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MULTIPLE SOLUTIONS FOR KIRCHHOFF TYPE SYSTEMS INVOLVING

SINGULAR AND CRITICAL NONLINEARITIES

MOHAMED LOUCHAICH

Abstract. This article investigates the fractional singular Kirchhoff system

m(N (ϕ, ψ))Lp
K(ϕ) = λa(x)ϕ−γ1 +

θ1

p⋆N,s

ϕθ1−1ψθ2 in D

m(N (ϕ, ψ))Lp
K(ψ) = λb(x)ψ−γ2 +

θ2

p⋆N,s

ϕθ1ψθ2−1 in D

ϕ > 0, ψ > 0 in D

ϕ = ψ = 0 in RN \ D,
where

N (ϕ, ψ) =

∫
R2N

|ϕ(x)− ϕ(y)|pK(x, y) dx dy +

∫
R2N

|ψ(x)− ψ(y)|pK(x, y) dx dy.

Here, D is a bounded domain in RN with a Lipschitz boundary ∂D. Lp
K is a non-local operator

with a singular kernel K. p > 1, λ > 0, and m is a continuous function. γ1, γ2 ∈ (0, 1). and a, b

are non-negative bounded functions. θ1, θ2 > 1 and θ1 + θ2 = p⋆Ns
, where p⋆Ns

is the fractional

critical Sobolev exponent p⋆Ns
= Np

N−sp
. Our findings encompass the degenerate case in the

fractional setting, allowing the Kirchhoff function m to take zero value at zero. We employ

Kajikiya’s version of the symmetric mountain pass lemma to prove the existence of a sequence

of infinitely many small solutions with negative energy that converge to zero.

1. Introduction and main result

Recently, the study of non-local equations and systems has attracted a lot of attention. Various
studies have been considered on this topic, see [5, 6, 9, 10, 12, 15, 20, 32, 31, 33, 35, 36, 37,
38]. Nonlocal equations have been widely used in many fields of sciences, including continuum
mechanics, phase transition phenomena, population dynamics, and game theory, especially those
involving fractional and nonlocal elliptic operators. As discussed in [1, 8], these operators naturally
appear as stochastic stabilizers of Lévy processes..

On the other hand, a great deal of attention has been focused on nonlocal fractional equations
with critical nonlinearities. This area of study has received significant attention in recent years
leading to several advancements and investigations. Among the references we like to mention
[2, 3, 5, 13, 16, 22, 24, 28, 30, 37]. These papers provide valuable insights and analysis of nonlocal
fractional equations with critical nonlinearities, and they serve as important references for further
exploration in this area.
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In this work, we study the existence of solutions for a fractional Kirchhoff system that involve
singular and critical nonlinearities. The system studied is

m(N (ϕ, ψ))LpK(ϕ) = λa(x)ϕ−γ1 +
θ1
p⋆N,s

ϕθ1−1ψθ2 in D

m(N (ϕ, ψ))LpK(ψ) = λb(x)ψ−γ2 +
θ2
p⋆N,s

ϕθ1ψθ2−1 in D

ϕ > 0, ψ > 0 in D
ϕ = ψ = 0 in RN \ D,

(1.1)

where

N (ϕ, ψ) =

∫
R2N

|ϕ(x)− ϕ(y)|pK(x, y) dx dy +

∫
R2N

|ψ(x)− ψ(y)|pK(x, y) dx dy,

D is a smooth bounded domain in RN , λ > 0 is a real parameter, p > 1, γ1, γ2 ∈ (0, 1), and
θ1, θ2 > 1 satisfy θ1 + θ2 = p⋆N,s. The fractional critical Sobolev exponent p⋆N,s is defined as

p⋆N,s = Np
N−sp . a, b ∈ L∞(D), a > 0, b > 0 a.e. in D. LpK is a non-local operator defined for any

smooth functions ϕ : RN → R by

LpKϕ(x) = 2 lim
ϵ→0

∫
RN\Bϵ(x)

|ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))K(x, y) dy, x ∈ RN .

Here, K : R2N \ {0, 0} → (0,+∞) is a measurable function satisfying the following properties:

K(x, y) ≥ K0|x− y|−(N+sp) for all (x, y) ∈ R2N , x ̸= y

σK ∈ L1(R2N ) with σ(x, y) = min{1, |x− y|p}
K(x, y) = K(y, x) for all (x, y) ∈ R2N .

A commonly used model for the kernel function K is given by the singular kernel K(x, y) =
|x− y|−(sp+N). In this case, the operator LpK corresponds to the fractional p-Laplacian, which can
be defined (up to normalization factors) for any ϕ ∈ C∞

0 (RN ) by:

(−∆p)
sϕ(x) = 2 lim

ϵ→0

∫
RN\Bϵ(x)

|ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))

|x− y|sp+N
dy, x ∈ RN .

The Kirchhoff function m is assumed to satisfies the following assumptions:

(A1) For each δ > 0, there exists κδ > 0 such that m(z) ≥ κδ for all z ≥ δ.

(A2) There exists σ ∈ [1,
p⋆N,s

p ) such that

σM (z) = σ

∫ z

0

m(ς)dς ≥ zm(z), ∀ξ ∈ R+.

(A3) There exists m0 > 0 such that m(z) ≥ m0z
σ−1 for all ξ ∈ [0, 1].

A prototype for m, proposed by Kirchhoff, is

m(z) = α+ βzσ−1, α, β ≥ 0, α+ β > 0, σ > 1. (1.2)

The Kirchhoff problem (1.1) is classified as non-degenerate if m(z) ≥ m > 0 for all z ∈ R+.
A non-degenerate case can be achieved, for example, when α > 0 and β ≥ 0 in the model case
(1.2). For recent results on non-degenerate Kirchhoff- type problems, we refer the reader to
[22, 25, 26, 27, 30]. On the other hand, if m(0) = 0 but m(z) > 0 for all z > 0, the Kirchhoff
problem is considered degenerate. This degenerate scenario occurs in the model case (1.2) when
α = 0 and β > 0. Relevant research papers on degenerate Kirchhoff-type problems include
[4, 11, 13, 23, 31].

Fiscella and Valdinoci [18] presented a detailed examination of the physical understanding
of fractional Kirchhoff problems and their applications. They considered a stationary Kirchhoff
problem that capture the non-local component of tension caused by nonlocal measurements of a
string’s fractional length. In this case, the function m measures the change in tension on the string
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produced by differences in its length during vibration. The fact that m(0) = 0 implies that the
string’s base tension is zero, indicating a realistic model.

The aim of this article is to investigate the existence of solutions for system (1.1) by using
variational methods and critical point theory. Before presenting our main result, we introduce the
following notation and functional setting. Let us define the space

E =
{
ϕ ∈ Lp(RN ) and

∫
R2N

|ϕ(x)− ϕ(y)|pK(x, y) dx dy <∞
}
,

equipped with the norm

∥ϕ∥E =
(
∥ϕ∥p

Lp(RN )
+

∫
R2N

|ϕ(x)− ϕ(y)|pK(x, y) dx dy
)1/p

.

We also introduce the space

E0(D) =
{
ϕ ∈ E : ϕ = 0 a.e. RN \ D

}
,

where D is a given domain. According to [17, Lemma 4], E0(D) is a separable and reflexive Banach
space, which can be equipped with the norm

∥u∥E0
=

(∫
R2N

|ϕ(x)− ϕ(y)|pK(x, y) dx dy
)1/p

, ∀ϕ ∈ E0(D).

