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MULTIPLE SOLUTIONS FOR KIRCHHOFF TYPE SYSTEMS INVOLVING
SINGULAR AND CRITICAL NONLINEARITIES

MOHAMED LOUCHAICH

ABSTRACT. This article investigates the fractional singular Kirchhoff system

0
m(N (¢, 9)Lh(¢) = Aa(z)p™ " + 6" 719% in D

N,s

0
MmN (¢, ) LR () = Ab(a)p ™72 + =gy~ in D
N,s
¢>0, >0 inD
¢=1=0 inRN\D,
where
Now) = [ | 16l0) — o)K@y dody+ [ | 1(@) = b@)PK(w,9) do dy.
R2N R2N
Here, D is a bounded domain in RN with a Lipschitz boundary 9D. E% is a non-local operator
with a singular kernel K. p > 1, A > 0, and m is a continuous function. ~v1,v2 € (0,1). and a,b
are non-negative bounded functions. 61,602 > 1 and 01 + 02 = p}vs, where p?\,s is the fractional
Np

N—sp-®
fractional setting, allowing the Kirchhoff function m to take zero value at zero. We employ

critical Sobolev exponent pj\,s = Our findings encompass the degenerate case in the

Kajikiya’s version of the symmetric mountain pass lemma to prove the existence of a sequence
of infinitely many small solutions with negative energy that converge to zero.

1. INTRODUCTION AND MAIN RESULT

Recently, the study of non-local equations and systems has attracted a lot of attention. Various
studies have been considered on this topic, see [5l 6, @, 10, 12, 15 20, B2, B, B3, [35] 36, 37,
38]. Nonlocal equations have been widely used in many fields of sciences, including continuum
mechanics, phase transition phenomena, population dynamics, and game theory, especially those
involving fractional and nonlocal elliptic operators. As discussed in [I} [§], these operators naturally
appear as stochastic stabilizers of Lévy processes..

On the other hand, a great deal of attention has been focused on nonlocal fractional equations
with critical nonlinearities. This area of study has received significant attention in recent years
leading to several advancements and investigations. Among the references we like to mention
[2, B (5l T3] 16 22], 241, 28] B30, B7]. These papers provide valuable insights and analysis of nonlocal
fractional equations with critical nonlinearities, and they serve as important references for further
exploration in this area.
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In this work, we study the existence of solutions for a fractional Kirchhoff system that involve
singular and critical nonlinearities. The system studied is

m(N (¢, V) LY (¢) = Na(z)p™ " + pf—lqbgl_lw"? in D

N,s

0
m(N (¢, ) LR (%) = Ab(a)p™ 2 + ﬁwlw@z—l in D (1.1)
>0, >0 in D
p=1v=0 inRY\D,

where
N.w) = [ 100 = ol Kle ) dedy+ [ 0ta) = vl K. y) de d,

D is a smooth bounded domain in RY, X\ > 0 is a real parameter, p > 1, v1,7 € (0,1), and
01,02 > 1 satisfy 01 + 02 = pj ;. The fractional critical Sobolev exponent p}, . is defined as
p

PNs = N]isp. a,b e L>®(D),a > 0,b>0ae. inD. LY is a non-local operator defined for any
smooth functions ¢ : RN — R by
Lico(x) =2lim |6(x) = d(y)[P2(d(x) — $(y)K(z,y) dy, = €RY.

€0 JRN\B. ()

Here, K : R2V \ {0,0} — (0, 4+00) is a measurable function satisfying the following properties:
K(z,y) > Kolz —y|~ NP for all (z,y) e R*N, w #y
ok € L*(R*)  with o(z,y) = min{1, |z — y[}
K(z,y) = K(y,z) for all (z,y) € R*.

A commonly used model for the kernel function K is given by the singular kernel K(z,y) =
|x — y|_(SP+N). In this case, the operator £}- corresponds to the fractional p-Laplacian, which can
be defined (up to normalization factors) for any ¢ € C§°(RY) by:

(_Ap)sd)(w) — 2 lim |d)(£L') — ¢(y)|p72(¢(x) — ¢(y)) dy7 = RN.

e—0 RN\ B (z) |.13 - y|sP+N

The Kirchhoff function m is assumed to satisfies the following assumptions:
(A1) For each 6 > 0, there exists x5 > 0 such that m(z) > ks for all z > 4.
(A2) There exists o € [1, pZ’S) such that

oM (z) = J/OZ m(s)ds > zm(z), VEeR,.

(A3) There exists mg > 0 such that m(z) > mgz°~! for all £ € [0,1].
A prototype for m, proposed by Kirchhoff, is

m(z)=a+ 82"t a,>0, a+B>0, o>1. (1.2)

The Kirchhoff problem is classified as non-degenerate if m(z) > m > 0 for all z € R,.
A non-degenerate case can be achieved, for example, when « > 0 and 8 > 0 in the model case
. For recent results on non-degenerate Kirchhoff- type problems, we refer the reader to
[22, 25 26| 27, B0]. On the other hand, if m(0) = 0 but m(z) > 0 for all z > 0, the Kirchhoff
problem is considered degenerate. This degenerate scenario occurs in the model case when
a = 0 and S > 0. Relevant research papers on degenerate Kirchhoff-type problems include
|4, 0711 13, 123, 131].

