t,

γ′′
B(x) = − 1

L

∫
{[0,L]:µ(t)>0}

µ(t)

(1 + µ(t)x)2
∆t < 0,

where

p0 :=
1

L

∫
{[0,L]:µ(t)=0}

1∆t

is a constant. Thus, γ′
B is strictly decreasing on each In, n = 1, 2, . . . . Moreover, on In, we have

the end behavior

lim
x↓−1/µn+1

γ′
B(x) = +∞, lim

x↑−1/µn

γ′
B(x) = −∞.

Hence, there exists a unique αn ∈ In with γ′
B(αn) = 0. Consequently,

γ′
B(x) > 0 on

(
− 1

µn+1
, αn

)
, γ′

B(x) < 0 on
(
αn, − 1

µn

)
.

We can similarly analyze the behavior of γB on I0. If p0 = 0, then γ′
B(x) < 0 for x ∈ I0. If

p0 > 0, then there exists a unique α0 ∈ (−∞,−1/µN ) such that γ′
B(α0) = 0 and γ′

B(x) > 0 for
x ∈ (−∞, α0) while γ′

B(x) < 0 for x ∈ (α0,−1/µN ).

We define ξB : B \ {−1/µn} → C by

ξB(x) =



γB(x) + i ω0, p0 > 0, x ∈ (−∞, α0],

γB(x)− i ω0, p0 > 0, x ∈ (α0,−1/µN ),

γB(x) + i ω0, p0 = 0, x ∈ (−∞,−1/µN ),

γ0(x)− i ωn, x ∈
(
− 1

µn+1
, αn

]
, n = 1, . . . , N − 1,

γB(x) + i ωn, x ∈
(
αn, − 1

µn

)
, n = 1, . . . , N − 1,

(3.4)
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Note that on each In, we use −ξ
+

Bc(x) for x ∈ (−1/µn+1, αn], but use ξ
+

Bc(x) for x ∈ (αn,−1/µn).

As a preference, on I0, we use ξ
+

Bc(x) for x ∈ (−∞, α0], but use −ξ
+

Bc(x) for x ∈ (α0,−1/µN ).
Finally, define ξ : Cµ(T) → CΩ by

ξ(z) =

{
ξBc(z), z ∈ Bc,

ξB(x), z = x ∈ B \ {−1/µn}.

We now show that ξ is globally univalent. We consider three subcases.

Subcase 1: Two interior points. If z1, z2 ∈ Bc and ξ(z1) = ξ(z2), then ξBc(z1) = ξBc(z2). By
the univalence of ξBc on Bc, we get z1 = z2.

Subcase 2: One interior point, one branch cut point. Suppose z ∈ Bc and x ∈ B\{−1/µn}.
The image ξ(Bc) = ξBc(Bc) is open. The value ξB(x) is a one-sided (non-tangential) limit of ξBc

at x ∈ ∂Bc, hence ξB(x) ∈ ∂ ξBc(Bc) and is not an interior point. Therefore ξ(z) ̸= ξ(x).

Subcase 3: Two branch cut points. Let x1 ̸= x2 in B \ {−1/µn}. Since ξ(x) = ξB(x) on
B \ {−1/µn}, it suffices to show ξB(x1) ̸= ξB(x2).

Suppose x1, x2 lie in one of the same half-intervals in (3.4). Then, Im ξB is constant while γ′
B(x)

has a fixed nonzero sign; hence ξB is strictly monotone along a horizontal line and ξB(x1) ̸= ξB(x2).
On the other hand, if x1, x2 are in the two different halves of the same In, then Im ξB(x1) = −ωn

and Im ξB(x2) = +ωn, so ξB(x1) ̸= ξB(x2).
If x1, x2 lie in distinct intervals Ij ̸= In, then Im ξB(xℓ) ∈ {±ωj ,±ωn} with ωj ̸= ωn since

the sequence {ωn} is strictly increasing in n. Again, the imaginary parts differ, so the values are
distinct.

Combining the three cases shows ξ is injective on Cµ(T) = C \ {−1/µn} when M is finite.

Case 2: M countably infinite. If M is countably infinite, by Lemma 3.4,

B \
{
− 1

µn

}
=

∞⋃
n=1

In.

