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ERGODIC COMPLEX PLANE AND CYLINDER TRANSFORMATION ON A
PERIODIC TIME SCALE

JOHN M. DAVIS, BILLY J. JACKSON, DYLAN POULSEN

ABSTRACT. We introduce the ergodic complex plane, a global analogue of Hilger’s local complex
plane on time scales, which simultaneously encodes exponential growth and frequency. Averag-
ing the cylinder transformation on a periodic time scale leads to the notions of ergodic growth
rate and ergodic frequency, unifying local and global stability perspectives. This yields the
ergodic cylinder transformation, a univalent map inducing an orthogonal curvilinear coordinate
system on the regressive complex plane. Within this framework, we develop a decomposition
analogous to Hilger’s real and imaginary parts, and define the box plus operation, extending
the circle plus operation globally.

1. HILGER’S COMPLEX PLANE AND EXPONENTIAL STABILITY

We begin with a brief summary of the Hilger complex plane [3] on a time scale T. To match
the narrative of later sections, we frame the Hilger complex plane entirely in terms of the cylinder
transformation, which is a different perspective from [3].

Let T be a time scale and let ¢t € T. Define the Hilger complex numbers at t € T, denoted C,,;),
by C,y = C\{—1/u(t)}. Defining Q(u(t)) := 7/u(t), let the cylinder strip at t € T be defined as

CU) = {z € C | =Q(u(t)) < Im(2) < Q(u(1))}.

Definition 1.1. Let T be a time scale and let ¢t € T. Define the cylinder transformation &, :
Cuy — C2(®) by
Log(1+zpu(t)) p(t) > 0,

§uy(2) = { we)

) ) — o (1.1)

Note that £,(;) is one-to-one, and so f;é) exists. In fact, it has the explicit form
er(t)z_1
, t) > 0,
O IR S (12)
a z, u(t) =0.
The Hilger real part at t € T of z € C(;) can be defined as
Repn(2) = €0 (Re(Euie ().
The Hilger imaginary part at t € T of z is given by

Tm, 4 (2) = Im (& (2)),
while the Hilger pure imaginary part of z at t € T is given by

¢ Imy, 4 (2) == E;(lt)(i Im(&,.(1)(2)))-

It is straightforward to establish the following identities (which are usually taken as definitions).
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Proposition 1.2. Let T be a time scale and let t € T. Then

. l+Tz -1
Re z) = lim ————,
uo(z) = lim, =
. Arg(zr+1)
Im z)= lim —————
uo(z) = lim ==
o ei Tmy, 4y (2)7 _ 1
¢ Im z)= lim —m
uo(z) = lim, T

where Arg is the principal argument satisfying —m < Arg(z) <.

The circle plus operation @, is defined by a @,+) b := a + b+ u(t)ab. The circle minus oper-
ation S, is defined to be the additive inverse of © ;). Bohner and Peterson [3, Theorem 2.24]
establish that (C,,(;), ®,(;)) is homomorphic to (C*®) +(mod 27i/pu(t))) with group homomor-
phism &, ;). Although not explicitly stated in [3], it follows from the fact that &, is a bijection
that (C,), ®p(r)) is isomorphic to (CHH®), +(mod 2i/p)).

The group isomorphism &,y implies we can understand the circle plus addition via, for w, z €
Crws

2 B = £ (€ (2) + Guy () (mod 2mi/u(t))). (13)

Using circle plus, for fixed t € T, every z # —ﬁ has the Hilger decomposition at time t given

by
z = Re“(t)(z)@#(t) L Im#(t) (z)

The Hilger complex plane, C,,), is shown in Figure [I| for x(t) # 0. Important components of

C, ) are the Hilger disk at t € T, given by

H#(t) = {Z S C#(t) ‘ Reu(t) (2) < 0},

which can be thought of as the preimage of the left half-plane of C2(*(1)) under §u(t)- The Hilger
circle at t € T is the boundary of H,(;), which we denote by I,;). The Hilger circle can be thought
of as the preimage of the imaginary axis of C2(*(*)) under Eu(t)-

The cylinder transformation maps contours of equal Hilger imaginary part (which are rays
emanating from —1/4u(t)) to horizontal lines in C**(*) . Also, contours of equal Hilger real part
(which are circles centered at —1/u(t)) are mapped to vertical lines in C®?*(®). In particular,
these contours form an orthogonal curvilinear coordinate system on C,, ).

Remark 1.3. The cylinder transformation is strongly related to the concepts of growth rate and
frequency on time scales with constant graininess. On the time scale T = hZ, the contours of
equal Hilger imaginary part correspond to frequency given by

wp(2) = Imyp(2) = Im(&n(2)) = M

This is the same quantity that represents frequency in Hilger’s definition of the time scale sinusoids

[B]. Moreover, the contours of equal Hilger real part all have the same exponential growth rate
corresponding to the Lyapunov exponent

() = PEEIROED _ g, (R, (2)) = Refen(z)) = IR, (15)

. (1.4)

Similarly, on the time scale T = R, £y(z) = z, and the contours of equal exponential growth
rate are vertical lines determined by the Lyapunov exponent o(z) := Re(z), while the contours
of equal frequency are horizontal lines given by wg(z) = Im(z).

We say that p: T — R is regressive if 1 + pu(t)p(t) # 0 for all t € T. For regressive p, the time
scale exponential function ey(t, s) is defined by

ep(t, s) = exp ( / t £t (p(T))AT).
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Im 2

Ry

Rez
Reﬂ(t) (Z)

0 = TImy,4)(2) At = p(t) Imy, 4 (2)

F1GURE 1. Hilger’s complex plane, Cy. The z inside the circle have negative
Hilger real part, the z on the circle have zero Hilger real part, and the z outside
the circle have positive Hilger real part. Points z on the Hilger real axis R, )
(the solid ray on the real axis) are such that e, (t,tg) > 0 for all ¢, while points on
the Hilger alternating axis A ;) (the dotted ray on the real axis) are such that
e.(t, tp) changes sign at each ¢t € T.

Following Karpuz [8], denote the set of all regressive points in the complex plane by
Cumy ={2€C|1+pu(t)z#0 forall t € T}.