Fiscella and Valdinoci [I8] presented a detailed examination of the physical understanding
of fractional Kirchhoff problems and their applications. They considered a stationary Kirchhoff
problem that capture the non-local component of tension caused by nonlocal measurements of a
string’s fractional length. In this case, the function m measures the change in tension on the string
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produced by differences in its length during vibration. The fact that m(0) = 0 implies that the
string’s base tension is zero, indicating a realistic model.

The aim of this article is to investigate the existence of solutions for system by using
variational methods and critical point theory. Before presenting our main result, we introduce the
following notation and functional setting. Let us define the space

E={sc @) and [ [6(0) - o)PKla.y) dudy < o0},

R2N

equipped with the norm

1/
Jolle = (10l e, + | 1660) = oK (o 9) dody) .
We also introduce the space
Eo(D) = {¢ €E:¢p=0ac. RN\D},

where D is a given domain. According to [I7, Lemma 4], Ey(D) is a separable and reflexive Banach
space, which can be equipped with the norm

lulle, = ([ 166@) = o)) o) ", v € Eo().

Given that D is a smooth bounded domain, it is well-known that the embedding Fo(D) —
L*(D) holds continuously for p € [1,py | (refer to [14], Lemma 2.3) and compactly for p €
[1,pN ), where py, = N]\i L > Additionally, there exists a positive constant C), such that for any

¢ € Eg(D), the following inequality holds:
18]l e(0) < Culldlle,- (1.3)

In what follows, S, stands for the optimal constant for the Sobolev embedding Eo(D) < LP¥.s (D),
which is given by

S, = inf (f]RQN |p(x) — o(y)[PK(, y)*dx dy)l/p. 14
SEBADNOY ([ l(a)|Pive da) /R

Let X = Ey(D) x Ey(D), equipped with the usual norm

@)l = (ol + i) " for (6,4) € X.
Definition 1.1. We say that (¢,%) € X is a weak solution of system if
MmN, 0) [ 16(0) = 0P (0() — 6)er(2) — o1 (1)Ko, d dy
mN @) [ 1902) 6P (0() ~ 6(0))(e2(o) — o))l p) dady
.\ / a(e)d™ o1 da + / b(@) o do o

V2 Yoo dr, (e, 2) € X.

To obtain the existence of weak solutions for system (1.1]), we seek critical points of the asso-
ciated energy functional Jy : X — R glven by

where
1

I—m

#(0,0) = 1= [ o)) do+ =

-2

/ b(a) () de,
D
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and
1

U(p,1) = : D(W)“W)@? da.

Our main result can be summarized as follows.

Theorem 1.2. Under assumptions (A1)—(A3) there is a positive constant Ag > 0 such that for
any A € (0, ), system (L.1) possesses a sequence of weak solutions (Pi,Vr)ken C X such that
jA(fbkawk) <0 and ||(¢k7¢k)|| —0as k — ~+00.

The remainder of this paper is organized as follows: In section 2, we present some preliminary
results. In section 3, we show the existence of infinitely many small weak solutions for an associated
approximating problem. In section 4, we prove our main result.

2. PRELIMINARIES

In this section, we give some important results that will be useful in the proof of our main
result.

Lemma 2.1. For each (¢,v) € X, there exists S > 0 such that

(@, )]l = S/D |6 ()| [ ()| da. (2.1)

Proof. Let (¢,v) € X. By using Holder’s inequality, one has

[ @ de < ([ o )5 ([ papsa)
01 92
<s<*nw|w

< = PN,s
< L@,
where § = §01102, O

In the following Lemma, we establishes a key result related to the convergence of a sequence in
Ey(D) to a limit within the same space.

Lemma 2.2. Let (¢n)nen C Eo(D) be such ¢, — ¢ weakly in Eq(D) for some ¢ € Eo(D). Then,
we have

16n — Dl + 161, = ¢l +on(1).

Proof. We use a result of Brézis-Lieb’s lemma [7]. It states that if we have a bounded sequence
(®,,)nen in the space LP(RY), where p > 1, and ®,, converges to ® almost everywhere in R?, then
we have

@, — (I)ﬁp(md) + |‘I)|Lp(Rd) |Pr |Lp(Rd) +0n(1).
We define the function

D, = (dn(x) — dn(y))/K(z,y), whered=2N.

Using this definition, we can write

[ 100 =0)@) = (60 = 0P g) dody + [ | 16(2) - o) Klzy) de dy
= R2N
- /R?N |n () — On(y)|PK (2, y) dz dy + on(1).

This completes the proof. O

Lemma 2.3. Let a, 5 € (1,400). Given e > 0, there exists C > 0 such that for each ¢1, pa,v1, Ve,
we have

‘\¢1 + 1| da + 2l — |¢1]¥[6217| < €ldn|*| 2l + C(1d1|“ 2] + 1] *[d2]” + |1h1]*[12]?).
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Proof. Fix 0 <n <min{l, 55+ }. Then there exists C > 0 such that
|61+ 01| d2 + | — |¢1|a\¢2|6‘

< 16n + 112162 + Vol — 1921°] + [l61 + v — |1 |* |62l
< 2%(|61|* + [¥1|*) (1]62]” + Clepal?) + (nla|* + Clen|*) 2/,
< €l6n]*[a]” +27Clon | ol + (2% + C)u[*|62]” + 29T |* |,
as claimed. 0

The following lemma presents a key result regarding the convergence properties of a sequence
(¢, ) in the space X, under weak convergence and almost everywhere convergence in R,

Lemma 2.4. Let (¢n,v,) — (¢,v) weakly in X and (¢n,v,) — (¢,v) a.e. in RN. Then, for each
a,B>1 with a+ B < py, up to a subsequence, we have

[ 1ont@) = 6@ () — v da+ [ (@) () ds
RN RN
= [ 10n@) (o) da + 0, ).