Given that D is a smooth bounded domain, it is well-known that the embedding E0(D) ↪→
Lµ(D) holds continuously for µ ∈ [1, p⋆N,s] (refer to [14], Lemma 2.3) and compactly for µ ∈
[1, p⋆N,s), where p

⋆
N,s =

Np
N−sp . Additionally, there exists a positive constant Cµ such that for any

ϕ ∈ E0(D), the following inequality holds:

∥ϕ∥Lµ(Ω) ≤ Cµ∥ϕ∥E0
. (1.3)

In what follows, S⋆ stands for the optimal constant for the Sobolev embedding E0(D) ↪→ Lp
⋆
N,s(D),

which is given by

S⋆ = inf
ϕ∈E0(D)\{0}

( ∫
R2N |ϕ(x)− ϕ(y)|pK(x, y) dx dy

)1/p( ∫
D |ϕ(x)|p⋆N,s dx

)1/p⋆N,s

. (1.4)

Let X = E0(D)× E0(D), equipped with the usual norm

∥(ϕ, ψ)∥ =
(
∥ϕ∥pE0

+ ∥ψ∥pE0

)1/p

, for (ϕ, ψ) ∈ X.

Definition 1.1. We say that (ϕ, ψ) ∈ X is a weak solution of system (1.1) if

m(N (ϕ, ψ))

∫
R2N

|ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))(φ1(x)− φ1(y))K(x, y) dx dy

+m(N (ϕ, ψ))

∫
R2N

|ψ(x)− ψ(y)|p−2(ψ(x)− ψ(y))(φ2(x)− φ2(y))K(x, y) dx dy

= λ

∫
D
a(x)ϕ−γ1φ1 dx+

∫
D
b(x)ψ−γ2φ2 dx

+
θ1
p⋆N,s

∫
D
ϕθ1−1ψθ2φ1 dx+

θ2
p⋆N,s

∫
D
ϕθ1ψθ2−1φ2 dx, ∀(φ1, φ2) ∈ X.

(1.5)

To obtain the existence of weak solutions for system (1.1), we seek critical points of the asso-
ciated energy functional Jλ : X → R given by

Jλ(ϕ, ψ) =
1

p
M (N (ϕ, ψ))− λΦ(ϕ, ψ)−Ψ(ϕ, ψ),

where

Φ(ϕ, ψ) =
1

1− γ1

∫
D
a(x)(ϕ+)1−γ1 dx+

1

1− γ2

∫
D
b(x)(ψ+)1−γ2 dx,
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and

Ψ(ϕ, ψ) =
1

p⋆N,s

∫
D
(ϕ+)θ1(ψ+)θ2 dx.

Our main result can be summarized as follows.

Theorem 1.2. Under assumptions (A1)–(A3) there is a positive constant λ0 > 0 such that for
any λ ∈ (0, λ0), system (1.1) possesses a sequence of weak solutions (ϕk, ψk)k∈N ⊂ X such that
Jλ(ϕk, ψk) < 0 and ∥(ϕk, ψk)∥ → 0 as k → +∞.

The remainder of this paper is organized as follows: In section 2, we present some preliminary
results. In section 3, we show the existence of infinitely many small weak solutions for an associated
approximating problem. In section 4, we prove our main result.

2. Preliminaries

In this section, we give some important results that will be useful in the proof of our main
result.

Lemma 2.1. For each (ϕ, ψ) ∈ X, there exists S > 0 such that

∥(ϕ, ψ)∥ ≥ S

∫
D
|ϕ(x)|θ1 |ψ(x)|θ2 dx. (2.1)

Proof. Let (ϕ, ψ) ∈ X. By using Hölder’s inequality, one has∫
D
|ϕ(x)|θ1 |ψ(x)|θ2 dx ≤

(∫
D
|ϕ(x)|p

⋆
N,s dx

) θ1
p⋆
N,s

(∫
D
|ψ(x)|p

⋆
N,s dx

) θ2
p⋆
N,s

≤ S
−(θ1+θ2)
⋆ ∥ϕ∥θ1E0

∥ψ∥θ2E0

≤ 1

S
∥(ϕ, ψ)∥p

⋆
N,s ,

where S = Sθ1+θ2 . □

In the following Lemma, we establishes a key result related to the convergence of a sequence in
E0(D) to a limit within the same space.

Lemma 2.2. Let (ϕn)n∈N ⊂ E0(D) be such ϕn → ϕ weakly in E0(D) for some ϕ ∈ E0(D). Then,
we have

∥ϕn − ϕ∥pE0
+ ∥ϕ∥pE0

= ∥ϕn∥pE0
+ on(1).

Proof. We use a result of Brézis-Lieb’s lemma [7]. It states that if we have a bounded sequence
(Φn)n∈N in the space Lp(Rd), where p > 1, and Φn converges to Φ almost everywhere in Rd, then
we have

|Φn − Φ|p
Lp(Rd)

+ |Φ|p
Lp(Rd)

= |Φn|pLp(Rd)
+ on(1).

We define the function

Φn = (ϕn(x)− ϕn(y))
p
√
K(x, y), where d = 2N.

Using this definition, we can write∫
R2N

|(ϕn − ϕ)(x)− (ϕn − ϕ)(y)|pK(x, y) dx dy +

∫
R2N

|ϕ(x)− ϕ(y)|pK(x, y) dx dy

=

∫
R2N

|ϕn(x)− ϕn(y)|pK(x, y) dx dy + on(1).

This completes the proof. □

Lemma 2.3. Let α, β ∈ (1,+∞). Given ϵ > 0, there exists C > 0 such that for each ϕ1, ϕ2, v1, v2,
we have∣∣∣|ϕ1 + ψ1|α|ϕ2 + ψ2|β − |ϕ1|α|ϕ2|β

∣∣∣ ≤ ϵ|ϕ1|α|ϕ2|β + C(|ϕ1|α|ψ2|β + |ψ1|α|ϕ2|β + |ψ1|α|ψ2|β).
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Proof. Fix 0 < η < min{1, ϵ
1+2α }. Then there exists C > 0 such that∣∣∣|ϕ1 + ψ1|α|ϕ2 + ψ2|β − |ϕ1|α|ϕ2|β

∣∣∣
≤ |ϕ1 + ψ1|α

∣∣∣|ϕ2 + ψ2|β − |ϕ2|β
∣∣∣+ ∣∣∣|ϕ1 + ψ1|α − |ϕ1|α|ϕ2|β

∣∣∣
≤ 2α(|ϕ1|α + |ψ1|α)(η|ϕ2|β + C|ψ2|β) + (η|ϕ1|α + C|ψ1|α)|ϕ2|β ,

≤ ϵ|ϕ1|α|ϕ2|β + 2αC|ϕ1|α|ψ2|β + (2α + C)ψ1|α|ϕ2|β + 2αCψ1|α|ψ2|β ,
as claimed. □

The following lemma presents a key result regarding the convergence properties of a sequence
(ϕn, ψn) in the space X, under weak convergence and almost everywhere convergence in RN .

Lemma 2.4. Let (ϕn, vn)⇀ (ϕ, v) weakly in X and (ϕn, vn) → (ϕ, v) a.e. in RN . Then, for each
α, β > 1 with α+ β ≤ p⋆N,s, up to a subsequence, we have∫

RN

|ϕn(x)− ϕ(x)|α|ψn(x)− ψ(x)|β dx+

∫
RN

|ϕ(x)|α|ψ(x)|β dx

=

∫
RN

|ϕn(x)|α|ψn(x)|β dx+ on(1).

Proof. Passing to a subsequence, we have that

ϕn → ϕ, ψn → ψ, a.e. in Ω,

ϕn → ϕ inLαloc(RN ), and ψn → ψ in Lαloc(RN ).