The definitions related to Hilger’s complex plane are local and dynamic in nature; that is, they
depend on and change in ¢t. In 2003, Potzsche, Siegmund, and Wirth introduced the concept of a
global and static exponential growth rate for the time scale exponential function.

Theorem 1.4 (P&tzsche, Siegmund, and Wirth [9]). Let T be a time scale which is unbounded
above and let A € C. Then the scalar equation

z2(t) = Me(t),  x(to) = xo,
is exponentially stable if and only if one of the following conditions is satisfied for arbitrary to € T:
(C1) ~v(A) :=limsupp_, o T%to ftf limg () %At <0,
(C2) For every T € T, there exists a t € T witht > T such that 1 4+ p(t)A =0,
where we use the convention In0 = —oo in (C1).

Note that condition (C1) can be restated using (|1.5)) as

(C1*) limsupy_, o T%to ftf limg (1) Vs (M)A < 0.
This theorem naturally leads to the following definition.

Definition 1.5 ([9]). Given a time scale T which is unbounded above, for arbitrary ¢y € T, define
the sets

Sc(T) :={A € C: (C1) holds},
Sp(T) := {A € R: (C2) holds}.



4 J. M. DAVIS, B. J. JACKSON, D. POULSEN EJDE-2026/04

Then the set of exponential stability for T is given by
S(T) = Sc(T) @] SR(T)

The calculation of the set of exponential stability is simplified for periodic time scales [[9}
Lemma 3.4(b)], , which will be a focus of this paper.

Definition 1.6. A time scale T is periodic if there exists L > 0 such that ¢t € T impliest+ L € T
and pu(t + L) = p(t) for all t € T. We call L a period of the time scale.

Remark 1.7. Throughout this paper, we will illustrate various results on the following prototyp-
ical time scales.

(1) For pi,pi2,... pon > 0, set L = piq + pio + -+ + . Then Ty, 41, 4, is the time scale

n

starting at 0 whose graininesses form the periodic sequence {p1, fig, . .., fin }, i.€.,

TH17H27~~-7Hn :{Oaula,u“l +/~‘L27"'7/~‘L1+"'+,unaL+,ulaL+,u1 +/~‘L2772L7}
—_—
L

(2) P, is the periodic time scale starting at 0 with an interval of length a followed by a gap
of length b, i.e.,

Pyp =1[0,a]U[a+b,2a + b U [2a + 2b,3a + 2b] U - - -

A key insight for this paper is that since the cylinder transformation is linked to both growth
rate (via the Hilger real part) and frequency (via the Hilger imaginary part) on constant graininess
time scales, and since the average of the real part of the cylinder transformation is related to global
exponential growth rate, it seems reasonable that the average of the imaginary part of the cylinder
transformation is related to the global frequency.

2. ERGODIC GROWTH RATE AND FREQUENCY

To solidify the connection between the average of the cylinder transformation and the growth
rate and frequency of the time scale exponential, notice for A € C;, that the time scale exponential
function decomposes as

ex(tsto) =exp (| (VA7)
enp (IS0
exp (IR ONAT ) o (Fu G OAT
e N I S
exp (laT0 VA7 )
[om (B ) i (OB )

Therefore, over an interval [¢, %o, the growth rate and frequency of the time scale exponential
function are averages (in the integral sense) of v,,;y and w,(,), respectively.

Since we are averaging the cylinder transformation, which is a logarithm for p(t) > 0, we want
to be careful about the branch cut. We begin by defining a subset of the complex plane which
avoids the branch cuts of for all 7 € T. Assuming (P)), pimax := max{p(t) | t € T} exists, so
define

B :=(—00,—1/pmax], B°=C\ B.

Motivated by the form (2.1)), we now formalize the averaged quantities introduced above.
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Definition 2.1. Let T be a time scale and z,y € R such that  + iy € B°. The ergodic growth
rate of ex4iy(t,to) on [to,tlr off the branch cut is given by

ot .
(et t)i= [ (ot in)ar (22)
t—to Jy,
Similarly, the ergodic frequency of ezyiy(t,to) on [to,t]r off the branch cut is given by
t
e (@, st0,) = [ oo+ i) A (2.3)
t - tO tO

Remark 2.2. Several remarks are in order regarding yg-(x,y, to,t) and wpe(z,y, to,t).

(1) We use the term ergodic to describe the growth rate and frequency here because, if one
considers the space X = p*(T) of all extended graininesses of T [6] in the order that they appear
in T, then the global (spatial) averages of the growth rates and frequencies derived from X are
the pointwise limit of the local (time) averages of the local growth rates and frequencies derived
from X as defined above. We may treat the collection of asymptotic extended graininesses as an
irreducible Markov chain, which guarantees the ergodicity of the associated stochastic process.
See [10].

(2) By (L5), v (z+iy) has a few useful forms. The choice of form gives different interpretations
to the equation. Writing v, (z + iy) = &n(Ren(x + iy)) is useful when a characterization of
growth rates in terms of the Hilger real part of x + iy is advantageous. By contrast, writing
Yr(z +iy) = Re(&y(x + iy)) is in line with Potzsche, Siegmund, and Wirth’s condition.

(3) Using properties of the logarithm, we get

Yu(z + iy) = In(1 + h Rey (2 + iy)) /"

This implies vg(x, ¥y, to,t) is the natural log of the geometric mean (in the time scales sense) on
[to, t]T of
. 1/s _ 73 1/s

Sgﬁt)(l + Res(N)s)/° = s{f%) 1+ Xs|™%. (2.4)
Thus, can be interpreted as a type of local growth rate of ey (t,tp) at time ¢. Since
the geometric mean is the best measure of average local growth rates, expressing v, (z + iy) in
this way shows that is an effective measure of the average growth rate of the time scale
exponential function over [tg,t]r. This observation was made earlier in [4, 6] —albeit from the
geometric perspective— by geometrically averaging Hilger circles.