Proof. Passing to a subsequence, we have that

Gn — O, Yy — P, a.e. in §,
¢n — ¢ inLe (RY), and ¢, =1 in LY (RY).

loc

Let € > 0, and let C' > 0 be a fixed real number as in Lemma [2.3] We define
Wo = |[6nl 1 l? = 6n = 81760 — 617 = |8I[01%] — elm — 6| I — v)”
= C(I1* [ = 17 + én — 01°[¥]7).
It is easy to see that, w, — 0 a.e. in RY and w, € L'(RY). Furthermore, utilizing Lemma
with ¢1 = ¢, — ¢, ¢2 = ¥, — ¥, Y1 = ¢, and Yy = 1, we obtain
Wa < (C+ D)ol [wI”.

Then, we apply the dominated convergence theorem to get

(2.2)

lim WHdr =0, (2.3)

n—-4oo RN

where W, = max{W,,,0}. Fix T > 0 large enough so that

C/ b, — [Pda < Clipy — 01, / PP )" <, 2.4
017 =l = 150y ( f, 1617) (2.4)
and
C [ Jon ol ludn < Clow — ol ([ 10P7)7 < (25)
|z|>T |z|>T
Then, for n large enough, we have
C [ o - oo < Cmax o)l [ o - o< (2.6
|lz[<T |z|<T |lz|<T
and
¢ 16n - o°|Pdz < C max |v(m)|B/ b — |%dar < €. 2.7)
|z|<T |z|<T |z|<T

Now, combining equations —, we obtain
[ 10nloloal® = fon = it = o = 1011l do
R

ge/ |¢>n—¢\a|vn—v|ﬂdm+0/ \¢|a|vn—v\5+|¢n—<z>\a|v|ﬁdx+/ Wit de,
RN RN RN
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< Ce,
for n large enough, as claimed. O

Now, we recall some of topological techniques introduced by Krasnoselskii in [34]. These meth-
ods have been widely recognized as powerful tools to obtain solutions to a variety of mathematical
problems. Specifically, in our case, we aim to prove the existence of a sequence of small solutions.
Let (X,] - |x) be a real Banach space. We introduce the class ¥, which consists of all closed
subsets A C X \ 0 that exhibit symmetry with respect to the origin. In other words, if u € A,
then —u € A. This symmetry property is a key characteristic of the sets in X.

Now, to characterize the properties and complexity of sets in X, we introduce the notion of
Krasnoselskii’s genus.

Definition 2.5. Let A € 3. The Krasnoselskii’s genus v(A) of A is defined as the smallest positive
integer n such that there exists an odd mapping h € C(A,R") satisfying h(xz) # 0 for all z € A.
If such an integer n does not exist, we set v(A) = +o0o0. Furthermore, we define v((}) = 0.

Next, we will outline the essential properties of the genus that will be employed throughout
this work. For more comprehensive information on this topic, readers are encouraged to consult
the reference [34].

Proposition 2.6. Let A and B be symmetric closed subsets of E that do not include the origin.
The following properties hold
(1) If there exists an odd continuous mapping from A to B, then v(A) < v(B).
(2) If there is an odd homeomorphism from A onto B, then v(A) = v(B).
(3) If ¥(A) < oo, then y(A\ B) = (4) — (B).
(4) The n-dimensional sphere S™ has a genus of (n+1) as a consequence of the Borsuk-Ulam
Theorem.

Now we present a variant of the symmetric mountain pass lemma, originally formulated by
Kajikiya [21]. This lemma offers a powerful tool for analysing critical points of functionals with
symmetric features.

Lemma 2.7 (Kajikiya’s Variant of the Symmetric Mountain Pass Lemma). Let X be an infinite-
dimensional Banach space, and let 7 € C*(X,R) be a functional satisfying the following conditions

(1) J is even, bounded from below, and J(0) = 0.

(2) J satisfies the local Palais-Smale condition, which means that for some ¢ € R, any se-
quence (¢n) C X satisfying J(¢n) — ¢ < € and J'(¢pn) — 0 in X' has a convergent
subsequence.

(3) For each n € N, there exists a set A,, C T, such that supye 4, J(¢) < 0.

Then, there exists a sequence (¢py,) such that J'(¢n) =0, T(pn) <0, and ¢, — 0 in X.