Since I0 = ∅, we can define this simpler version of ξB : B \ {−1/µn} → C by

ξB(x) =

{
γB(x)− i ωn, x ∈

(
− 1

µn+1
, αn

]
,

γB(x) + i ωn, x ∈
(
αn, − 1

µn

)
,

(3.5)

for all n for which µn+1 exists. Then

ξ(z) =

{
ξBc(z), z ∈ Bc,

ξB(x), z = x ∈ B \ {−1/µn}.

The argument that ξ is injective in this situation is already contained in the previous argument. □

The construction of the ergodic cylinder transformation in Theorem 3.5 gives us a way to extend
the definition of γBc and ωBc to the branch cut via the functions γB and ωB . We can tie them
into global functions via

γ(x, y) := Re(ξ(x+ iy), ω(x, y) := Im(ξ(x+ iy)), for all x+ iy ∈ Cµ(T).

Let x+ iy ∈ Cµ(T) be fixed. By Theorem 3.5, ξ
−1

: ξ(Cµ(T)) → Cµ(T) exists and is defined by

ξ
−1

(γ + iω) = x+ iy.

where γ(x, y) = γ and ω(x, y) = ω. The level curves of γ(x, y) and ω(x, y) therefore form a
coordinate system on Cµ(T) which is an orthogonal curvilinear coordinate system onBc by Theorem
3.3. See Figures 2 and 3.

Definition 3.6. Let T be a time scale. The regressive complex plane Cµ(T) equipped with the

(γ, ω) coordinate system induced by ξ
−1

is called the ergodic complex plane for T.
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x

y

γ

ω

ξ

ξ
−1

Figure 2. The ergodic cylinder transformation on T = Z. Here, ξ
−1

maps lines of
constant average exponential growth rate (blue) and constant average exponential
frequency (red) in the γ-ω plane to the level curves of γ(x, y) (blue) and ω(x, y)
(red) in the x-y plane to form a new a curvilinear coordinate system on C. We

call this the ergodic complex plane for T. Note that ξ
−1

maps the imaginary axis
in γ-ω coordinates to ∂S(T) in the ergodic complex plane.

x

y

γ

ω

ξ

ξ
−1

Figure 3. The ergodic cylinder transformation for T1,5,0.45. The solid black
curves are where γ(x, y) = 0, i.e. ∂S(T).

Theorem 3.7. Suppose (P) holds. Let T be a time scale which is unbounded above but with
bounded graininess. Let

Γ0 := {(x, y) : γ(x, y) = 0},
Γ− := {(x, y) : γ(x, y) < 0},
Γ+ := {(x, y) : γ(x, y) > 0}.
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Then:

(1) Γ0 = ∂S(T), Γ− is the interior of S(T), and Γ+ is the exterior of S(T).
(2) ξ(Γ0) = {(0, ω) : −Ω < ω ≤ Ω}, ξ(Γ−) = {(γ, ω) : γ < 0}, and ξ(Γ+) = {(γ, ω) : γ > 0}.
(3) Let Γc := {(x, y) : −1/µmax < x < 0, y = 0}. Then ξ(Γc) = R−.

Proof. (1) Assuming (P), on Γ0, (2.7) vanishes. The second claim is a restatement of [9, Lemma 3.4b].
The third follows from the fact that (C1) is necessary for exponential stability, and (C1) becomes
(2.9) due to (P).

(2) and (3) follow from the definitions of the sets involved and ξ. □

Just as Hilger’s pure imaginary number parameterizes the Hilger circle via

Iµ(t) = {oι ω | −π/µ(t) < ω ≤ π/µ(t)},

the ergodic cylinder transformation allows us to parameterize ∂S = Γ0 as the preimage of the
imaginary axis in CΩ.

Definition 3.8. Suppose −Ω < ω ≤ Ω such that ξ
−1

(iω) exists. The ergodic pure imaginary

number
⊙
ı ω ∈ ∂S = Γ0 is defined as

⊙
ı ω := ξ

−1
(iω).