(4) The formulation in is similar to the one provided by Karpuz [§]:

t

ex(t,t0) = €Re, (=) (t: t0) [cos (/tt Imﬂ(n)(z)An) + isin (/t Imu(n)(z)An)]

To use the terminology of [7], Karpuz gave a type II (time scale) exponential representation
whereas is a type I (continuous) exponential representation.
(5) In this new notation, condition (C1*) becomes
lim sup yg-(z,y,t0,T) <0, (2.5)
T—o0
and thus (C1*) is indeed a requirement that the largest cluster point of the average exponential
growth rate over the tail of the time scale is negative. Therefore, is a condition on the global
exponential growth rate. Moreover, the formulation here ties yg<(z,y, to, t) to the local Lyapunov
exponent 7,), in the spirit of Potzsche, Siegmund, and Wirth’s (C1) condition.
(6) Note that the dynamic equation

22(t) = Az2(t),  z(to) = 2o, (2.6)

for A € B¢ has a growth rate of ype(z,y,to,00) rather than a growth rate of A\. Furthermore,
unlike on R where the terms growth rate and exponential order are often used synonymously, these
two quantities will be distinct in general. Indeed, if A in is real and positive, then X is best
described as the exponential order of the equation.
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We now see that we can understand the global growth rate and frequency of the time scale
exponential function by understanding the asymptotic behavior of the ergodic growth rate and
ergodic frequency as t — oo. Since this asymptotic behavior is complicated in general (indeed, the
limit as t — oo may not exist), we begin by studying the asymptotic behavior with the following
simplifying assumption:

T is a periodic time scale with a period of L > 0 and 0 € T. (P)
Under this assumption, we have
Am vpe(2,9,1,0) = ype(z,y, L, 0),
and similarly

lim wpe(z,y,t,0) = wpe(z,y, L,0).
t— o0

Therefore, we can simplify notation by rewriting (2.2)), (2.3)), for x + iy € B¢, as

1 L
e(z,y) = — lim ~4(z + 1y) AT, 2.7
vBe(2,Y) L/o S\H(T)v( Y) (2.7)
1 L
wge(x,y) (= — lim wg(x +iy) AT, 2.8
peles) =7 [ lim (o) (28)

Remark 2.3. While the assumption of periodicity may appear to be limiting, a larger class of
aperiodic time scales can be analyzed using periodic techniques. We will call a time scale simple
if there is a representative periodic time scale which has the same limiting functions yg. and wpe.

To illustrate this, consider the symmetric time scale Tpry = {0, 1, ¢9,...} with the graini-
ness function p(t,) equal to the n'® term of the celebrated Prouhet-Thue-Morse sequence on the
symbols one and two [I]. Since the Prouhet-Thue-Morse sequence is aperiodic, Tpry is also ape-
riodic. Additionally, since the symbols of the sequence appear with equal weight in the limit as
the sequence length increases,

limsup yge(x,y,to, T) = limsup
T—o0 Tooo 1 —to

T1nl|1 j
/ n | +(m+zy)SIAT

to S
1
= 2 1+ (4 ig)| + In 1+ 20+ )]

This last expression is equal to ype(z,y) on the periodic time scale Ty 2. Similar results hold for
calculating the limiting value of wge.

In this paper, any result which assumes can be extended to a simple time scale via its
representative (asymptotically equivalent) periodic time scale since our arguments rely only on
the limiting values of ygc and wpe rather than the precise nature of T itself.

In light of the definitions above, the level curves of ype(z,y) are the curves along which
eax+iy(t,to) has a constant global exponential growth rate. The level curves of wpe(z,y) are the
curves along which e, (¢, %) has a constant global (signal) frequency. As we will see, these two
families of level curves induce a natural coordinate system on C, ).

Using these definitions, we can reformulate Sc(T) as

Sc(T) ={z+iy € C|ype(z,y) < 0}. (2.9)

Equation is reminiscent of condition (C1) and Sc(T) has been thought of as an average of
Hilger circles [4].

Finally, since ype and wpe are the average value of Re(§,(;)) and Im(§,(,)), respectively, it
makes sense to study directly the complex function given by the average of (). In the next sec-
tion, we will define and study the properties of a map &, called the ergodic cylinder transformation,
from the zy plane to the yw plane, i.e., a mapping from the pair (x,y) to the pair (y(z,y),w(z,y))
for periodic time scales.
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3. THE ERGODIC CYLINDER TRANSFORMATION

We begin by defining the codomain of the ergodic cylinder transformation. We define

Q:= sup wpe(z,vy),
z+iye B¢

Q::{ZE(C|—Q<Im(z)§Q}.
If Q = oo, then C*? = C.

Definition 3.1. Agsume (]ED Suppose x+iy € B°. We define the ergodic cylinder transformation
off the branch cut, £z. : B¢ — C%, by

Epe(z +iy) / Sy (x +1y)A

It is straightforward to show from ([2.1] , for x + iy € B¢,

ZB“(J:_'—Zy) :’YBC(‘Thy) +inC(x7y)' (31)
Our goal is to extend gz. to a map & : Cur — C* that induces an orthogonal curvilinear
coordinate system on C,,(ry for which the contours are given by the level curves of v and w. We

will first show that this is the case for £ ., and then we will define the extension.

Analytic functions that are globally injective, or univalent, induce an orthogonal coordinate
system as the preimage of the rectangular coordinate system in the complex plane via the Cauchy-
Riemann equations. Therefore, we begin by showing & 5. : B¢ — C% is analytic and univalent. To
do so, we need the following result, in the form first presented in [2, Theorem 8.

Theorem 3.2 (Noshiro-Warschawski criterion). If f is analytic and nonconstant in a convex
domain D, and _
Re(e"f'(2)) >0

for all z € D and for a € R fixed, then f is univalent in D.
Theorem 3.3. Suppose (]ED holds. Then

(1) €pe - BE = C% is analytic, and

(2) €ge @ B¢ — C% is univalent.
Proof. Let z = x + iy € B°.