Let ϵ > 0, and let C > 0 be a fixed real number as in Lemma 2.3. We define

Wn =
∣∣∣|ϕn|α|ψn|β − |ϕn − ϕ|α|ψn − ψ|β − |ϕ|α|ψ|β

∣∣∣− ϵ|ϕn − ϕ|α|ψn − ψ|β

− C(|ϕ|α|ψn − ψ|β + |ϕn − ϕ|α|ψ|β).
(2.2)

It is easy to see that, wn → 0 a.e. in RN and wn ∈ L1(RN ). Furthermore, utilizing Lemma 2.3
with ϕ1 = ϕn − ϕ, ϕ2 = ψn − ψ, ψ1 = ϕ, and ψ2 = ψ, we obtain

Wn ≤ (C + 1)|ϕ|α|ψ|β .
Then, we apply the dominated convergence theorem to get

lim
n→+∞

∫
RN

W+
n dx = 0, (2.3)

where W+
n = max{Wn, 0}. Fix T > 0 large enough so that

C

∫
|x|≥T

|ϕ|α|ψn − ψ|βdx ≤ C|ψn − ψ|β
Lp⋆s (RN )

(∫
|x|≥T

|ϕ|p
⋆
s

) α
p⋆s < ϵ, (2.4)

and

C

∫
|x|≥T

|ϕn − ϕ|α|ψ|βdx ≤ C|ϕn − ϕ|α
Lp⋆s (RN )

(∫
|x|≥T

|ψ|p
⋆
s

) β
p⋆s < ϵ. (2.5)

Then, for n large enough, we have

C

∫
|x|≤T

|ϕ|α|ψn − ψ|βdx ≤ C max
|x|≤T

|ϕ(x)|α
∫
|x|≤T

|ψn − ψ|βdx < ϵ, (2.6)

and

C

∫
|x|≤T

|ϕn − ϕ|α|v|βdx ≤ C max
|x|≤T

|v(x)|β
∫
|x|≤T

|ϕn − ϕ|αdx < ϵ. (2.7)

Now, combining equations (2.2)-(2.7), we obtain∫
RN

∣∣∣|ϕn|α|vn|β − |ϕn − ϕ|α|vn − v|β − |ϕ|α|v|β
∣∣∣ dx

≤ ϵ

∫
RN

|ϕn − ϕ|α|vn − v|β dx+ C

∫
RN

|ϕ|α|vn − v|β + |ϕn − ϕ|α|v|β dx+

∫
RN

W+
n dx,
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< C̃ϵ,

for n large enough, as claimed. □

Now, we recall some of topological techniques introduced by Krasnoselskii in [34]. These meth-
ods have been widely recognized as powerful tools to obtain solutions to a variety of mathematical
problems. Specifically, in our case, we aim to prove the existence of a sequence of small solutions.
Let (X, | · |X) be a real Banach space. We introduce the class Σ, which consists of all closed
subsets A ⊂ X \ 0 that exhibit symmetry with respect to the origin. In other words, if u ∈ A,
then −u ∈ A. This symmetry property is a key characteristic of the sets in Σ.

Now, to characterize the properties and complexity of sets in Σ, we introduce the notion of
Krasnoselskii’s genus.

Definition 2.5. Let A ∈ Σ. The Krasnoselskii’s genus γ(A) of A is defined as the smallest positive
integer n such that there exists an odd mapping h ∈ C(A,Rn) satisfying h(x) ̸= 0 for all x ∈ A.
If such an integer n does not exist, we set γ(A) = +∞. Furthermore, we define γ(∅) = 0.

Next, we will outline the essential properties of the genus that will be employed throughout
this work. For more comprehensive information on this topic, readers are encouraged to consult
the reference [34].

Proposition 2.6. Let A and B be symmetric closed subsets of E that do not include the origin.
The following properties hold

(1) If there exists an odd continuous mapping from A to B, then γ(A) ≤ γ(B).
(2) If there is an odd homeomorphism from A onto B, then γ(A) = γ(B).
(3) If γ(A) <∞, then γ(A \B) = γ(A)− γ(B).
(4) The n-dimensional sphere Sn has a genus of (n+1) as a consequence of the Borsuk-Ulam

Theorem.

Now we present a variant of the symmetric mountain pass lemma, originally formulated by
Kajikiya [21]. This lemma offers a powerful tool for analysing critical points of functionals with
symmetric features.

Lemma 2.7 (Kajikiya’s Variant of the Symmetric Mountain Pass Lemma). Let X be an infinite-
dimensional Banach space, and let J ∈ C1(X,R) be a functional satisfying the following conditions

(1) J is even, bounded from below, and J (0) = 0.
(2) J satisfies the local Palais-Smale condition, which means that for some c ∈ R, any se-

quence (ϕn) ⊂ X satisfying J (ϕn) → c < c and J ′(ϕn) → 0 in X ′ has a convergent
subsequence.

(3) For each n ∈ N, there exists a set An ⊂ Γn such that supϕ∈An
J (ϕ) < 0.

Then, there exists a sequence (ϕn) such that J ′(ϕn) = 0, J (ϕn) < 0, and ϕn → 0 in X.

3. Auxiliary problem

The classic variational theory cannot be used to the energy functional Jλ since it is not Fréchet
differentiable due to the singular term. So, to prove our main result, we introduce the perturbed
problem

m(N (ϕ, ψ))LpK(ϕ) = λa(x)(ϕ+ + ε)−γ1 +
θ1
p⋆N,s

(ϕ+)θ1−1(ψ+)θ2 in D

m(N (ϕ, ψ))LpK(ψ) = λb(x)(ψ+ + ε)−γ2 +
θ2
p⋆N,s

(ϕ+)θ1(ψ+)θ2−1 in D

ϕ = ψ = 0 in RN \ D,

(3.1)

where ε ∈ (0, 1) is a real number. The energy functional associated with problem (3.1) is

Jλ,ε(ϕ, ψ) =
1

p
M (N (ϕ, ψ))− λΦε(ϕ, ψ)−Ψ(ϕ, ψ),
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where

Φε(ϕ, ψ) =
1

1− γ1

∫
D
a(x)

[
(ϕ+ + ε)1−γ1 − ε1−γ1

]
dx+

1

1− γ2

∫
D
b(x)

[
(ψ+ + ε)1−γ2 − ε1−γ2

]
dx,

It is easy to see that the functional Jε,λ is of C1 in X, and for any (ϕ, ψ) ∈ X and (φ1, φ2) ∈ X,
we have

J ′
λ,ε(ϕ, ψ) · (φ1, φ2)

= m(N (ϕ, ψ))

∫
R2N

|ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))(φ1(x)− φ1(y))K(x, y) dx dy

+m(N (ϕ, ψ))

∫
R2N

|ψ(x)− ψ(y)|p−2(ψ(x)− ψ(y))(φ2(x)− φ2(y))K(x, y) dx dy

− λ

∫
D
a(x)(ϕ+ + ε)−γ1φ1 dx− λ

∫
D
b(x)(ψ+ + ε)−γ2φ2 dx

− θ1
p⋆N,s

∫
D
(ϕ+)θ1−1(ψ+)θ2φ1 dx− θ2

p⋆N,s

∫
D
(ϕ+)θ1(ψ+)θ2−1φ2 dx.

(3.2)

Now, we present the following lemma concerning the Palais Smale condition, which will play a
crucial role in the proof of our main result.

Definition 3.1. A functional J is said to be satisfying the Palais-Smale condition at level Lλ ∈ R
if any sequence (ϕn, ψn)n∈N in X with

J (ϕn, ψn) → Lλ and J ′(ϕn, ψn) → 0 in X ′ as n→ +∞,

possesses a convergent subsequence in X.

Lemma 3.2. Under assumptions (A1)–(A3), there exists λ0 > 0 such that for any λ ∈ (0, λ0),
the functional Jε,λ satisfies the Palais-Smale condition at any level Lλ < 0.