3. AUXILIARY PROBLEM

The classic variational theory cannot be used to the energy functional [ since it is not Fréchet
differentiable due to the singular term. So, to prove our main result, we introduce the perturbed
problem

m(N(6,¥)) Lk (¢) = Aa(z)(¢F +e)™™ + f—1(¢+)91*1(w+)92 in D

N,s

m(N((ﬁaw))ﬁ%(w) — )\b(iﬂ)(’t[)+ + 5—:)_72 + ?(qﬁ)& (,(/j'i')@z—l in D (3.1)

N,s
p=1=0 inRV\D,
where ¢ € (0,1) is a real number. The energy functional associated with problem (3.1]) is

Tne(d) = }//W@x ) = ABL(6,1) — W(6,0),
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where

(bE((b’ w) =

— [ a@[et ot - dek

+ 1—y2 _ 1-72
T 772/Db(ﬂc)[(1/) +e) 5 dx,

It is easy to see that the functional J. ) is of C' in X, and for any (¢,v) € X and (p1,¢2) € X,
we have

j)i,e((ba w) : (@1, 902)
= (6.0 [ 16) = 6P 2(6(0) = 6 1(0) — 01(6))KC ) dy

FmW @0 [ 106 ~ o)l 0) ~ o) o) — K dody

- /D a(z)(¢t +e) o1 dr — A /D b(z)(pF 4 &) 2y da

O /D (1) () ey do — 22 /D (60 (1) gy de

*
pN,s N,s

Now, we present the following lemma concerning the Palais Smale condition, which will play a
crucial role in the proof of our main result.

Definition 3.1. A functional 7 is said to be satisfying the Palais-Smale condition at level L) € R
if any sequence (¢, ¥ )nen in X with

T (bnyvn) = Ly and T (¢n,¥n) =0 in X' asn — +oo,
possesses a convergent subsequence in X.

Lemma 3.2. Under assumptions (A1)—(A3), there exists Ao > 0 such that for any X € (0, Ag),
the functional J x satisfies the Palais-Smale condition at any level Ly < 0.

Proof. Let (én, 1) be a sequence of X such that
Ine(@n,¥n) = Ly and Ty (fn,n) =0 in X' asn — +oo, (3.3)
Due to the degenerate type of system (3.1]), two situations have to be considered: either

Tllrelgj\/'(gﬁna wn) =4> 0, and Tngfl\}N((bnvwn) =0.

For this, we divide the proof into two cases.

Case 1: inf,en N (¢n,¥,) = 6 > 0. At the beginning, we show that (¢,,,) is bounded in X.
By assumption (A1), there exists k5 > 0 such that

MmN (dn, ¥n)) > ks forall n € N. (3.4)
By Equation (3.3)), and (3.4) with (A2), and the elementary inequality

(a+B)' =B <o, a,8>0, y€(0,1), (3.5)
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we have

Lx+on(1) = I 8(¢na¢n) - P j/\ (s ¥n) - (Dn, ¥n)

( (Cbnﬂ/)n - 7/ ¢+ _|_€ 1 Y1 o_ 1 'yl:| dx
— A + 1—vy2 _ 1 o NGyt 92
1772/1)b(x)[(¢n+5) g 'y} o (¢ 1 ()
: MN (Pns ) )N (n, Pn) + a(x)(q&j{ +e) ¢, du (3.6)
PN, N,s /D
F e Lt o (6)7 ()" do
Pns JD N D
= ! +y1-m
> (" pNg>||¢n,wnH N+ lﬂ)/ o@) (6~ da
- 1 ! 11—y
Mo ) ) e

On the other hand, by using Hélder’s inequality, and (| we obtain

_ p+’v1 1
[ el e < el D 0505
Pty 3.7
< Ja] o (o [P L | (3.7)
< Cylldn, Ynl 7,
and
P+’YQ
J R e e P
Pt _ _ 38
< (bl oy D ZE O g [ (3:8)
SCbHanawn”l 723
where

71+71 p+72

C = |a‘Loo D)|D| C;_'h and Cb |b|L°°('D |D| C;—’YZ.
Now, combining equations (3.7) and (3.8) with (3.6)), we obtain the boundedness of (¢, 1, ). Now,
since X is a reflexive space, there exist (ng, 1) € X such that, up to a subsequence (still denoted by

(bns¥n))s (s thn) = (6,4) weakly in X, strongly in L*(D) x L (D), for any (a, 8) € [1, pi.,)?,
almost every where in D x D as n — +o0o. Furthermore, there exist two positive real numbers 7
and g such that

N(nsthn) = 1y and /D 65 — ¢ P |yt — gt de s, (3.9)

as n — +oo. Clearly, 1 > 0 since we are in the case where § > 0. Therefore, the weak convergence
of (¢n, 1)) give that the sequence (®,,, ¥,,) defined in R*V \ diag{R?"} by

An(@,) = |60 (2) = Sa®)IP2(6n(x) — du())K(z, )7,
Bu(@,y) = (@) = bu(y)[P~2($n(@) — bu(y)K(z,9)7 |
is bounded in L? (R2N), as well as
An(a,y) — [6(x) — sW)IP2((x) — $())K(z, ) ae. in RV,
By () — [(x) — () P2($(x) — ()K(z,y)¥ ae. in RV

Here p’ = 5 which is defined the conjugate of p. Then, going if necessary to a further subse-

quence, we have
1
7/

An(@,y) — |o(z) = o))" ((2) — 6(y))K (2, y)7
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and

‘G‘H

Bn(z,y) — [(x) — ()P (@(z) — ¢(y))K(z,y) 7"

in L” (R2V). Consequently, as n — 400, we obtain

/ 6n(2) = Gn ()P (D (@) = In(y))(d1(2) — G(y))K(2,y) d dy
R (3.10)

= [ 19(0) = o) (6(0) = ) (6(e) = )KLz ) ddy +04(1)

and

/ () = Yn ()P (Pn (@) = ¥n () (Y(2) = Y (y))K(z,y) d dy
2y (3.11)

- / @) — PP (@) — () (6(@) — $()K (e, ) ddy + on(1).
On the other hand, by Hélder’s inequality and Equation (2 , we have

(91
/ ‘ ¢+ 01— w+)92 pN dl‘ < / |¢n|pN d.T PN,s / |wn|pN d.l?
_ (011 (01— 92PN 92PN

< (8 onllg, )( il ) <C.

for some C > 0. Similarly, one has

[ Jenm i

Therefore, as n — +00, we have

L@t wnmote) e = [ @090 ot o,(0), (3.12)

D

PN
1| PA =
Nes D de < C.