(1) Since the principal logarithm is analytic, e, is analytic for z € C,, (1) [§], and the nonregres-

sive points lie in B, it follows that & . is analytic.
(2) To show univalence, from [§], the function m. : C, 1) — C,

(5,1) /t AT

mz 87 = T I\
s 14 zp(7)

is analytic in z, so

—/ 1 L AT

1 / 1+xu AT i / yu(r) AT
T+ @+iuP L)y T+ +igu@P

If T = R, univalence follows immediately since £g.(2) = 2. If T # R, we consider three cases:
y<0,y=0,andy > 0. Iify >0,let U:={x+iy € C|y >0} Then, for z+iy € U,

. 1t yp(T)AT
Re(i&pe(z +)) = 7 /0 T+ (i "

since the integrand is nonnegative and not identically zero over [0, L]t due to the fact that u(t) # 0,
y > 0, and (crucially) that

(3.2)

1
inf
T€[0,L]r |1 + (I + zy),u(T)|2

>0,
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by [8, Lemma 2.1]. Since U is convex, by the Noshiro-Warschawski criterion (with o = 7/2), £ .
is univalent on U.

Similarly, if y < 0, € g. is univalent on the lower half-plane. Note that if 21, 2o € C with Im(z;) >
0 while Im(22) < 0, then €gc(21) # Ezc(22) since wpe(z,y) > 0 for y > 0 and wp-(z,y) < 0 for
y < 0.

Finally, if y = 0 and > —1/pmax, wpe(x,0) = 0 while gg(m) > 0, which implies £ 5. is one-
to-one for & > —1/pmax. Since wpe is positive in the upper half-plane, negative in the lower-half
plane, and zero on the ray (—1/pmax,00), and since €. is univalent on each of these spaces, it
follows that & . is globally univalent. O

We now show that £ g can be extended to a map € : C,ry — C which is globally univalent. We
will call € the ergodic cylinder transformation. To do so, we treat the behavior along the branch
cut B carefully. Since the branch cut consists of intervals between nonregressive points, and since
the properties of these intervals depend on properties of the time scale, we establish some notation
and technical lemmas to aid in the proof.

Let M = {u,} be the collection of distinct, positive graininesses of T # R, ordered as

HUmax = U1 > fg > - .

Let ps = inf,, u, so that

—— << =——<-—x<0
s M2 M1
Let
1 1
In:<_ 7_7)7’”“_1’2’ )
NnJrl Mn
I = (—OO, _1/M*)7 s > 07
0-—
0, e = 0.

Lemma 3.4. Assume (]E[) Then M is either finite or countably infinite. Moreover,

(1) If M is finite,
B\{—Min} —Iu (AUI”> .

n=1

(2) If M is countably infinite,
1 o0

Proof. An arbitrary time scale has at most countably many graininesses.

(1) If M is finite, then p. > 0 so Iy # 0 and the result follows.
(2) If M is countably infinite, then we still have L =, < oo, so it must be that y, = 0.
Hence, Iy = () and the result follows.

O

Theorem 3.5. £p. : B¢ — C can be extended to a globally univalent function & : Cur — ce.

Proof. We present the proof in two cases.

Case 1: M finite. Since M is finite, we can list the N distinct graininesses in order as

Mmax = f1 > M2 > p3 > -+ > UN,
so that the corresponding non-regressive points satisfy
1

1 1
—— <= < —— <0
UN H2 M1
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Then, by Lemma [3.4] we have

To extend g, we consider

Egc(m) = ylirng Epe(r+iy), forze B\{-1/u,}. (3.3)

Taking real and imaginary parts of E; (x) gives

/ In |1+ p(t)z|
{te€]0,L]:u(t)>0} pu(t)

E/ Lo<o1/mwy oy

L Jieeo,):u(t)>0} u(t)

™
I )
{te[0,L]:u(t)>0}

zﬂ{zﬁdwwwng rel,
L Z{t€[07L]:u(t)>0} 1,  xe€ly,

_ 1 1
vp(z) = Reégc(x) = —/ At + — At,
L Jieeio,):n(t)=0y L

wp(z) == ImEp.(z) =

where 14 denotes the characteristic function on the set A. Thus, wpg is constant on each I,,; write
wy = wp(x) for any x € I,,. Also, wp is constant on Iy as well, so we let wy := wp(x) for x € Ij.
Then
W <wg <+ <WwWn-1 < Wp.
For x € B\ {—1/uy}, differentiating under the integral yields

) 1 / 1 1
vp(x) = — LAt + — — = At
" L J{0,Lyuty=0} L Jgo,cpumy>op 1+ p(t)z

+1/ L A
=Po T+ P EE— »
L Jio,L):umy>01 1+ p(t)z

e =-1 | A <o
{

L Jo, 0001 (14 p(t)r)
where )

Ppo = z/ 1At

{[0,L]:pu(t)=0}
is a constant. Thus, v} is strictly decreasing on each I,,, n = 1,2,.... Moreover, on I,,, we have
the end behavior
lim () = +o0, lim ~%5(z) = —o0.
xl_l/ﬂnJrl 73( ) IT_l/Hn P)/B( )

Hence, there exists a unique «,, € I,, with vj3(a,,) = 0. Consequently,

an), vp(x) <0on (an, —7-).

/
vp(z) >0on (— m

1
Bnt1’
We can similarly analyze the behavior of yg on Iy. If pg = 0, then vz(z) < 0 for x € Iy. If
po > 0, then there exists a unique ag € (—00, —1/pn) such that v5(ap) = 0 and v (x) > 0 for
x € (—00, ap) while v (z) < 0 for z € (g, —1/un).

We define £ : B\ {—1/u,} — C by
’YB(@ + Z-(*207 Po > 07 S (—OO,(I()L
’YB(m) - Z-(*207 Po > 07 HAS (a0a _1//’[’N>7
Ep(x) = {vB(2) tiwy, po=0, x € (—o0,—1/un), (34)
Yo(z) —iw,, x€ (— el an], n=1...,N—1,

V() +iw,, € (an, _u%)’ n=1,...,N—1,
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Note that on each I,,, we use —EJE;C (z) for x € (=1/pnt1, an], but use E;c (x) for & € (aun, —1/pn)-

As a preference, on Iy, we use E;C (x) for x € (—o0, o], but use —E;c (z) for z € (g, —1/un).
Finally, define ¢ : C (1) — C9 by

= €pel2), =€ B,
5( )_ {fB(x)v Z:mGB\{—l/Hn}‘

We now show that £ is globally univalent. We consider three subcases.