On R, ⊙
ı ω is iω on the imaginary axis, and on hZ, ⊙

ı ω is
o
ι ω, the Hilger pure imaginary number,

on Ih. This characterization allows us to parameterize Γ0 as

Γ0 = {⊙ı ω | −Ω < ω ≤ Ω and
⊙
ı ω exists}.

This parameterization allows us to prove properties of Γ0, as the next two propositions show.

Proposition 3.9. Assume (P). Let T = Tµ1,µ2,...,µn
. Then Γ0 is bounded.

Proof. Fix ω ∈ (−Ω,Ω] such that ξ
−1

(iω) exists and consider the point z = 0 + iω ∈ CΩ. Let

µmin := minµk. Then ξ
−1

(z) =
⊙
ı ω ∈ Γ0, so

0 =

∫ L

0

ln |1 + ⊙
ı ωµ(t)|

µ(t)
∆t

≥
∫ L

0

2Re(
⊙
ı ω) + |⊙ı ω|2µ(t)

|1 + ⊙
ı ωµ(t)|2

∆t

≥
∫ L

0

2Re(
⊙
ı ω) + |⊙ı ω|2µmin

|1 + ⊙
ı ωµ(t)|2

∆t.

Since the denominator is positive, this implies 2Re(
⊙
ı ω) + |⊙ı ω|2µmin < 0, which means

⊙
ı ω is in a

disk of radius 1/µmin centered at −1/µmin (which is a Hilger disk of curvature µmin). □

Proposition 3.10. Γ0 is symmetric about the real axis. That is, for ω ∈ (−Ω,Ω] and
⊙
ı ω ̸∈ R,

⊙
ı ω =

⊙
ı (−ω).

Proof. Write
⊙
ı ω = x + iy. Note ξ(x + iy) = γ(x, y) + iω(x, y) = iω. Then, calculations for

⊙
ı ω = x− iy yield

γ(x,−y) =
1

L

∫ L

0

lim
s↘µ(t)

ln |1 + (x+ iy)s|
s

∆s

=
1

L

∫ L

0

lim
s↘µ(t)

ln |1 + (x+ iy)s|
s

∆s

= γ(x, y) = 0,
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and

ω(x,−y) =
1

L

∫ L

0

lim
s↘µ(t)

Arg(1 + (x+ iy)s)

s
∆s

= − 1

L

∫ L

0

lim
s↘µ(t)

Arg(1 + (x+ iy)s)

s
∆s

= −ω(x, y)

= −ω

Therefore,
⊙
ı (−ω) = x− iy =

⊙
ı ω. □

Finally, we now have a way of characterizing the time scale exponential function in terms of its
ergodic growth rate and ergodic frequency via the ergodic cylinder transformation and its inverse.

Remark 3.11. Assuming (P), an exponential function on T with ergodic growth rate γ and
ergodic frequency ω and with constant subscript is given by

e
ξ
−1

(γ+iω)
(t, t0), (3.6)

provided that ξ
−1

(γ+ iω) exists. In fact, among the family of functions of the form eα(t, t0) where
α ∈ C is constant, the formulation in (3.6) allows us to fully understand the qualitative behavior
of eα(t, t0) in terms of the real and imaginary parts of α.

Example 3.12.
(1) The ergodic complex plane for T = T1,2, the discrete periodic time scale with graininesses

{1, 2}, is shown in Figure 4. On this time scale, Ω = 2π/3.
(2) The ergodic complex plane for T = T1,4,4, the discrete periodic time scale with graininesses

{1, 4, 4}, is shown in Figure 4. On this time scale, Ω = π/3. In particular, the boundary of the
region of exponential stability on T1,4,4 contains a saddle point. The value of ω at the saddle point

is 2π/9. Therefore,
⊙
ı 2π/9 exists but

⊙
ı (−2π/9) does not exist.

(3) The ergodic complex plane for T = P1/4,1 is shown in Figure 5. Note that the boundary of

the region of exponential stability on P1/4,1 is disconnected. On the real axis,
⊙
ı 4π/5 is the first

intersection of the boundary with R−, while
⊙
ı (−4π/5) is the second intersection of the boundary

with R−, illustrating how we define ω on R−. On this time scale, Ω = ∞.
(4) Consider T = C1/3, the time scale consisting of repeated middle-third Cantor sets. The

ergodic complex plane for T = C1/3 is shown in Figure 5. On this time scale, Ω = ∞.