[ @byt de = [ (@ )" do + o (1), (3.13)
D D
In addition, we have
‘/ Y@ + &) (b — @) dm‘ <lalpee(pye™ ™ /D |, — ¢| dx = 0, (1), (3.14)
‘/ @) (W + )7 (o — ) d| < |b|Loc(D)g—w/ o — 0| dz = on(1),  (3.15)
D D

as n — +o0o. Combining equations with —, we obtain
On(l) - j;\,g(ﬁbmiﬁn) . ((bn - (ba ’(/Jn - 1/})
= MmN (G, ) (N (@, ) = N(6,0))

- /D a(2)(6F +2) " (fn — §) da
- /D b() (0 + €)™ (b — ) da
- / (61)" ()" d + / (%) () da + 0, (1)
D D
— ()| — b, b — B — /Q 6 (@) — 6 (@) [ (2) — 0+ (@)% di + 0n (1),

thanks to Lemmas and Consequently,

m(p)|én — ¢, 10 — Y|P = /Q l6f () — & ()| [0} () — o (2)|% da + 0 (1). (3.16)
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When 7 = 0, since m possesses a unique zero at 0 and p > 0, Equation (3.16]) gives

||¢n e d)”p = On(l)a

concluding the proof. Assuming, by contradiction that 1 > 0. From equation (3.16)), it follows
that

n=m(u) (n— 1o ¢[") . (3.17)

In addition, by equation (2.1)) and Equation (3.16|), we have:

n PN > m(p)SPNs . (3.18)

Now, utilizing (3.17) and (3.18)), we have

PN,s—P

m()S™e < 7 = [m(p) (g [lu,0)] e (3.19)
The latter gives
(b= llo,el”) ™ > m(u)S. (3.20)

Since the exact behavior of m is unknown, we need to consider two additional cases, either p € (0,1)
or u > 1. To proceed, we divide the proof of the first case into two subcases.

Subcase p € (0,1): By condition (A3) and inequality (3.20]), we have

PR,s P PN
W ()T 2 m)S = mou” 'S,
Since fo < py , it follows that:

P

1> (mS) "N, (3.21)

By utilizing condition (A3), inequalities (3.18]), and (3.21]), one has
_p *p; _p f;\’*s
n> (m(u)sp?v,s ) PN,s TP > (mouaflsm*v,s ) T’N,S*P7

(o-Lp  _p pf?\"jp 3.22
(o) 525 5], @22

v

. 1
— (mgs Sop) PN,s P .
By considering assumptions (A1) and (A3), we obtain the inequality

1 1
M (1) = ;m(u)u > ;moua- (3.23)
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Let 09 > o be such that pog < pj, ,. From equations (3.3), (3.5), (3.7), (3.8), (3.23)), we deduce
that

L+ On(l) = j/\,E((bnv'(/Jn) - ij/{,s((bnvwn) . ((bn)wn)

— AW Gnin)) ~ 2 [ a@)[(@f +e) - o
- @[t e e -W}d g L0 Wi e
= N (G, U N (B )
+ 2 [ a@of + oo+ 2 [ oot 4o ds
p(lfo (&) ()% da (3.24)
2 ) s+ (o= ) [ @) e

—9MalL~ (o) /D (61)1°7 d — 2A[b] o ) /D (W) di + o (1),

> ) = e+ (== =) [ @D @ da

P poo pPoo P
= 2X\Callbn, Yull' 7T = 20Ch | pns Pn [T 72 + 00 (1)
1 1y\m 1 1 ln 1
> (fff)fou‘u( p )n*)\CmaX{uleu (1).
o o9/ p Poo  Pns

Here C = 2(C, + Cy). Without loos of generality, we assume may that v; < ~9. Thus, since
u € (0,1), one has

1 1
Ly> (f — f)@u" (7 )77 e/
o oo/ P poo pN s
By employing the Young inequality, we obtain
1 1 1 -
sz(f—f)@u"ﬂL( " )n—ACulpw,
0 oo/ p Poo Py

1 1 mo 4 1 1 1 1 mo 4
L e IR
o 09/ p Poo PN o 0o/ P

1—7o
1 mo ) 0p—(2—~v1—72)

~ Qo (2 - )™

o o9 p
2-71-72
> (i _ 1 ) ()\O) op—(1—73) ((7 — i @) 0:07(1772)’
POo PN o o9’ p
Let ) .
1L/ 1 1 mo\ =2p, 1 1 el I
N = 7( - 7) [ — - DL GPN.T) PR ] . 3.25
s(o-" o ) sTe) (3.25)
Then, we deduce that for any A < X,
1 1 __o» 1 1 -
0> a2 (o5 - =)= )T (- )0y o
0P P o 00 p

Thanks to equation ([3.22)), we obtain our contradiction concluding the proof of the first sub-case.