Subcase 1: Two interior points. If 21,2, € B® and £(z;1) = £(22), then €. (21) = g (22). By
the univalence of £ 5. on B¢, we get 21 = z».

Subcase 2: One interior point, one branch cut point. Suppose z € B¢ and x € B\{—1/u,}.
The image £(B°) = {g.(B°) is open. The value £z (z) is a one-sided (non-tangential) limit of £ .
at x € 0B¢, hence {p(x) € 0&p.(B) and is not an interior point. Therefore £(z) # &(z).
Subcase 3: Two branch cut points. Let z; # 2o in B\ {—1/u,}. Since &(z) = &z(x) on

B\ {=1/u,}, it suffices to show & z(x1) # &g(2). B
Suppose 21, z2 lie in one of the same half-intervals in (3.4]). Then, Im & is constant while v} (z)
has a fixed nonzero sign; hence ¢ 5 is strictly monotone along a horizontal line and & g (1) # £ g(22).

On the other hand, if 1, x2 are in the two different halves of the same I, then Im€ 5 (z1) = —w,
and Im{p(22) = +wn, so p(z1) # {5(22). _

If 21,2 lie in distinct intervals I; # I,,, then Im{pz(zy) € {£wj, tw,} with w; # w, since
the sequence {w,} is strictly increasing in n. Again, the imaginary parts differ, so the values are
distinct.

Combining the three cases shows £ is injective on Cymy = C\ {1/} when M is finite.
Case 2: M countably infinite. If M is countably infinite, by Lemma

1 o0
B\ {—} =J I
Hn i
Since Iy = ), we can define this simpler version of {5 : B\ {~1/u,} — C by
_ x) —iwn, € (———, apl,
Eula) = {77 L i on)
ve(z) +iw,, x€ (an, *ﬁ)a
for all n for which p,, 41 exists. Then
- ch (Z), S .Bc7
-
§p(w), z=z€ B\{-1/p.}.
The argument that £ is injective in this situation is already contained in the previous argument. [

The construction of the ergodic cylinder transformation in Theorem [3.5|gives us a way to extend
the definition of ygc and wge to the branch cut via the functions v and wg. We can tie them
into global functions via

y(z,y) == Re(§(z +1iy), w(z,y):=Im({(x+iy)), forallz+iyecC,m.
Let x + 1y € C, (1) be fixed. By Theorem 271 : E((CM(T)) — C,(1) exists and is defined by

7_1 . .
¢ (y+iw) =z +iy.

where vy(z,y) = v and w(z,y) = w. The level curves of vy(z,y) and w(z,y) therefore form a
coordinate system on C,,(y which is an orthogonal curvilinear coordinate system on B¢ by Theorem

[3:3] See Figures 2] and [3]
Definition 3.6. Let T be a time scale. The regressive complex plane C,, (1) equipped with the

(7,w) coordinate system induced by E_l is called the ergodic complex plane for T.
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FI1GURE 2. The ergodic cylinder transformation on T = Z. Here, 571 maps lines of
constant average exponential growth rate (blue) and constant average exponential
frequency (red) in the y-w plane to the level curves of v(z,y) (blue) and w(x,y)
(red) in the z-y plane to form a new a curvilinear coordinate system on C. We
call this the ergodic complex plane for T. Note that 571 maps the imaginary axis
in y-w coordinates to dS(T) in the ergodic complex plane.

,"lml\‘\{‘
i

FIGURE 3. The ergodic cylinder transformation for Ti50.45. The solid black
curves are where vy(z,y) =0, i.e. 9S(T).

Theorem 3.7. Suppose (]E[) holds. Let T be a time scale which is unbounded above but with
bounded graininess. Let
FO :
I'_:
Ty:

(z,y) : y(w,y) = 0},
(z,y) : v(w,y) <0},
(z,y) : y(x,y) > 0}.

I
el e )
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Then:

(1) Lo = 0S(T), I'— is the interior of S(T), and I'y. is the exterior of S(T).

(2) £€T0) ={(0,w) : =@ <w <Q}, {I-) = {(v,w) : 7 <0}, and {(I'+) = {(v,w) : v > O}
(3) Let Te:={(z,y) : =1/pimax < x <0,y =0}. Then {(T'.) =R™.

Proof. (1) Assuming (P)), on Iy, (2.7) vanishes. The second claim is a restatement of [J, Lemma 3.4b].
The third follows from the fact that (C1) is necessary for exponential stability, and (C1) becomes

due to (]E)

(2) and (3) follow from the definitions of the sets involved and &. O

Just as Hilger’s pure imaginary number parameterizes the Hilger circle via

o
Ly = {10 | =n/u(t) <w < n/u®)},
the ergodic cylinder transformation allows us to parameterize 0S = I'g as the preimage of the

imaginary axis in C%.

Definition 3.8. Suppose —Q < w < 2 such that Eil(iw) exists. The ergodic pure imaginary

number Gw € 0S8 =T is defined as
10 ——1

w:=¢ " (iw).

o .. . . . ®© . o . . .
On R, 7w is iw on the imaginary axis, and on hZ, 1w is ¢ w, the Hilger pure imaginary number,
on ;. This characterization allows us to parameterize I'y as

Ty = {(i)w | -0 <w<Qand Tw exists}.
This parameterization allows us to prove properties of I'g, as the next two propositions show.
Proposition 3.9. Assume (P)). Let T =Ty, u,.....p.- Then Tg is bounded.

Proof. Fix w € (—Q, 0] such that € ' (iw) exists and consider the point z = 0 + iw € C2. Let
. =1 O]
fmin := min pg. Then & (2) = 1w € Ty, so

L ©
0:/ In|l+ zw,u(t)|At
0 p(t)
L © O 12
Z/ 2Re(zw)®+|zw| u(t)At
0 1+ Pup@)?

© ©
- L2Re(tw) 4 |7w]? timin

[l ot
0 L+ Swp(t)?