Proof. Let (ϕn, ψn) be a sequence of X such that

Jλ,ε(ϕn, ψn) → Lλ and J ′
λ,ε(ϕn, ψn) → 0 in X ′ as n→ +∞, (3.3)

Due to the degenerate type of system (3.1), two situations have to be considered: either

inf
n∈N

N (ϕn, ψn) = δ > 0, and inf
n∈N

N (ϕn, ψn) = 0.

For this, we divide the proof into two cases.

Case 1: infn∈N N (ϕn, ψn) = δ > 0. At the beginning, we show that (ϕn, ψn) is bounded in X.
By assumption (A1), there exists κδ > 0 such that

m(N (ϕn, ψn)) ≥ κδ for all n ∈ N. (3.4)

By Equation (3.3), and (3.4) with (A2), and the elementary inequality

(α+ β)1−γ − β1−γ ≤ α1−γ , α, β ≥ 0, γ ∈ (0, 1), (3.5)
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we have

Lλ + on(1) = Jλ,ε(ϕn, ψn)−
1

p⋆N,s
J ′
λ,ε(ϕn, ψn) · (ϕn, ψn)

=
1

p
M (N (ϕn, ψn))−

λ

1− γ1

∫
D
a(x)

[
(ϕ+n + ε)1−γ1 − ε1−γ1

]
dx

− λ

1− γ2

∫
D
b(x)

[
(ψ+
n + ε)1−γ2 − ε1−γ2

]
dx− 1

p⋆N,s

∫
D
(ϕ+n )

θ1(ψ+
n )

θ2 dx

− 1

p⋆N,s
m(N (ϕn, ψn))N (ϕn, ψn) +

λ

p⋆N,s

∫
D
a(x)(ϕ+n + ε)−γ1ϕn dx

+
λ

p⋆N,s

∫
D
b(x)(ψ+

n + ε)−γ2ψn dx+
1

p⋆N,s

∫
D
(ϕ+n )

θ1(ψ+
n )

θ2 dx

≥ (
κδ
pσ

− 1

p⋆N,s
)∥ϕn, ψn∥p − λ(

1

p⋆N,s
+

1

1− γ1
)

∫
D
a(x)(ϕ+n )

1−γ1 dx

− λ(
1

p⋆N,s
+

1

1− γ2
)

∫
D
b(x)(ψ+

n )
1−γ2 dx

(3.6)

On the other hand, by using Hölder’s inequality, and (1.3) we obtain∫
D
a(x)(ϕ+n )

1−γ1dx ≤ |a|L∞(D)|D|
p+γ1−1

p |ϕn|1−γ1Lp(D)

≤ |a|L∞(D)|D|
p+γ1−1

p C1−γ1
p |ϕn|1−γ1E0

≤ Ca∥ϕn, ψn∥1−γ1 ,

(3.7)

and ∫
D
b(x)(ψ+

n )
1−γ2dx ≤ |b|L∞(D)|D|

p+γ2−1
p |ψn|1−γ2Lp(D)

≤ |b|L∞(D)|D|
p+γ2−1

p C1−γ2
p |ψn|1−γ2E0

≤ Cb∥ϕn, ψn∥1−γ2 ,

(3.8)

where

Ca = |a|L∞(D)|D|
p+γ1−1

p C1−γ1
p and Cb = |b|L∞(D)|D|

p+γ2−1
p C1−γ2

p .

Now, combining equations (3.7) and (3.8) with (3.6), we obtain the boundedness of (ϕn, ψn). Now,
since X is a reflexive space, there exist (ϕ, ψ) ∈ X such that, up to a subsequence (still denoted by
(ϕn, ψn)), (ϕn, ψn) ⇀ (ϕ, ψ) weakly in X, strongly in Lα(D)× Lβ(D), for any (α, β) ∈ [1, p⋆N,s)

2,
almost every where in D × D as n → +∞. Furthermore, there exist two positive real numbers η
and µ such that

N (ϕn, ψn) → µ, and

∫
D
|ϕ+n − ϕ+|θ1 |ψ+

n − ψ+|θ2 dx→ η, (3.9)

as n→ +∞. Clearly, µ > 0 since we are in the case where δ > 0. Therefore, the weak convergence
of (ϕn, ψn)) give that the sequence (Φn,Ψn) defined in R2N \ diag{R2N} by

An(x, y) = |ϕn(x)− ϕn(y)|p−2(ϕn(x)− ϕn(y))K(x, y)
1
p′ ,

Bn(x, y) = |ψn(x)− ψn(y)|p−2(ψn(x)− ψn(y))K(x, y)
1
p′ ,

is bounded in Lp
′
(R2N ), as well as

An(x, y) −→ |ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))K(x, y)
1
p′ a.e. in R2N ,

Bn(x, y) −→ |ψ(x)− ψ(y)|p−2(ψ(x)− ψ(y))K(x, y)
1
p′ a.e. in R2N .

Here p′ = p
p−1 which is defined the conjugate of p. Then, going if necessary to a further subse-

quence, we have

An(x, y) −→ |ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))K(x, y)
1
p′
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and

Bn(x, y) −→ |ψ(x)− ψ(y)|p−2(ψ(x)− ψ(y))K(x, y)
1
p′

in Lp
′
(R2N ). Consequently, as n→ +∞, we obtain∫

R2N

|ϕn(x)− ϕn(y)|p−2(ϕn(x)− ϕn(y))(ϕ1(x)− ϕ(y))K(x, y) dx dy

=

∫
R2N

|ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))(ϕ(x)− ϕ(y))K(x, y) dx dy + on(1)

(3.10)

and ∫
R2N

|ψn(x)− ψn(y)|p−2(ψn(x)− ψn(y))(ψ(x)− ψ(y))K(x, y) dx dy

=

∫
R2N

|ψ(x)− ψ(y)|p−2(ψ(x)− ψ(y))(ψ(x)− ψ(y))K(x, y) dx dy + on(1).

(3.11)

On the other hand, by Hölder’s inequality and Equation (2.1), we have∫
D

∣∣∣(ϕ+n )θ1−1(ψ+
n )

θ2
∣∣∣ p⋆N,s
p⋆
N,s

−1
dx ≤

(∫
D
|ϕn|p

⋆
N,s dx

) (θ1−1)

p⋆
N,s

−1
(∫

D
|ψn|p

⋆
N,s dx

) θ2
p⋆
N,s

−1

≤
(
S
− (θ1−1)

p⋆
N,s

−1

⋆ ∥ϕn∥
(θ1−1)

p⋆
N,s

E0

)(
S
−

θ2p⋆N,s
p⋆
N,s

−1

⋆ ∥ψn∥
θ2p⋆N,s
p⋆
N,s

E0)

)
≤ C,

for some C > 0. Similarly, one has∫
D

∣∣∣(ϕ+n )θ1(ψ+
n )

θ2−1
∣∣∣ p⋆N,s
p⋆
N,s

−1
dx ≤ C.