Subcase p > 1: From condition (A1) for § = 1, there exists x5 > 0 such that
m(u) > ks for all u > 4. (3.26)
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Combining equation (3.26)) with equation (3.18)), we obtain

*

p PN o *p{
0= () s )R > (1570 ) R (3.27)
Proceeding as earlier, with equations ([3.26| - and - we obtain
1 1 1 1 1—y 1 1 AC ==y
b (- 2)%0 (o 50 2 (- [ 2] ™
o o9/ p poo P boo  DPns (; - 70)?6
Let «
11 1 1 et b
e L e [ L
o 09/ pCli\pog Py

It follows from equation (3.27) that for any A < \”, one has

PN,
1 1 e W st AC FETCer
0>L)\Z ( — )(H(SSPN“S)FN'S L [ﬁ]p (T—7y > 0.
oo P (5%
Hence, we still have a contradiction, which concludes the proof of the first case.

Case 2: inf,enN(¢n,v¥,) = 0. In this case, we have two possibilities. Either (0,0) is an
accumulation point for the sequence (¢, 1, ), and so that, there exists a subsequence of (¢y,, ¥y, )
(still denoted by (dn,1n)), that strongly converges to (¢,%) = (0,0), or (0,0) is an isolated point
of ().

The first case cannot occur because it would give that the trivial solution (0,0) is a critical
point at the level Ly. However, this is impossible since we have Jy -(0,0) = Ly < 0. Thus, only
the latter case can occur, which means that there exists a subsequence, (still denoted by (¢, ¥n)),
such that inf,eny N (dn,¥n) = d > 0. We can proceed as before by considering this subsequence.

This completes the proof of the second case. Hence, J) . satisfies the Palais-Smale condition
at any level Ly < 0 for any A € (0, \g), where A\g = min{\, \"'}. O

4. INFINITELY MANY SMALL SOLUTIONS WITH NEGATIVE ENERGY

Let us note that the functional 7, . is not bounded from below in X. Indeed, let (¢,9) € X
with ||(¢,7¢)|| < 1. From (Al), we have m(t) > 0 for any ¢ > 0. On the other hand, condition
(A2) gives that 220 < ¢ Integrating over [1,¢] with ¢ > 1, we obtain

VA
A7 > A (t), forallt>1.

The latter gives

T lté, ) = %xfzwm 1)) -

/Da(ac) [(t<b+ +e)t™m — g™ "’1} dx

-Nn
o [t ot s e S [ et et o
1= Jp pNs D
1-m 1—v2
SAOPS /a(x) do + 25 /b(x)dx
p =7 Jp 11— Jp
PN.s D

so that Jy (¢, t1)) — —oo as t — 400, thanks to the fact that po < 61 + 62. Hence, to obtain the
existence of weak solutions to problem (3.1)), we introduce a suitable truncated functional related
to J,. that satisfies the conditions of Lemma,

By using equations . and (| . for any (¢, 1) € X, we have
Tne(6,0) = — M (N(9,4)) 7/ |6 + e -] de

| @[ +e —slﬂz} s

1—72
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- [ a
PNs JD
1 - _ 1 x
> M (6, 017) = Acalld, VI = Aeu |6, 011777 =l o[
p PN,s
On the other hand, by (A1) and (A2), we have:
If [|¢, 9] <1, then
A (1 - _ _ St x
Ine(0,9) = p()¢,¢|| P = eallgy Yl = Aewllg w2 - [, [[Fe.
N,s

It 6,3 > 1, then

]. S71 *
Ine(d,9) = Eﬁllqﬁ,ﬂillp = Acallg, BII' T = Acplg, T2 — FI\¢,¢IIPN’S~

)

We define

/ﬂp(l)é-pe — A€ — )\Cbglfw _ %gﬂv,s ife<i
EEP _ \eg€l™M — Aep&l=2 — S ¢phvs if &€ > 1.
p Pn,s

H(E) =

It is easy to see that for any A > 0 sufficiently small enough, there exist £;,& € (0,1) with & < &
such that H(&) = H(&) =0 and

H ) <0 if0o<é<G
>0 if& <€<&.

Now, following the same approach as in [37], we introduce the following truncated functional
Tx : X — R defined as

Ta(6,0) = LA N(6,0) - 5 _A% /D (e P
A Xl 1) e
11— Y2 /D b(@) [(¢+ Jre)l ¢ ] dz — W /D(¢+)0 (1/’+)0 dx

Here, x : R+ — [0,1] is a non-increasing smooth function such that x(§) = 0 if £ > & and
x(§) =1if £ <&

By the construction of 7, with Lemma [3.3] it can be easily verified that 7, possesses the
following properties:

Lemma 4.1. (1) The functional Ty is of C, even, and bounded from below on X .

(2) If Ta($,9) <0, then [|¢,¢]| < &, and Tx(¢,¥) = Tn(,¢).
(3) For any X € (0, \o), T satisfies a local Palais-Smale condition for Ly < 0.

Let us define the set
Yr={Ae X\ {0}:Aisclosed, A = —A,v(A4) > k},
where 7(A) denotes the genus of A, (see Definition 2.5)). For k € N, we define the number

Cp= inf sup Ty(¢,¥).
T aex, (p.0)€A 259)

The significance of the real number Cy is that it provides a lower bound for the critical values of
Ty restricted to certain subsets of X with higher Lusternik-Schnirelmann category.