Since the denominator is positive, this implies 2Re((i)w) + |<7?w|2umin < 0, which means fwisin a
disk of radius 1/pmin centered at —1/pmin (which is a Hilger disk of curvature pmin)- O

Proposition 3.10. Ty is symmetric about the real axis. That is, for w € (—9Q,9Q] and Fw Z R,

Gw = Ci)(—w),

Proof. Write Gw =+ iy. Note &(x + iy) = y(z,y) + iw(r,y) = iw. Then, calculations for

=

w = x — iy yield

1 [t In|1 ‘
vwrw:f/ lim BLF @],
0

L s\ (t) s
L .
L Jo s\n) s

=(z,y) =0,
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and
1 [t Arg(1 '
w(z, —y) = */ lim ra(l+ (@ Zy)S)As
L Jo sN\p(t) s
1t Arg(1 '
L[y ARG
L 0 sN\wu(t) S
= _W(J?, y)
= —w
Therefore, ?(—w) =x—iy= Q. O

Finally, we now have a way of characterizing the time scale exponential function in terms of its
ergodic growth rate and ergodic frequency via the ergodic cylinder transformation and its inverse.

Remark 3.11. Assuming (]ED, an exponential function on T with ergodic growth rate vy and
ergodic frequency w and with constant subscript is given by

Bgfl(’y_‘riw) (t,to), (36)

——1
provided that ¢ (vy+iw) exists. In fact, among the family of functions of the form e, (t,ty) where
a € C is constant, the formulation in (3.6)) allows us to fully understand the qualitative behavior
of ey (t,tg) in terms of the real and imaginary parts of «.

Example 3.12.

(1) The ergodic complex plane for T = Ty 2, the discrete periodic time scale with graininesses
{1,2}, is shown in Figure {4} On this time scale, Q = 27/3.

(2) The ergodic complex plane for T = T4 4.4, the discrete periodic time scale with graininesses
{1,4,4}, is shown in Figure |4/ On this time scale, = 7/3. In particular, the boundary of the
region of exponential stability on Ty 4,4 contains a saddle point. The value of w at the saddle point

is 27 /9. Therefore, %327r/9 exists but Ci)(727r/9) does not exist.
(3) The ergodic complex plane for T = P /4 ; is shown in Figure |5l Note that the boundary of

the region of exponential stability on Py /4 ; is disconnected. On the real axis, %)47r/ 5 is the first

intersection of the boundary with R~, while %)(—477 /5) is the second intersection of the boundary
with R™, illustrating how we define w on R™. On this time scale, 2 = co.

(4) Consider T = /3, the time scale consisting of repeated middle-third Cantor sets. The
ergodic complex plane for T = /3 is shown in Figure |5} On this time scale, 2 = oo.

Example 3.13. The map & is in general not bijective. To see this, consider T = Ty . The
only saddle point of £ is given by a; = —3/4. Since we make the choice to map saddle points
of €5 to positive frequencies, we have £(a;) = —In(2) + iw/3. But, this means that the point
2z* = —In2 — ir/3 € C? has no preimage under £, that is, E_l(z*) does not exist, and hence £ is
not a bijection between C, () and Cc.

In general, there are as many points in C,ry that do not have an image under ¢ as there are
saddle points of &, so for the time scales considered in this paper, the number of such points is
finite, and each of these points is isolated.

We conclude this section by considering discrete time scales, which are prominent in time series
data. We show that our results must adhere to major results in sampling theory.

Proposition 3.14. Assume (P). Let T = Ty, yy,....un- Then L = 25:1 [in. Set a:=%. Then
forx+iy € Cuyy, —m/a <w(x,y) <7/a. That is, @ = 7/a.

Proof. Since T is discrete, for x + iy € B¢,

a

1t , 1 , Nr
wpe(x,y) = 7/, Im, ) (x + iy) At = I E Arg(1 4+ (x + iy)pr) < T =
k=1
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FIGURE 4. The ergodic complex plane for Ty 2 (left) and Ty 44 (right). The solid
black curve is where y(x,y) = 0, i.e. IS(T).

Moreover, on B, for x € I (that is, for = to the left of all nonregressive points), wg(z) = 7/a.
For x € I,k > 1, by construction wg(zx) < w/a. Thus w(z,y) < m/a. The proof to show
w(z,y) > —n/a is similar. O

Remark 3.15. If T =T}, ,,,....ux and ¢ € T is measured in seconds, then we have the following:

(1) The average sampling rate is 1/a samples per second.

(2) The Nyquist-Shannon Sampling Theorem [I1] says that we can perfectly reconstruct a
continuous time signal sampled on the time scale that contains no frequencies higher than i
hertz. That is, we can perfectly reconstruct a continuous time signal sampled on the time scale
that contains no frequencies higher than 7/a = €, so Q is the Nyquist frequency for sampling of
a real signal done on time scale points.

(3) Because of (2), the definition of the ergodic frequency captures a key feature of frequency
from the perspective of signal processing.

4. THE BOX PLUS OPERATION

In this section, we propose a generalization of the time scale circle plus binary operator for the
ergodic complex plane.

The cylinder strip C2(™ is a manifestation of C* when T = hZ, where h is constant, and
therefore its coordinates can be thought of as a local growth rate on the real axis and local
frequency on the imaginary axis. Therefore, by , one way to understand the action of & is
that it maps z,w € Cj, to C? for T = hZ, adds the local growth rate of z to the local growth rate
of w and adds the local frequency of z to the local frequency of w (mod 27i/h), and finally pulls
back to the unique point in Cj;, that would map to that new growth rate and frequency pair under
&n-

We can generalize @), by employing & rather than &, in . Since £ is not a bijection (see
Example , addition (mod 2i€?) in Cq is not a group since the sum of two points may not
correspond to the image of a point under £. Thus (C%,+ (mod 2iQ)) is a groupoid, and +
(mod 2if2) is a partial function.

Example 4.1. To demonstrate the lack of closure under addition (mod 2i€2) in C®, consider again
the time scale Ty » from Example @
Fixing z € C*, there is just one point v such that z 4+ v does not exist. This point v satisfies

v=—In2—ir/3 - z.
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FIGURE 5. The ergodic complex plane for T =Py ,4; (left) and T = C, /3 (right).