Example 3.13. The map ξ is in general not bijective. To see this, consider T = T1,2. The

only saddle point of ξB is given by α1 = −3/4. Since we make the choice to map saddle points
of ξB to positive frequencies, we have ξ(α1) = − ln(2) + iπ/3. But, this means that the point

z∗ = − ln 2− iπ/3 ∈ CΩ has no preimage under ξ, that is, ξ
−1

(z∗) does not exist, and hence ξ is
not a bijection between Cµ(T) and CΩ.

In general, there are as many points in Cµ(T) that do not have an image under ξ as there are

saddle points of ξ, so for the time scales considered in this paper, the number of such points is
finite, and each of these points is isolated.

We conclude this section by considering discrete time scales, which are prominent in time series
data. We show that our results must adhere to major results in sampling theory.

Proposition 3.14. Assume (P). Let T = Tµ1,µ2,...,µN
. Then L =

∑N
n=1 µn. Set a := L

N . Then
for x+ iy ∈ Cµ(t), −π/a < ω(x, y) ≤ π/a. That is, Ω = π/a.

Proof. Since T is discrete, for x+ iy ∈ Bc,

ωBc(x, y) =
1

L

∫ L

0

Imµ(t)(x+ iy)∆t =
1

L

N∑
k=1

Arg(1 + (x+ iy)µk) ≤
Nπ

L
=

π

a
.
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x

y

x

y

Figure 4. The ergodic complex plane for T1,2 (left) and T1,4,4 (right). The solid
black curve is where γ(x, y) = 0, i.e. ∂S(T).

Moreover, on B, for x ∈ I0 (that is, for x to the left of all nonregressive points), ωB(x) = π/a.
For x ∈ Ik, k ≥ 1, by construction ωB(x) < π/a. Thus ω(x, y) ≤ π/a. The proof to show
ω(x, y) > −π/a is similar. □

Remark 3.15. If T = Tµ1,µ2,...,µN
and t ∈ T is measured in seconds, then we have the following:

(1) The average sampling rate is 1/a samples per second.
(2) The Nyquist-Shannon Sampling Theorem [11] says that we can perfectly reconstruct a

continuous time signal sampled on the time scale that contains no frequencies higher than 1
2a

hertz. That is, we can perfectly reconstruct a continuous time signal sampled on the time scale
that contains no frequencies higher than π/a = Ω, so Ω is the Nyquist frequency for sampling of
a real signal done on time scale points.

(3) Because of (2), the definition of the ergodic frequency captures a key feature of frequency
from the perspective of signal processing.

4. The box plus operation

In this section, we propose a generalization of the time scale circle plus binary operator for the
ergodic complex plane.

The cylinder strip CΩ(h) is a manifestation of CΩ when T = hZ, where h is constant, and
therefore its coordinates can be thought of as a local growth rate on the real axis and local
frequency on the imaginary axis. Therefore, by (1.3), one way to understand the action of ⊕h is
that it maps z, w ∈ Ch to CΩ for T = hZ, adds the local growth rate of z to the local growth rate
of w and adds the local frequency of z to the local frequency of w (mod 2πi/h), and finally pulls
back to the unique point in Ch that would map to that new growth rate and frequency pair under
ξh.

We can generalize ⊕h by employing ξ rather than ξh in (1.3). Since ξ is not a bijection (see
Example 3.13), addition (mod 2iΩ) in CΩ is not a group since the sum of two points may not
correspond to the image of a point under ξ. Thus (CΩ,+ (mod 2iΩ)) is a groupoid, and +
(mod 2iΩ) is a partial function.

Example 4.1. To demonstrate the lack of closure under addition (mod 2iΩ) in CΩ, consider again
the time scale T1,2 from Example 3.13.

Fixing z ∈ CΩ, there is just one point v such that z + v does not exist. This point v satisfies

v = − ln 2− iπ/3− z.
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x

y

x

y

Figure 5. The ergodic complex plane for T = P1/4,1 (left) and T = C1/3 (right).