Lemma 4.2. Assuming that (A1)—(A3) hold. Then for each A > 0 sufficiently small enough and
k€N, Cr <0, each Cy, is a critical value of Ty.

Proof. Let £ € (0,&1) and (¢,v) € X with ||¢,v| = 1, we have x(||£®,&]|) = 1. Now, let’s fix
k € N and define X(*) as a k-dimensional subspace of C§°(D) x C§°(D). Since all the norms in
X () are equivalent, there exists 4, € (0,1) such that for any (¢,v) € X*) we have

||¢711[}|| <ry — |¢7¢|L°°(D><'D) < 1.
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Let us consider the set
S ={(0.4) € XB :||g, ¢l = ri}.
We choose (¢(F), (F)) € Yr(,f) such that ¢® >0, 9*) >0, and ¢ € (0,&;). Then,

Ta(Eo™), ep®))

= S AW ) - 2 [ alw)[ieo) 4oy - o
-2 [ e[ ey et d—iN PR
< & _max m(a)) 6", v
2 awfies o]
— lj% /Db(x) [(fz/}(khre)l—’m —51—12} dx

& k) (k)
<> max m(z , p
fp(zem,zi) (2)) 6, )

e e / a(@)(6®) T de — €T / b(a) (6 ®) 7 dr,
D D

thanks to the elementary inequality

1—y (A=) (p—1)

(z+O)"T =tV > (1 —y)z 7t 2, p>1,1t>0, 2> 0 large enough.

Since p > 1;’“ and p > %, then we can find & € (0,¢1) and 73 such that

Ta(&o®, &™) <~ <0, V(P ,p®) e 75,

which gives
T@W, ) < - <0, (oW, M) e 7

kPk"

Thus, Cj, < 0 for all k € N. By applying Lemmal[4.2] we can deduce that Z, is bounded from below
and satisfies the Palais-Smale condition at the level C for any A > 0 small enough. Furthermore,
Proposition states that ’y(t%«(kk )) = k. Consequently, according to Lemmau we can conclude
that each Cy, k € N, is a critical value of 7). Consequently, according to (2) of Lemma e
admits a sequence of critical points (¢x e, ¥re) C X that converges to zero. Now, to show the
positivity of the solutions (¢, e, ¥k,c), we replace the test function (1, ¢2) in the equation
by ¢y . = max{—dy., 0}, ¥ . = max{—r,0} and using the elementary inequality

(a—b)a” —b") < —(a” —b7)2,

we obtain [|¢, _, ¢, || = 0 implying that (¢x,.) and (¢x,) are two nonnegative functions. By
applying the maximum principle (Proposition 2.17, [29]), we conclude that (¢, ¥k <) is a sequence
of positive solutions for system (3.1]). This completes the proof. O

5. PROOF OF OUR MAIN RESULT

In this section, we will show that system (1.1]) possesses a sequence of nontrivial weak solutions
(dk, ¥r) in the space X as a limit of the solutions of problem (3.1)) obtained in the previous section.
Let A € (0,\) be small enough and for k € N, let (dx.c, Yk c)e>0 be a family of positive weak

solutions of problem ({3.1)).
Case 1: inf.oo N (¢ e, Yrc) = 0 > 0. From (A1), there exists ki > 0 such that

MmN (Pkc, k) > ki, foralle > 0.



EJDE-2026/05 MULTIPLE SOLUTIONS FOR KIRCHHOFF TYPE SYSTEMS
From this, (A2), and equations (3.7)) and (3.8]), we have

Ck + 05(1) — jA,E((ZSk,ank,s) - %«7)/\’5(@:,5,1/%,5) : ((bk,mwk:,s)

N,s
_ 1 _ 1—-v1 _ 1-m
= MWDt~ 2 [ a0+ = e
A 1
- b(x et+e)tTrz gl dm——/ % 4% dx
= [ o[+ oo o [ ot
1 A
— —— N (e, Vi) )N (Bhe, Yre) + — /a(m)(¢k,e+5)_”¢k,sd$
N,s N,s JD
)\ —Y2 1 61 92
+ — b(@)(Vre +€) PP dr + — Oy Wy d
pN,s D pN75 D
> (5 b el — A+ 1) / al@) (67) 7 da
po - Pys PNs 1—=—m"Jp
1 1
- A + /bx T de
G 7o) [ e
> (5 L bk el = Mo+ ——)Cll bt e[
= o p}(v’s k,er» Wk,e p?\]’s 1_71 al|Pk,es Vk,e
1 ]‘ 1—72
)\(p;(\ﬁs + 1_ 72)Cb||¢)k,6awk,s“
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This gives the boundedness of (g e, ¥k )e>0. Since the space X is reflexive, up to a subsequence,
still denoted by (Pk.c, Yk e )e>0, there exists (¢x, i) € X such that, (¢ge, Vi) — (Pr, ¥i) weakly
in X7 (ﬁbk,svwk,e) — (d)k’wk) Strongly in LQ(D) X LB(D) for all (Oévﬂ) € [17737\[73)2’ (st,s,wk,s) —
(¢, ¥r) a.e. in D x D, as e — 0F. In addition, there exist u,n > 0 and fi, fo € L'(D) such that