There are a few properties we want to point out in this example that are illustrative for later
proofs. Notice that 5_1(5(—3/4)) = E_l(— In2+ 7i/3) = —3/4. Conversely, E(E‘l(— In2—mi/3))

does not exist. Finally, £(¢ 1(E(—?)/ZJ:))) = &(—3/4) = —In2 + mi/3. This example gives us
intuition for which compositions of £ and € = exist in general.

Crucially, £~ (£(z)) always exists, but £(& 1(z)) may not exist. Moreover,
€€ ER) =8

Since £ is defined as an integral over the time scale, £ can act on functions as well so long as

the resulting integral converges. In what follows, for fixed z,w, we will evaluate £ at z SORLE
which is a function of ¢.

Proposition 4.2. Let z,w € B°. Then
Epe(2 By w) = Epe(2) + Epe(w)  (mod 2i9),
Epe(2Oum w) = Epe(2) — Epe(w)  (mod 2i€2).

Proof. Let z,w € C ). Then z,w are regressive for each ¢t € T, so z ®,,(;) w is defined for each
t € T. Hence,

Epe(z Dugny w) = 7 / €0 (2 @y w) At (mod 2i62)
0
1 L
L /0 Eu()(2) + Euepy(w) At (mod 2i€2)

1 [t 1 [E .
-7 /0 Eu(y () At + I /0 §uy(w) At (mod 2iQ)
=E&pe(2) + €ze(w)  (mod 2iQ).
The proof for &) follows similarly. 0

Although according to Proposition the function &z. appears to be operation preserving,
it is important to realize that z @) w is not a point in C,(T), but instead is a function of .

Nevertheless, if E_l(g(z) + &(w) (mod 2i€2)) exists, there is a unique point in C,, () that maps to
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£(2) + &(w) (mod 2iQ). This fact, along with Proposition motivates us to call this point the
box plus sum of z and w, denoted z Bt w. We can similarly define the box minus difference of z
and w, denoted z Bt w.

Definition 4.3. Let z,w € (CM(T and suppose Z_I(E(z) +&(w) (mod 2iQ)) exists. We define the
partial function By : C, ) x Cyry — Cy(1) by

(g(z) +&(w)  (mod 2i2)).

Similarly, if z,w € C,(r) and E‘l(E(z) — &(w) (mod 2iQ)) exists, then define the partial function
Br: Cury X Cuery = Cpury by

zBrw:= E_I(E(z) —&(w)  (mod 2iQ)).

Finally, if 2 € C, (1) and Eil(—g(w)) exists, define Hrz := 0 BHr z. Note the mod condition is not
necessary in the last definition since £(w) € C® implies —&(w) € C*.

zBﬂTw::E

Now, we have the following useful identities.

Proposition 4.4. Let z,w,u € C, (). Then

(1) 0Brz==2

(2) If zBrw, wBr u, (z By w)Br u, and z By (w By u) exist, then

(z Br w) Br u = z By (w By w).
If z B w exists, then z By w = w By 2.
If (Br2) exists, then z By z = z By (Brz) = 0.
If (Brz) exists, then Br(Brz) = 2.
Ifz Brw and wBr z exist, then Br(z Br w) = w Br 2.
f (Brz) and (Brw) exist, then Br(z Br w) = (Brz) Br (Brw).

8) If z € T'y/R, then Brz exists and Z = Brz. Thus, if z = Ci)w then 2( w) = El']r?w.

We will prove (1), (2), (5), and (8). The proofs of (3), (4), (6) and (7) are similar to the proof
of (2), in the sense the proof involves compositions and cancelations of £ and &
—1 — — i ——1 — —
Proof. (1) 08z 2 =& (£(0) +£(2) (mod 2i)) =& (0 + €2)=¢ €)=
(2) Since z By w exists, £(€  (£(z) + &(w) (mod 2iR))) = &(2) + £(w) (mod 21(2). A similar
expression holds for w By u. Then

(3)
(4)
(5)
(6)
(7) 1
(8)

(ZEETw)EE\TU—f EE @) +E(w)  (mod 2i2))) +E(u)  (mod 2i2))
THE() + Ew)  (mod 2iQ)) +E(u)  (mod 2iQ))
TH(E(2) + (E(w) + E(u)  (mod 2i2))  (mod 2i0))
T(E(2) +E(E ' E(w) +E(u) (mod 2i)))  (mod 2i02))
zzEEIT( Hr u).

(5) Consider
1 1 1, = -1

Br(Brz) =816 (=€(2)) =& (=€ (=€(2) =& (£(2) ==
(8) Since z € Ty /R, there is a unique w € (—€, Q] such that z = & ' (iw) = 7w. Then
Bre=Briw=8 (—€E () =& (—iw)=i(-w) =7
where we use Proposition for the last equality. O

Thus, Hr provides a global analogue of the local action of ©,;). The Hr operator maps
z,w € C, to Cgq, adds the ergodic growth rate of z to the ergodic growth rate of w and adds
the ergodic frequency of z to the ergodic frequency of w (mod 2if2), and finally pulls back to the
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unique point (if it exists) in C, ¢y that would map to that new growth rate and frequency pair

under €.
The operations By and ©,, also interact with time scale exponential functions in an interesting
way. To show that, we need the following result.

Proposition 4.5. Let T be a time scale and let —Q < w < Q such that ?w exists. When

(i)(—w) = EIT(?w) exists, we have

e?w (t, to) = eE?w (t, tO)
Proof. (1) This follows since e, (t,tg) = ez(t,to) for regressive z and since (i)(fw) = fw = Briw
by Propositions and O

We now can show the relationship between ©,,;) and Br in the time scale exponential. Since
Su(t) 18 a local operation while Hr is a global operation, the following proposition provides a bridge
between the local and the global behavior of the time scale exponential function.