There are a few properties we want to point out in this example that are illustrative for later

proofs. Notice that ξ
−1

(ξ(−3/4)) = ξ
−1

(− ln 2+ πi/3) = −3/4. Conversely, ξ(ξ
−1

(− ln 2− πi/3))

does not exist. Finally, ξ(ξ
−1

(ξ(−3/4))) = ξ(−3/4) = − ln 2 + πi/3. This example gives us

intuition for which compositions of ξ and ξ
−1

exist in general.

Crucially, ξ
−1

(ξ(z)) always exists, but ξ(ξ
−1

(z)) may not exist. Moreover,

ξ(ξ
−1

(ξ(z))) = ξ(z).

Since ξ is defined as an integral over the time scale, ξ can act on functions as well so long as
the resulting integral converges. In what follows, for fixed z, w, we will evaluate ξ at z ⊕µ(t) w,
which is a function of t.

Proposition 4.2. Let z, w ∈ Bc. Then

ξBc(z ⊕µ(t) w) = ξBc(z) + ξBc(w) (mod 2iΩ),

ξBc(z ⊖µ(t) w) = ξBc(z)− ξBc(w) (mod 2iΩ).

Proof. Let z, w ∈ Cµ(T). Then z, w are regressive for each t ∈ T, so z ⊕µ(t) w is defined for each
t ∈ T. Hence,

ξBc(z ⊕µ(t) w) :=
1

L

∫ L

0

ξµ(t)(z ⊕µ(t) w)∆t (mod 2iΩ)

=
1

L

∫ L

0

ξµ(t)(z) + ξµ(t)(w)∆t (mod 2iΩ)

=
1

L

∫ L

0

ξµ(t)(z)∆t+
1

L

∫ L

0

ξµ(t)(w)∆t (mod 2iΩ)

= ξBc(z) + ξBc(w) (mod 2iΩ).

The proof for ⊖µ(t) follows similarly. □

Although according to Proposition 4.2, the function ξBc appears to be operation preserving,
it is important to realize that z ⊕µ(t) w is not a point in Cµ(T), but instead is a function of t.

Nevertheless, if ξ
−1

(ξ(z) + ξ(w) (mod 2iΩ)) exists, there is a unique point in Cµ(T) that maps to
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ξ(z) + ξ(w) (mod 2iΩ). This fact, along with Proposition 4.2, motivates us to call this point the
box plus sum of z and w, denoted z ⊞T w. We can similarly define the box minus difference of z
and w, denoted z ⊟T w.

Definition 4.3. Let z, w ∈ Cµ(T) and suppose ξ
−1

(ξ(z) + ξ(w) (mod 2iΩ)) exists. We define the
partial function ⊞T : Cµ(T) × Cµ(T) → Cµ(T) by

z ⊞T w := ξ
−1

(ξ(z) + ξ(w) (mod 2iΩ)).

Similarly, if z, w ∈ Cµ(T) and ξ
−1

(ξ(z)− ξ(w) (mod 2iΩ)) exists, then define the partial function
⊟T : Cµ(T) × Cµ(T) → Cµ(T) by

z ⊟T w := ξ
−1

(ξ(z)− ξ(w) (mod 2iΩ)).

Finally, if z ∈ Cµ(T) and ξ
−1

(−ξ(w)) exists, define ⊟Tz := 0⊟T z. Note the mod condition is not

necessary in the last definition since ξ(w) ∈ CΩ implies −ξ(w) ∈ CΩ.

Now, we have the following useful identities.

Proposition 4.4. Let z, w, u ∈ Cµ(T). Then

(1) 0⊞T z = z
(2) If z ⊞T w, w ⊞T u, (z ⊞T w)⊞T u, and z ⊞T (w ⊞T u) exist, then

(z ⊞T w)⊞T u = z ⊞T (w ⊞T u).

(3) If z ⊞T w exists, then z ⊞T w = w ⊞T z.
(4) If (⊟Tz) exists, then z ⊟T z = z ⊞T (⊟Tz) = 0.
(5) If (⊟Tz) exists, then ⊟T(⊟Tz) = z.
(6) If z ⊟T w and w ⊟T z exist, then ⊟T(z ⊟T w) = w ⊟T z.
(7) If (⊟Tz) and (⊟Tw) exist, then ⊟T(z ⊞T w) = (⊟Tz)⊞T (⊟Tw).