Therefore, as n→ +∞, we have∫
D
(ϕ+n )

θ1−1(ψ+
n )

θ2ϕ(x) dx =

∫
D
(ϕ+)θ1(ψ+)θ2 dx+ on(1), (3.12)∫

D
(ϕ+n )

θ1(ψ+
n )

θ2−1ψ(x) dx =

∫
D
(ϕ+)θ1(ψ+)θ2 dx+ on(1). (3.13)

In addition, we have∣∣∣ ∫
D
a(x)(ϕ+n + ε)−γ1(ϕn − ϕ) dx

∣∣∣ ≤ |a|L∞(D)ε
−γ1

∫
D
|ϕn − ϕ| dx = on(1), (3.14)∣∣∣ ∫

D
b(x)(ψ+

n + ε)−γ2(ψn − ψ) dx
∣∣∣ ≤ |b|L∞(D)ε

−γ2
∫
D
|ψn − ψ| dx = on(1), (3.15)

as n→ +∞. Combining equations (3.3) with (3.9)-(3.15), we obtain

on(1) = J ′
λ,ε(ϕn, ψn) · (ϕn − ϕ, ψn − ψ)

= m(N (ϕn, ψn))
(
N (ϕn, ψn)−N (ϕ, ψ)

)
−
∫
D
a(x)(ϕ+n + ε)−γ1(ϕn − ϕ) dx

−
∫
D
b(x)(ψ+

n + ε)−γ2(ψn − ψ) dx

−
∫
D
(ϕ+n )

θ1(ψ+
n )

θ2 dx+

∫
D
(ϕ+)θ1(ψ+)θ2 dx+ on(1)

= m(µ)∥ϕn − ϕ, ψn − ψ∥p −
∫
Ω

|ϕ+n (x)− ϕ+(x)|θ1 |ψ+
n (x)− ψ+(x)|θ2 dx+ on(1),

thanks to Lemmas 2.2 and 2.4. Consequently,

m(µ)∥ϕn − ϕ, ψn − ψ∥p =
∫
Ω

|ϕ+n (x)− ϕ+(x)|θ1 |ψ+
n (x)− ψ+(x)|θ2 dx+ on(1). (3.16)
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When η = 0, since m possesses a unique zero at 0 and µ > 0, Equation (3.16) gives

∥ϕn − ϕ, ψn − ψ∥p = on(1),

concluding the proof. Assuming, by contradiction that η > 0. From equation (3.16), it follows
that

η = m(µ) (µ− ∥ϕ, ψ∥p) . (3.17)

In addition, by equation (2.1) and Equation (3.16), we have:

η

p⋆N,s−p

p⋆
N,s ≥ m(µ)S

p
p⋆
N,s . (3.18)

Now, utilizing (3.17) and (3.18), we have

m(µ)S
p

p⋆
N,s ≤ η

p⋆s−p

p⋆s = [m(µ) (µ− ∥u, v∥p)]
p⋆N,s−p

p⋆
N,s . (3.19)

The latter gives

(µ− ∥ϕ, ψ∥p)
p⋆N,s−p

p ≥ m(µ)S. (3.20)

Since the exact behavior ofm is unknown, we need to consider two additional cases, either µ ∈ (0, 1)
or µ ≥ 1. To proceed, we divide the proof of the first case into two subcases.

Subcase µ ∈ (0, 1): By condition (A3) and inequality (3.20), we have

µ
p⋆N,s−p

p ≥
(
µ− ∥u, v∥p

) p⋆N,s−p

p ≥ m(µ)S ≥ m0µ
σ−1S.

Since θσ < p⋆N,s, it follows that:

µ ≥
(
m0S

) p
p⋆
N,s

−σp . (3.21)

By utilizing condition (A3), inequalities (3.18), and (3.21), one has

η ≥
(
m(µ)S

p
p⋆
N,s

) p⋆s
p⋆
N,s

−p ≥
(
m0µ

σ−1S
p

p⋆
N,s

) p⋆N,s
p⋆
N,s

−p
,

≥
[
m0

(
Sm0

) (σ−1)p

p⋆
N,s

−σpS
p

p⋆
N,s

] p⋆N,s
p⋆
N,s

−p
,

= (m
p⋆s
0 S

σp)
1

p⋆
N,s

−σp .

(3.22)

By considering assumptions (A1) and (A3), we obtain the inequality

M (µ) ≥ 1

σ
m(µ)µ ≥ 1

σ
m0µ

σ. (3.23)
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Let σ0 > σ be such that pσ0 < p⋆N,s. From equations (3.3), (3.5), (3.7), (3.8), (3.23), we deduce
that

Lλ + on(1) = Jλ,ε(ϕn, ψn)−
1

pσ0
J ′
λ,ε(ϕn, ψn) · (ϕn, ψn)

=
1

p
M (N (ϕn, ψn))−

λ

1− γ1

∫
D
a(x)

[
(ϕ+n + ε)1−γ1 − ε1−γ1

]
dx

− λ

1− γ2

∫
D
b(x)

[
(ψ+
n + ε)1−γ2 − ε1−γ2

]
dx− 1

p⋆N,s

∫
D
(ϕ+n )

θ1(ψ+
n )

θ2 dx

− 1

pσ0
m(N (ϕn, ψn))N (ϕn, ψn)

+
λ

pσ0

∫
D
a(x)(ϕ+n + ε)−γ1ϕn dx+

λ

pσ0

∫
D
b(x)(ψ+

n + ε)−γ2ψn dx

+
1

pσ0

∫
D
(ϕ+n )

θ1(ψ+
n )

θ2 dx

≥ 1

p
M (µ)− 1

pσ0
m(µ)µ+

( 1

pσ0
− 1

p⋆N,s

)∫
D
(ϕ+n )

θ1(ψ+
n )

θ2 dx

− 2λ|a|L∞(D)

∫
D
(ϕ+n )

1−γ1 dx− 2λ|b|L∞(D)

∫
D
(ψ+
n )

1−γ2 dx+ on(1),

≥ 1

p
M (µ)− 1

pσ0
m(µ)µ+

( 1

pσ0
− 1

p⋆N,s

)∫
D
(ϕ+n )

θ1(ψ+
n )

θ2 dx

− 2λCa∥ϕn, ψn∥1−γ1 − 2λCb∥ϕn, ψn∥1−γ2 + on(1)

≥
( 1

σ
− 1

σ0

)m0

p
µθ +

( 1

pσ0
− 1

p⋆N,s

)
η − λCmax{µ

1−γ1
p , µ

1−γ2
p }+ on(1).

(3.24)

Here C = 2(Ca + Cb). Without loos of generality, we assume may that γ1 ≤ γ2. Thus, since
µ ∈ (0, 1), one has

Lλ ≥
( 1

σ
− 1

σ0

)m0

p
µθ +

( 1

pσ0
− 1

p⋆N,s

)
η − λCµ

1−γ2
p .

By employing the Young inequality, we obtain

Lλ ≥
(1
θ
− 1

σ0

)m0

p
µσ +

( 1

pσ0
− 1

p⋆N,s

)
η − λCµ

1−γ2
p ,

≥
( 1

σ
− 1

σ0

)m0

p
µσ +

( 1

pσ0
− 1

p⋆N,s

)
η −

( 1

σ
− 1

σ0

)m0

p
µσ

− (λC)
σp

θp−(1−γ2)

(
(
1

σ
− 1

σ0
)
m0

p

)− 1−γ2
θp−(2−γ1−γ2)

,

≥
( 1

pσ0
− 1

p⋆N,s

)
η − (λC)

σp
σp−(1−γ2)

(
(
1

σ
− 1

σ0
)
m0

p

)− 2−γ1−γ2
σp−(1−γ2)

,

Let

λ′ =
1

C

(
(
1

σ
− 1

σ0
)
m0

p

) 1−γ2
σp

[
(
1

σp
− 1

p⋆N,s
)(m

p⋆s
0 S

p⋆N,sσ)
1

p⋆
N,s

−σp

]σp−(1−γ2)
σp

. (3.25)

Then, we deduce that for any λ < λ′,

0 > Lλ ≥
( 1

σ0p
− 1

p⋆N,s

)
η − (λC)

σp
σp−(1−γ2) ((

1

σ
− 1

σ0
)
m0

p
)
− 1−γ2

σp−(1−γ2) > 0.

Thanks to equation (3.22), we obtain our contradiction concluding the proof of the first sub-case.