Proposition 4.6. Let T be a time scale and let —Q < w < § such that Qw exists. When ElT(%)w)
exists,

ee!b(i)?w (t7 tO) - eE'ﬂ'Ci)w (t’ tO)Qw (tv t0)7

where Qu(t,to) = 1/|ec (t,to)|?.
Proof. By direct calculation,

() = — e = L) (tt0)Qu(t, o)
y0) = = =e » Lo » L)
eo (tto)  leo (tto)|?  Briw ¢

€ o]
Ou) tw
O

Notice in Proposition that Elqy(ijw is a number, while @M(t)%}w is a function of t. The effect

that the time variation in eﬂ(t)?w has on the time scale exponential is embedded in @, (¢, o).
As explained in Remark each point z € C,r) has an ergodic growth rate and ergodic
frequency. Using H, we can explicitly write z in an analogue of the rectangular form, much like
the Hilger decomposition.
Generalizing the Hilger real and imaginary parts in the spirit of Lemma [1.2] we have the
following definition.

Definition 4.7. Let z € C,(1). We define the ergodic real part of z, denoted Rer(z), by

Rer(z) ==& (Re(Z(2))),

and the ergodic imaginary part of z, denoted Imy(z), by

Imp(z) := Im(&(2)).

Note that Rer(z) is the right-most point on the real axis along the contour v = £(z) by virtue
of having zero ergodic imaginary part. In particular, this point is to the right of —1/pmax, which

means E_l(Re(E(z))) always exists. Also, the ergodic growth rate y(z,y) and ergodic real part
Rer(z + iy) are related by

§(Rer(z +iy)) = Re({(z + 1y)) = v(z,y).

We are now able to give a rectangular ergodic decomposition for z € C, (1) in terms of Hr. See
Figure [0}

Proposition 4.8. Let z € C(1). Then z = Rer(z) Br ?Imqp(z).
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»

z = Reqrz EE"]I‘ gLDIrn']I*Z

Nt an

?ImTz

Rerz

w = Rerw Bt C?Imqyw

\H

©
7 Impw

FIGURE 6. The ergodic decomposition z = Rer z By Imp 2. Rerz is found by
projecting along the appropriate level curve of v(z,y) until it reaches the z-axis
while Imr 2z is found by projecting along the appropriate level curve of w(x,y)
until it reaches I'g. If z € I'_| then Rer 2z < 0, while if z € '}, then Rer z > 0. If
Im z > 0, then Imt z > 0, while if Im z < 0, then Imt z < 0. Care must be taken
at self-crossings such as ¢, where our definition chooses Imp ¢ > 0.

Proof.

Rer(z) Br 7 Imp(z) =
)+ iImy(z) (mod 2iQY))

)+ iIm(&(z))  (mod 2iQ))

~—  ~—

O

Example 4.9. Again, consider T 5. The rectangular ergodic decomposition exists even for a; =
—3/4. Indeed, by the calculations in Example Rer, ,(2) = E_l(—an) ~ —0.396447 and

us

Imr, ,(2) = 5. Thus,

a1 =% (~In(2)) By, , (?g) ~ (—0.396447) By, , (—0.75 + 0.6614384).

Remark 4.10. We can recover a group structure for the box plus operator by extending & so
its codomain is all of C,) by changing the domain so that a point is also associated with its
frequency. Consider the set CZ(T) C Cp(ry x (=9, 9] with the condition that (z,w) € CZ(T) if and
only if Im(£(2)) = w when z is not a saddle point of £ and Im(£(z)) = +w when z is a saddle point
of €& Then define &7 : Ci(ﬂ‘) — C9 by
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Then, for a saddle point oy, of £ satisfying &p(ag) = v + iw,
(gg)il(,y - ’LLU) = (aka —LU),

and for all other points (Ey)*1 agrees with Eil.
With this, define B% : CY .. x CY,.. — C® by
T * ~u(T) wu(T)

(21,w1) B (22,w2) := (€%) 1€ (21, w1) + € (22, w2)),

where the addition is mod 2i§2 in the first argument of Eg and is mod 22 in the second argu-

ment of €. Then ((Ci(T),EEgT) is a group with identity (0,0) and with inverse of (z,w) being
Z9\_1, 79

((€)1(=€(2), ~w).

Remark 4.11. For an easier group structure involving box plus, we can generalize the observation

that the Hilger circle with the circle plus, (H,x), @), is a subgroup of (C, ), D)) and is

isomorphic to ((—m/u(t), 7/u(t)], + (mod 27/u(t))). Notice that as long as I'g does not have any

self-intersections, £ : g — £(I'g) is a bijection. In this case, (I'g,Br) is a group which is isomorphic
to ((—,9Q],+ (mod 29)).

Remark 4.12. We can extend the range of w from the Nyquist range (—£2, Q] to R. Fix the posi-

. .. =1 . . . . .
tive principal branch of £ ~ on the Nyquist segment i(—, Q] \ {iw_}, where iw_ is the parameter
corresponding to a self-intersection point of I'g. Analytic continuation along the imaginary axis
lifts this branch to the Riemann surface 7?,5_17 giving a single-valued map

G i(R\A) = C, A= {w_ +2kQ: k€ 7},

which satisfies E;fi (i(w+29Q)) = E;ft (iw) for every w € R\ A. Projecting to the plane extends 271

to the punctured imaginary axis while identifying all inputs that differ by 2Q. Let Z = imggfi.
Because the branch on i(—Q,Q] \ {iw_} is injective, every z € Z has a unique representative
w e (=9, 9\ {w_}. We define

z1 B2y = El_ifi(i(wl + wz)), whenever w; + ws ¢ A.

Hence E;& is an isomorphism onto (Z, H). On the punctured circle this provides a global operation;
on all of R\ 2QZ, it is only partial because inputs whose sum is in A are excluded. However, a
construction similar to that in Remark will create a global group isomorphism.

5. CONCLUSION

In this paper we introduced the ergodic complex plane as a global analogue of Hilger’s complex
plane on time scales. By averaging the cylinder transformation, we defined the ergodic growth rate
and ergodic frequency, and showed that together they generate the ergodic cylinder transformation,
an analytic, globally univalent map that yields an orthogonal curvilinear coordinate system on the
regressive complex plane. This framework provides an ergodic decomposition analogous to Hilger’s
as well as the global box plus operation as an extension of the local circle plus operation. These
results unify local and global perspectives on growth and frequency, and open the way for further
developments in harmonic and spectral analysis on general time scales.
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