(8) If z ∈ Γ0/R, then ⊟Tz exists and z = ⊟Tz. Thus, if z =
⊙
ı ω, then

⊙
ı (−ω) = ⊟T

⊙
ı ω.

We will prove (1), (2), (5), and (8). The proofs of (3), (4), (6) and (7) are similar to the proof

of (2), in the sense the proof involves compositions and cancelations of ξ and ξ
−1

.

Proof. (1) 0⊞T z = ξ
−1

(ξ(0) + ξ(z) (mod 2iΩ)) = ξ
−1

(0 + ξ(z)) = ξ
−1

(ξ(z)) = z.

(2) Since z ⊞T w exists, ξ(ξ
−1

(ξ(z) + ξ(w) (mod 2iΩ))) = ξ(z) + ξ(w) (mod 2iΩ). A similar
expression holds for w ⊞T u. Then

(z ⊞T w)⊞T u = ξ
−1

(ξ(ξ
−1

(ξ(z) + ξ(w) (mod 2iΩ))) + ξ(u) (mod 2iΩ))

= ξ
−1

((ξ(z) + ξ(w) (mod 2iΩ)) + ξ(u) (mod 2iΩ))

= ξ
−1

(ξ(z) + (ξ(w) + ξ(u) (mod 2iΩ)) (mod 2iΩ))

= ξ
−1

(ξ(z) + ξ(ξ
−1

(ξ(w) + ξ(u) (mod 2iΩ))) (mod 2iΩ))

= z ⊞T (w ⊞T u).

(5) Consider

⊟T(⊟Tz) = ⊟T(ξ
−1

(−ξ(z)) = ξ
−1

(−ξ(ξ
−1

(−ξ(z)))) = ξ
−1

(ξ(z)) = z.

(8) Since z ∈ Γ0/R, there is a unique ω ∈ (−Ω,Ω] such that z = ξ
−1

(iω) =
⊙
ı ω. Then

⊟Tz = ⊟T
⊙
ı ω = ξ

−1
(−ξ(ξ

−1
(iω))) = ξ

−1
(−iω) =

⊙
ı (−ω) = z,

where we use Proposition 3.10 for the last equality. □

Thus, ⊞T provides a global analogue of the local action of ⊕µ(t). The ⊞T operator maps
z, w ∈ Cµ to CΩ, adds the ergodic growth rate of z to the ergodic growth rate of w and adds
the ergodic frequency of z to the ergodic frequency of w (mod 2iΩ), and finally pulls back to the
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unique point (if it exists) in Cµ(T) that would map to that new growth rate and frequency pair

under ξ.
The operations ⊟T and ⊖µ also interact with time scale exponential functions in an interesting

way. To show that, we need the following result.

Proposition 4.5. Let T be a time scale and let −Ω < ω ≤ Ω such that
⊙
ı ω exists. When

⊙
ı (−ω) = ⊟T(

⊙
ı ω) exists, we have

e⊙
ı ω
(t, t0) = e⊟⊙

ı ω
(t, t0).

Proof. (1) This follows since ez(t, t0) = ez(t, t0) for regressive z and since
⊙
ı (−ω) =

⊙
ı ω = ⊟T

⊙
ı ω

by Propositions 3.10 and 4.4. □

We now can show the relationship between ⊖µ(t) and ⊟T in the time scale exponential. Since
⊖µ(t) is a local operation while ⊞T is a global operation, the following proposition provides a bridge
between the local and the global behavior of the time scale exponential function.

Proposition 4.6. Let T be a time scale and let −Ω < ω ≤ Ω such that
⊙
ı ω exists. When ⊟T(

⊙
ı ω)

exists,

e
⊖µ(t)

⊙
ı ω
(t, t0) = e⊟T

⊙
ı ω
(t, t0)Qω(t, t0),

where Qω(t, t0) := 1/|e⊙
ı ω
(t, t0)|2.