Subcase µ ≥ 1: From condition (A1) for δ = 1, there exists κδ > 0 such that

m(µ) ≥ κδ for all µ ≥ δ. (3.26)
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Combining equation (3.26) with equation (3.18), we obtain

η ≥
(
m(µ)S

p
p⋆
N,s

) p⋆N,s
p⋆
N,s

−p ≥
(
κδS

p
p⋆
N,s

) p⋆s
p⋆
N,s

−p
. (3.27)

Proceeding as earlier, with equations (3.26) and (3.27) we obtain

Lλ ≥
( 1

σ
− 1

σ0

)κδ
p
µ+

( 1

pσ0
− 1

p⋆N,s

)
η − λCµ

1−γ2
p , ≥

( 1

pσ0
− 1

p⋆N,s

)
η −

[ λC(
1
σ − 1

σ0

)
κδ

p

] p
p−(1−γ2)

.

Let

λ′′ =
( 1

σ
− 1

σ0

) κδ
pC

[( 1

pσ0
− 1

p⋆N,s

)(
κ1S

p
p⋆s
⋆

) p⋆s
p⋆
N,s

−p
] p−(1−γ2)

p

. (3.28)

It follows from equation (3.27) that for any λ < λ′′, one has

0 > Lλ ≥
( 1

pσ0
− 1

p⋆N,s

)(
κδS

p
p⋆
N,s

) p⋆N,s
p⋆
N,s

−p −
[ λC(

1
σ − 1

σ0

)
κδ

p

] p
p−(1−γ) > 0.

Hence, we still have a contradiction, which concludes the proof of the first case.

Case 2: infn∈N N (ϕn, ψn) = 0. In this case, we have two possibilities. Either (0, 0) is an
accumulation point for the sequence (ϕn, ψn), and so that, there exists a subsequence of (ϕn, ψn)
(still denoted by (ϕn, ψn)), that strongly converges to (ϕ, ψ) = (0, 0), or (0, 0) is an isolated point
of (ϕn, ψn).

The first case cannot occur because it would give that the trivial solution (0, 0) is a critical
point at the level Lλ. However, this is impossible since we have Jλ,ε(0, 0) = Lλ < 0. Thus, only
the latter case can occur, which means that there exists a subsequence, (still denoted by (ϕn, ψn)),
such that infn∈N N (ϕn, ψn) = δ > 0. We can proceed as before by considering this subsequence.

This completes the proof of the second case. Hence, Jλ,ε satisfies the Palais-Smale condition
at any level Lλ < 0 for any λ ∈ (0, λ0), where λ0 = min{λ′, λ′′}. □

4. Infinitely many small solutions with negative energy

Let us note that the functional Jλ,ε is not bounded from below in X. Indeed, let (ϕ, ψ) ∈ X
with ∥(ϕ, ψ)∥ ≤ 1. From (A1), we have m(t) > 0 for any t > 0. On the other hand, condition

(A2) gives that M(t)
M (t) ≤

σ
t . Integrating over [1, t] with t > 1, we obtain

M (1)tσ ≥ M (t), for all t ≥ 1.

The latter gives

Jλ,ε(tϕ, tψ) =
1

p
M (N (tϕ, tψ))− λ

1− γ1

∫
D
a(x)

[
(tϕ+ + ε)1−γ1 − ε1−γ1

]
dx

− λ

1− γ2

∫
D
b(x)

[
(tψ+ + ε)1−γ2 − ε1−γ2

]
dx− 1

p⋆N,s

∫
D
(tϕ+)θ1(tψ+)θ2 dx

≤ M (1)

p
tpσ +

λε1−γ1

1− γ1

∫
D
a(x) dx+

λε1−γ2

1− γ2

∫
D
b(x) dx

− 1

p⋆N,s
tθ1+θ2

∫
D
(ϕ+)θ1(ψ+)θ2 dx,

so that Jλ,ε(tϕ, tψ) → −∞ as t→ +∞, thanks to the fact that pσ < θ1+θ2. Hence, to obtain the
existence of weak solutions to problem (3.1), we introduce a suitable truncated functional related
to Jλ,ε that satisfies the conditions of Lemma 2.7.

By using equations (2.1), (3.7) and (3.8), for any (ϕ, ψ) ∈ X, we have

Jλ,ε(ϕ, ψ) =
1

p
M (N (ϕ, ψ))− λ

1− γ1

∫
D
a(x)

[
(ϕ+ + ε)1−γ1 − ε1−γ1

]
dx

− λ

1− γ2

∫
D
b(x)

[
(ψ+ + ε)1−γ2 − ε1−γ2

]
dx
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− 1

p⋆N,s

∫
D
(ϕ+)θ1(ψ+)θ2 dx

≥ 1

p
M (∥ϕ, ψ∥p)− λca∥ϕ, ψ∥1−γ1 − λcb∥ϕ, ψ∥1−γ2 −

1

Sp⋆N,s
∥ϕ, ψ∥p

⋆
N,s .

On the other hand, by (A1) and (A2), we have:
If ∥ϕ, ψ∥ ≤ 1, then

Jλ,ε(ϕ, ψ) ≥
M (1)

p
∥ϕ, ψ∥σp − λca∥ϕ, ψ∥1−γ1 − λcb∥ϕ, ψ∥1−γ2 −

S−1

p⋆N,s
∥ϕ, ψ∥p

⋆
N,s .

If ∥ϕ, ψ∥ > 1, then

Jλ,ε(ϕ, ψ) ≥
1

p
κ∥ϕ, ψ∥p − λca∥ϕ, ψ∥1−γ1 − λcb∥ϕ, ψ∥1−γ2 −

S−1

p⋆N,s
∥ϕ, ψ∥p

⋆
N,s .

We define

H(ξ) =


M (1)
p ξpθ − λcaξ

1−γ1 − λcbξ
1−γ2 − S−1

p⋆N,s
ξp

⋆
N,s if ξ ≤ 1

κ
p ξ
p − λcaξ

1−γ1 − λcbξ
1−γ2 − S−1

p⋆N,s
ξp

⋆
N,s if ξ > 1.

It is easy to see that for any λ > 0 sufficiently small enough, there exist ξ1, ξ2 ∈ (0, 1) with ξ1 < ξ2
such that H(ξ1) = H(ξ2) = 0 and

H(ξ)

{
< 0 if 0 < ξ < ξ1

> 0 if ξ1 < ξ < ξ2 .

Now, following the same approach as in [37], we introduce the following truncated functional
Tλ : X → R defined as

Tλ(ϕ, ψ) =
1

p
M (N (ϕ, ψ))− λ

1− γ1

∫
D
a(x)

[
(ϕ+ + ε)1−γ1 − ε1−γ1

]
dx

− λ

1− γ2

∫
D
b(x)

[
(ψ+ + ε)1−γ2 − ε1−γ2

]
dx− χ(∥ϕ, ψ∥)

p⋆N,s

∫
D
(ϕ+)θ1(ψ+)θ2 dx

Here, χ : R+ → [0, 1] is a non-increasing smooth function such that χ(ξ) = 0 if ξ ≥ ξ2 and
χ(ξ) = 1 if ξ ≤ ξ1.

By the construction of Tλ with Lemma 3.3, it can be easily verified that Tλ possesses the
following properties:

Lemma 4.1. (1) The functional Tλ is of C1, even, and bounded from below on X.
(2) If Tλ(ϕ, ψ) < 0, then ∥ϕ, ψ∥ < ξ1, and Tλ(ϕ, ψ) = Jλ,ε(ϕ, ψ).
(3) For any λ ∈ (0, λ0), Tλ satisfies a local Palais-Smale condition for Lλ < 0.

Let us define the set

Σk = {A ∈ X \ {0} : A is closed, A = −A, γ(A) ≥ k},
where γ(A) denotes the genus of A, (see Definition 2.5). For k ∈ N, we define the number

Ck = inf
A∈Σk

sup
(ϕ,ψ)∈A

Tλ(ϕ, ψ).

The significance of the real number Ck is that it provides a lower bound for the critical values of
Tλ restricted to certain subsets of X with higher Lusternik-Schnirelmann category.