Ore < f1s Yue < fo, and
N (Ske k) = 1, and /D |Ok,e — Gkl [r,e — i|* dz — .
We aim to show that (¢ o, ¥r.c) — (¢, ¥x) strongly in X. We observe that
|a(@)(Pr,e +€) M brel < al@)dy ",

|b(x) (ke + &) hpe| < bz 72,

a.e. in D, so by the Vitali convergence theorem, we obtain

/a(x)(¢k,s+€)7’n(bk7€ d{E:/ a(x) 116*71 dr,
D

D

/ b(x)(wk,s +€)7V2’l/1k,8 dx :/ b((E) ]1*“/2 dr.
D

D
On the other hand, a simple calculation in (3.1]), we have

0 _ . A0
MmN (ke U.2)) Lp(Bh.2) = Adre +8) 77+~ M2, > min{ o, —2-}
N,s pN,s
= —72 62 01 ,,02—1 . A 91
m(N(¢k,sa¢k,s))ﬁp(¢k,s) = ANk, +¢) + = kelre 2 min{ —, " }
Pns 7 272 py

s

(5.1)

(5.2)

(5.3)

Therefore, since inf.~o N (¢k.e, ¥r.e) = 0 > 0 and using the strong maximum principle (see [29]),
there exist Dy C D, D; C D and a constants dy > 0, d; that are independent of € such that for

any € > 0, we have
Pre > do a.e. in Dy, and i > dp a.e.in D;.

(5.4)
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Now, let us consider a function ¢; € C§°(D with supp(¢1) C Do and a function o € C3°(D with
supp(p2) C Dy. We observe that from (5.4)) we have

la(z)(Pre +€) 1| < alx)dy " |e1|, ae. in Dy,
() (ke + ) 22| < b(x)dy *[p2], a.e. in Dy.

Consequently, the dominated convergence theorem implies that

/D o) (e +) gy di = /D a() 67" or da + 02(1), (5.5)
[ b)ne +2)ond = [ by pad + o.(1), (5:)
D D

as ¢ — 0. Since 9D is continuous, the space C5°(D) is dense in Ey(D) (see [19, Theorem
6]). Therefore, by a standard den51ty argument equatlons and . hold true for any

(¢1,p2) € X. Thus, by combining (5.2 with (5.5)-(5.6 Wlth 01 = ¢p and py = Yy, as

e — 0T, we obtain
[ ale)(6n+ 27 6n — dw) o = 0.(0)
D
/ b(2)(Vr,e +2)" 7 (Ve — ¥Yr) dr = o (1).
D

Consequently, from , as € — 07 we have
0c(1) = T \(Drer Vhe) - (Bhre — Prr Ve — i)
= MmN (Gre61.0) (N (Dres Yuc) = N (6n,00) )

- / a’(x)((bk,s + 5)_71 (¢k,e - (bk) dr — / b(-r)(wk,a + 5)_’Y2 (wk,a - Tr/)k) dz
D D
- / (G1.0) () da + / (68)% ()% dz + 0-(1)
D D
= ()| P — b B — ill” — /Q (61,6 (2) — ()% g e () — ()| diz + 04 (1),

so that

m(:u)”(bk,s - ¢k7 st,s - "/}ka =n+ 05(1)-
Now, let us show that n = 0. By contradiction, i.e., we assume that n > 0. Arguing as in Lemma
we can show that

PN,s—P

n N > m(p) ST (5.7)
Now, consider o9 > o be such that pog < py . Then, similarly to (3.24), as ¢ — 0T we have

1
Cr + 05(1) = jA,a(¢k,aa ¢k,6) - ;Oji,g(d)k,e?a ¢k,s) . (¢k,57 wk,e)

[ et [(m,a ¥ > —et- %} dr

1
= ]—9///(/\/'(%,5,%75)) - 1—m

A
B 1-— Y2 ~/D b(l’) {(1/%,5 + 8)1_72 — 92 dx
A

_ im(N<¢k,ev¢k,s))N(¢k’E,'(/}k’e) + 7/ G(SL')(¢;€’E + 5)_’71(]5]@,6 d

(o) o Jp

3\ b(x)(qpk,s +€)7’Y21/)k,6 dx + i/ ¢215 2?6 dx

Pns JD

1 1 1
> *e///(ﬂ) - 7771(/1)/1 + ( / |¢k . ¢k|61‘wk . T/)k|02 du

p Poo pog pNS
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(o= =) [ 10u 1% do = A0 (ol + 6,6 ) + 0,01

Poo Py
1 1\ mg 1 1 _ _
> (== =) B0 4 (o = = )1 = AC ([0l + 1w Yl 777) + 02(1).
o 00/ p Poo Dis
That is,

1 1 1 1 -y -

Ckz(fff)@u‘”(f* - )n*ACmaX{ulplyulpz}-
o oo/ p Poo Phs

Without loss of generality, we may assume that o; < o9. In particular, for any A € (0, Ag), we

obtain
1 1—79o

1 1 1
0>Cy 2> (*—*)@/ﬁ%-(f— — )n—)\Cu v >0,
o oo/ P poo Pns

thanks to (3.25)) and (3.28). Which leads to a contradiction concluding n = 0. Hence (¢, Yr,c) —
(dk, ¥y) strongly in X.

Case 2: inf.oo N (¢p ., ¥r) = 0. In this case, we can apply a similar approach to that used in
the proof of Lemma allowing us to deduce that (¢g.c,Yr.e) — (¢r, ) strongly in X. This
complete the proof of Theorem 1.2
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