Proof. By direct calculation,

e
⊖µ(t)

⊙
ı ω
(t, t0) =

1

e⊙
ı ω
(t, t0)

=
e⊙
ı ω
(t, t0)

|e⊙
ı ω
(t, t0)|2

= e⊟T
⊙
ı ω
(t, t0)Qω(t, t0).

□

Notice in Proposition 4.6 that ⊟T
⊙
ı ω is a number, while ⊖µ(t)

⊙
ı ω is a function of t. The effect

that the time variation in ⊖µ(t)
⊙
ı ω has on the time scale exponential is embedded in Qω(t, t0).

As explained in Remark 3.11, each point z ∈ Cµ(T) has an ergodic growth rate and ergodic
frequency. Using ⊞T, we can explicitly write z in an analogue of the rectangular form, much like
the Hilger decomposition.

Generalizing the Hilger real and imaginary parts in the spirit of Lemma 1.2, we have the
following definition.

Definition 4.7. Let z ∈ Cµ(T). We define the ergodic real part of z, denoted ReT(z), by

ReT(z) := ξ
−1

(Re(ξ(z))),

and the ergodic imaginary part of z, denoted ImT(z), by

ImT(z) := Im(ξ(z)).

Note that ReT(z) is the right-most point on the real axis along the contour γ = ξ(z) by virtue
of having zero ergodic imaginary part. In particular, this point is to the right of −1/µmax, which

means ξ
−1

(Re(ξ(z))) always exists. Also, the ergodic growth rate γ(x, y) and ergodic real part
ReT(x+ iy) are related by

ξ(ReT(x+ iy)) = Re(ξ(x+ iy)) = γ(x, y).

We are now able to give a rectangular ergodic decomposition for z ∈ Cµ(T) in terms of ⊞T. See
Figure 6.

Proposition 4.8. Let z ∈ Cµ(T). Then z = ReT(z)⊞T
⊙
ı ImT(z).
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x

y

⊙
ı ImTz

z = ReTz ⊞T
⊙
ı ImTz

ReTz

⊙
ı ImTw

w = ReTw ⊞T
⊙
ı ImTw

ReTw

c

Figure 6. The ergodic decomposition z = ReT z ⊞T ImT z. ReT z is found by
projecting along the appropriate level curve of γ(x, y) until it reaches the x-axis
while ImT z is found by projecting along the appropriate level curve of ω(x, y)
until it reaches Γ0. If z ∈ Γ−, then ReT z < 0, while if z ∈ Γ+, then ReT z > 0. If
Im z > 0, then ImT z > 0, while if Im z < 0, then ImT z < 0. Care must be taken
at self-crossings such as c, where our definition chooses ImT c > 0.

Proof.

ReT(z)⊞T
⊙
ı ImT(z) = ξ

−1
(ξ(ReT(z)) + ξ(

⊙
ı ImT(z)) (mod 2iΩ))

= ξ
−1

(Re(ξ(z)) + i ImT(z) (mod 2iΩ))

= ξ
−1

(Re(ξ(z)) + i Im(ξ(z)) (mod 2iΩ))

= ξ
−1

(ξ(z)) = z.

□

Example 4.9. Again, consider T1,2. The rectangular ergodic decomposition exists even for α1 =

−3/4. Indeed, by the calculations in Example 4.1, ReT1,2
(z) = ξ

−1
(− ln 2) ≈ −0.396447 and

ImT1,2(z) =
π
3 . Thus,

α1 = ξ
−1

(− ln(2))⊞T1,2

(⊙
ı
π

3

)
≈ (−0.396447)⊞T1,2

(−0.75 + 0.661438i).

Remark 4.10. We can recover a group structure for the box plus operator by extending ξ so
its codomain is all of Cµ(T) by changing the domain so that a point is also associated with its
frequency. Consider the set Cg

µ(T) ⊂ Cµ(T) × (−Ω,Ω] with the condition that (z, ω) ∈ Cg
µ(T) if and

only if Im(ξ(z)) = ω when z is not a saddle point of ξ and Im(ξ(z)) = ±ω when z is a saddle point

of ξ. Then define ξ
g
: Cg

µ(T) → CΩ by

ξ
g
(z, ω) =

{
γ + iω, ξ(z) = γ + iω,

γ + iω, ξ(z) = γ − iω.
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Then, for a saddle point αk of ξB satisfying ξB(αk) = γ + iω,

(ξ
g
)−1(γ − iω) = (αk,−ω),

and for all other points (ξ
g
)−1 agrees with ξ

−1
.