Lemma 4.2. Assuming that (A1)–(A3) hold. Then for each λ > 0 sufficiently small enough and
k ∈ N, Ck < 0, each Ck is a critical value of Tλ.

Proof. Let ξ ∈ (0, ξ1) and (ϕ, ψ) ∈ X with ∥ϕ, ψ∥ = 1, we have χ(∥ξϕ, ξψ∥) = 1. Now, let’s fix
k ∈ N and define X(k) as a k-dimensional subspace of C∞

0 (D) × C∞
0 (D). Since all the norms in

X(k) are equivalent, there exists rk ∈ (0, 1) such that for any (ϕ, ψ) ∈ X(k), we have

∥ϕ, ψ∥ ≤ rk =⇒ |ϕ, ψ|L∞(D×D) ≤ 1.
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Let us consider the set

S (k)
rk

= {(ϕ, ψ) ∈ X(k) : ∥ϕ, ψ∥ = rk}.

We choose (ϕ(k), ψ(k)) ∈ S
(k)
rk such that ϕ(k) > 0, ψ(k) > 0, and ξ ∈ (0, ξ1). Then,

Tλ(ξϕ(k), ξψ(k))

=
1

p
M (N (ξϕ(k), ξψ(k)))− λ

1− γ1

∫
D
a(x)

[
(ξϕ(k) + ε)1−γ1 − ε1−γ1

]
dx

− λ

1− γ2

∫
D
b(x)

[
(ξψ(k) + ε)1−γ2 − ε1−γ2

]
dx− ξp

⋆
N,s

p⋆N,s

∫
D
(ϕ(k))θ1(ψ(k))θ2 dx

≤ ξp

p

(
max

z∈(0,ξ1)
m(z)

)
∥ϕ(k), ψ(k)∥p

− λ

1− γ1

∫
D
a(x)

[
(ξϕ(k) + ε)1−γ1 − ε1−γ1

]
dx

− λ

1− γ2

∫
D
b(x)

[
(ξψ(k) + ε)1−γ2 − ε1−γ2

]
dx

≤ ξp

p

(
max

z∈(0,ξ1)
m(z)

)
∥ϕ(k), ψ(k)∥p

− ξ
1−γ1

p ε
(1−γ1)(p−1)

p

∫
D
a(x)

(
ϕ(k)

) 1−γ1
p dx− ξ

1−γ2
p ε

(1−γ2)(p−1)
p

∫
D
b(x)

(
ψ(k)

) 1−γ2
p dx,

thanks to the elementary inequality

(z + t)1−γ − t1−γ ≥ (1− γ)z
1−γ
p t

(1−γ)(p−1)
p , p > 1, t > 0, z > 0 large enough.

Since p > 1−γ1
p and p > 1−γ2

p , then we can find ξk ∈ (0, t1) and τk such that

Tλ(ξkϕ(k), ξkψ(k)) ≤ −τk < 0, ∀(ϕ(k), ψ(k)) ∈ S (k)
rk

,

which gives

Tλ(ϕ(k), ψ(k)) ≤ −τk < 0, ∀(ϕ(k), ψ(k)) ∈ S
(k)
ξkρk

.

Thus, Ck < 0 for all k ∈ N. By applying Lemma 4.2, we can deduce that Iλ is bounded from below
and satisfies the Palais-Smale condition at the level Ck for any λ > 0 small enough. Furthermore,

Proposition 2.6 states that γ(S
(k)
rk ) = k. Consequently, according to Lemma 2.7, we can conclude

that each Ck, k ∈ N, is a critical value of Tλ. Consequently, according to (2) of Lemma 4.1, Jλ,ε
admits a sequence of critical points (ϕk,ε, ψk,ε) ⊂ X that converges to zero. Now, to show the
positivity of the solutions (ϕk,ε, ψk,ε), we replace the test function (φ1, φ2) in the equation (3.2)
by ϕ−k,ε = max{−ϕk,ε, 0}, ψ−

k,ε = max{−ψk,ε, 0} and using the elementary inequality

(a− b)(a− − b−) ≤ −(a− − b−)2,

we obtain ∥ϕ−k,ε, ψ
−
k,ε∥ = 0 implying that (ϕk,ε) and (ψk,ε) are two nonnegative functions. By

applying the maximum principle (Proposition 2.17, [29]), we conclude that (ϕk,ε, ψk,ε) is a sequence
of positive solutions for system (3.1). This completes the proof. □

5. Proof of our main result

In this section, we will show that system (1.1) possesses a sequence of nontrivial weak solutions
(ϕk, ψk) in the space X as a limit of the solutions of problem (3.1) obtained in the previous section.
Let λ ∈ (0, λ0) be small enough and for k ∈ N, let (ϕk,ε, ψk,ε)ε>0 be a family of positive weak
solutions of problem (3.1).

Case 1: infε>0 N (ϕk,ε, ψk,ε) = δk > 0. From (A1), there exists κk > 0 such that

m(N (ϕk,ε, ψk,ε)) ≥ κk, for all ε > 0.
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From this, (A2), and equations (3.7) and (3.8), we have

Ck + oε(1) = Jλ,ε(ϕk,ε, ψk,ε)−
1

p⋆N,s
J ′
λ,ε(ϕk,ε, ψk,ε) · (ϕk,ε, ψk,ε)

=
1

p
M (N (ϕk,ε, ψk,ε))−

λ

1− γ1

∫
D
a(x)

[
(ϕk,ε + ε)1−γ1 − ε1−γ1

]
dx

− λ

1− γ2

∫
D
b(x)

[
(ψk,ε + ε)1−γ2 − ε1−γ2

]
dx− 1

p⋆N,s

∫
D
ϕθ1k,εψ

θ2
k,ε dx

− 1

p⋆N,s
m(N (ϕk,ε, ψk,ε))N (ϕk,ε, ψk,ε) +

λ

p⋆N,s

∫
D
a(x)(ϕk,ε + ε)−γ1ϕk,ε dx

+
λ

p⋆N,s

∫
D
b(x)(ψk,ε + ε)−γ2ψk,ε dx+

1

p⋆N,s

∫
D
ϕθ1k,εψ

θ2
k,ε dx

≥ (
κδ
pσ

− 1

p⋆N,s
)∥ϕk,ε, ψk,ε∥p − λ(

1

p⋆N,s
+

1

1− γ1
)

∫
D
a(x)(ϕ+n )

1−γ1 dx

− λ(
1

p⋆N,s
+

1

1− γ2
)

∫
D
b(x)(ψ+

n )
1−γ2 dx

≥ (
κδ
pσ

− 1

p⋆N,s
)∥ϕk,ε, ψk,ε∥p − λ(

1

p⋆N,s
+

1

1− γ1
)Ca∥ϕk,ε, ψk,ε∥1−γ1

− λ(
1

p⋆N,s
+

1

1− γ2
)Cb∥ϕk,ε, ψk,ε∥1−γ2

This gives the boundedness of (ϕk,ε, ψk,ε)ε>0. Since the space X is reflexive, up to a subsequence,
still denoted by (ϕk,ε, ψk,ε)ε>0, there exists (ϕk, ψk) ∈ X such that, (ϕk,ε, ψk,ε)⇀ (ϕk, ψk) weakly
in X, (ϕk,ε, ψk,ε) → (ϕk, ψk) strongly in Lα(D) × Lβ(D) for all (α, β) ∈ [1, p⋆N,s)

2, (ϕk,ε, ψk,ε) →
(ϕk, ψk) a.e. in D ×D, as ε → 0+. In addition, there exist µ, η > 0 and f1, f2 ∈ L1(D) such that
ϕk,ε ≤ f1, ψk,ε ≤ f2, and

N (ϕk,ε, ψk,ε) → µ, and

∫
D
|ϕk,ε − ϕk|θ1 |ψk,ε − ψk|θ2 dx→ η. (5.1)