With this, define ⊞g
T : Cg

µ(T) × Cg
µ(T) → CΩ by

(z1, ω1)⊞
g
T (z2, ω2) := (ξ

g
)−1(ξ

g
(z1, ω1) + ξ

g
(z2, ω2)),

where the addition is mod 2iΩ in the first argument of ξ
g
and is mod 2Ω in the second argu-

ment of ξ
g
. Then (Cg

µ(T),⊞
g
T) is a group with identity (0, 0) and with inverse of (z, ω) being

((ξ
g
)−1(−ξ

g
(z)),−ω).

Remark 4.11. For an easier group structure involving box plus, we can generalize the observation
that the Hilger circle with the circle plus, (Hµ(t),⊕µ(t)), is a subgroup of (Cµ(t),⊕µ(t)) and is
isomorphic to ((−π/µ(t), π/µ(t)],+ (mod 2π/µ(t))). Notice that as long as Γ0 does not have any
self-intersections, ξ : Γ0 → ξ(Γ0) is a bijection. In this case, (Γ0,⊞T) is a group which is isomorphic
to ((−Ω,Ω],+ (mod 2Ω)).

Remark 4.12. We can extend the range of ω from the Nyquist range (−Ω,Ω] to R. Fix the posi-

tive principal branch of ξ
−1

on the Nyquist segment i(−Ω,Ω]\{iω−}, where iω− is the parameter
corresponding to a self-intersection point of Γ0. Analytic continuation along the imaginary axis
lifts this branch to the Riemann surface R

ξ
−1 , giving a single-valued map

ξ
−1

lift : i
(
R \ Λ

)
→ C, Λ := {ω− + 2kΩ : k ∈ Z},

which satisfies ξ
−1

lift

(
i(ω+2Ω)

)
= ξ

−1

lift(iω) for every ω ∈ R \Λ. Projecting to the plane extends ξ
−1

to the punctured imaginary axis while identifying all inputs that differ by 2Ω. Let Z = im ξ
−1

lift.
Because the branch on i(−Ω,Ω] \ {iω−} is injective, every z ∈ Z has a unique representative
ω ∈ (−Ω,Ω] \ {ω−}. We define

z1 ⊞ z2 := ξ
−1

lift

(
i(ω1 + ω2)

)
, whenever ω1 + ω2 /∈ Λ.

Hence ξ
−1

lift is an isomorphism onto (Z,⊞). On the punctured circle this provides a global operation;
on all of R \ 2ΩZ, it is only partial because inputs whose sum is in Λ are excluded. However, a
construction similar to that in Remark 4.10 will create a global group isomorphism.

5. Conclusion

In this paper we introduced the ergodic complex plane as a global analogue of Hilger’s complex
plane on time scales. By averaging the cylinder transformation, we defined the ergodic growth rate
and ergodic frequency, and showed that together they generate the ergodic cylinder transformation,
an analytic, globally univalent map that yields an orthogonal curvilinear coordinate system on the
regressive complex plane. This framework provides an ergodic decomposition analogous to Hilger’s
as well as the global box plus operation as an extension of the local circle plus operation. These
results unify local and global perspectives on growth and frequency, and open the way for further
developments in harmonic and spectral analysis on general time scales.

References

[1] Jean-Paul Allouche, Jeffrey Shallit; The ubiquitous Prouhet-Thue-Morse sequence, Sequences and their Appli-

cations: Proceedings of SETA’98, Springer, 1999, pp. 1–16.

[2] FG Avkhadiev, LA Aksent’ev; The main results on sufficient conditions for an analytic function to be schlicht,
Russian Mathematical Surveys, 30 (1975), no. 4, 1.

[3] Martin Bohner, Allan Peterson; Dynamic Equations on Time Scales: An Introduction with Applications,
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