We aim to show that (ϕk,ε, ψk,ε)⇀ (ϕk, ψk) strongly in X. We observe that

|a(x)(ϕk,ε + ε)−γ1ϕk,ε| ≤ a(x)ϕ1−γ1k,ε ,

|b(x)(ψk,ε + ε)−γ2ψk,ε| ≤ b(x)ψ1−γ2
k,ε ,

a.e. in D, so by the Vitali convergence theorem, we obtain∫
D
a(x)(ϕk,ε + ε)−γ1ϕk,ε dx =

∫
D
a(x)ϕ1−γ1k dx, (5.2)∫

D
b(x)(ψk,ε + ε)−γ2ψk,ε dx =

∫
D
b(x)ψ1−γ2

k dx. (5.3)

On the other hand, a simple calculation in (3.1), we have

m(N (ϕk,ε, ψk,ε))Lp(ϕk,ε) = λ(ϕk,ε + ε)−γ1 +
θ1
p⋆N,s

ϕθ1−1
k,ε ψθ2k,ε ≥ min{ λ

2γ1
,
θ1
p⋆N,s

}

m(N (ϕk,ε, ψk,ε))Lp(ψk,ε) = λ(ψk,ε + ε)−γ2 +
θ2
p⋆N,s

ϕθ1k,εψ
θ2−1
k,ε ≥ min{ λ

2γ2
,
θ1
p⋆N,s

}.

Therefore, since infε>0 N (ϕk,ε, ψk,ε) = δk > 0 and using the strong maximum principle (see [29]),
there exist D0 ⊂ D, D1 ⊂ D and a constants d0 > 0, d1 that are independent of ε such that for
any ε > 0, we have

ϕk,ε ≥ d0 a.e. in D0, and ψk,ε ≥ d1 a.e.in D1. (5.4)
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Now, let us consider a function φ1 ∈ C∞
0 (D with supp(φ1) ⊂ D0 and a function φ2 ∈ C∞

0 (D with
supp(φ2) ⊂ D0. We observe that from (5.4) we have

|a(x)(ϕk,ε + ε)−γ1φ1| ≤ a(x)d−γ10 |φ1|, a.e. in D0,

|b(x)(ψk,ε + ε)−γ2φ2| ≤ b(x)d−γ21 |φ2|, a.e. in D1.

Consequently, the dominated convergence theorem implies that∫
D
a(x)(ϕk,ε + ε)−γ1φ1 dx =

∫
D
a(x)ϕ−γ1k φ1 dx+ oε(1), (5.5)∫

D
b(x)(ψk,ε + ε)−γ2φ2 dx =

∫
D
b(x)ψ−γ2

k φ2 dx+ oε(1), (5.6)

as ε → 0+. Since ∂D is continuous, the space C∞
0 (D) is dense in E0(D) (see [19, Theorem

6]). Therefore, by a standard density argument, equations (5.5) and (5.6) hold true for any
(φ1, φ2) ∈ X. Thus, by combining (5.2)-(5.3) with (5.5)-(5.6) with φ1 = ϕk and φ2 = ψk, as
ε→ 0+, we obtain ∫

D
a(x)(ϕk,ε + ε)−γ1(ϕk,ε − ϕk) dx = oε(1),∫

D
b(x)(ψk,ε + ε)−γ2(ψk,ε − ψk) dx = oε(1).

Consequently, from (5.1), as ε→ 0+ we have

oε(1) = J ′
ε,λ(ϕk,ε, ψk,ε) · (ϕk,ε − ϕk, ψk,ε − ψk)

= m(N (ϕk,ε, ψk,ε))
(
N (ϕk,ε, ψk,ε)−N (ϕk, ψk)

)
−
∫
D
a(x)(ϕk,ε + ε)−γ1(ϕk,ε − ϕk) dx−

∫
D
b(x)(ψk,ε + ε)−γ2(ψk,ε − ψk) dx

−
∫
D
(ϕk,ε)

θ1(ψk,ε)
θ2 dx+

∫
D
(ϕk)

θ1(ψk)
θ2 dx+ oε(1)

= m(µ)∥ϕk,ε − ϕk, ϕk,ε − ψk∥p −
∫
Ω

|ϕk,ε(x)− ϕk(x)|θ1 |ψk,ε(x)− ψk(x)|θ2 dx+ oε(1),

so that

m(µ)∥ϕk,ε − ϕk, ϕk,ε − ψk∥p = η + oε(1).

Now, let us show that η = 0. By contradiction, i.e., we assume that η > 0. Arguing as in Lemma
3.2, we can show that

η

p⋆N,s−p

p⋆
N,s ≥ m(µ)S

p
p⋆
N,s . (5.7)

Now, consider σ0 > σ be such that pσ0 < p⋆N,s. Then, similarly to (3.24), as ε→ 0+ we have

Ck + oε(1) = Jλ,ε(ϕk,ε, ψk,ε)−
1

σ0
J ′
λ,ε(ϕk,ε, ψk,ε) · (ϕk,ε, ψk,ε)

=
1

p
M (N (ϕk,ε, ψk,ε))−

λ

1− γ1

∫
D
a(x)

[
(ϕk,ε + ε)1−γ1 − ε1−γ1

]
dx

− λ

1− γ2

∫
D
b(x)

[
(ψk,ε + ε)1−γ2 − ε1−γ2

]
dx− 1

p⋆N,s

∫
D
ϕθ1k,εψ

θ2
k,ε dx

− 1

σ0
m(N (ϕk,ε, ψk,ε))N (ϕk,ε, ψk,ε) +

λ

σ0

∫
D
a(x)(ϕk,ε + ε)−γ1ϕk,ε dx

+
λ

p⋆N,s

∫
D
b(x)(ψk,ε + ε)−γ2ψk,ε dx+

1

σ0

∫
D
ϕθ1k,εψ

θ2
k,ε dx

≥ 1

p
M (µ)− 1

pσ0
m(µ)µ+

( 1

pσ0
− 1

p⋆N,s

)∫
D
|ϕk,ε − ϕk|θ1 |ψk,ε − ψk|θ2 dx



EJDE-2026/05 MULTIPLE SOLUTIONS FOR KIRCHHOFF TYPE SYSTEMS 17

+
( 1

pσ0
− 1

p⋆N,s

)∫
D
|ϕk|θ1 |ψk|θ2 dx− λC

(
∥ϕn, ψn∥1−γ1 + ∥ϕn, ψn∥1−γ2

)
+ oε(1)

≥
( 1

σ
− 1

σ0

)m0

p
µθ +

( 1

pσ0
− 1

p⋆N,s

)
η − λC

(
∥ϕn, ψn∥1−γ1 + ∥ϕn, ψn∥1−γ2

)
+ oε(1).

That is,

Ck ≥
( 1

σ
− 1

σ0

)m0

p
µθ +

( 1

pσ0
− 1

p⋆N,s

)
η − λCmax{µ

1−γ1
p , µ

1−γ2
p }.

Without loss of generality, we may assume that σ1 ≤ σ2. In particular, for any λ ∈ (0, λ0), we
obtain

0 > Ck ≥
( 1

σ
− 1

σ0

)m0

p
µθ +

( 1

pσ0
− 1

p⋆N,s

)
η − λCµ

1−γ2
p > 0,

thanks to (3.25) and (3.28). Which leads to a contradiction concluding η = 0. Hence (ϕk,ε, ψk,ε)⇀
(ϕk, ψk) strongly in X.

Case 2: infε>0 N (ϕk,ε, ψk,ε) = 0. In this case, we can apply a similar approach to that used in
the proof of Lemma 4.2, allowing us to deduce that (ϕk,ε, ψk,ε) ⇀ (ϕk, ψk) strongly in X. This
complete the proof of Theorem 1.2.
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