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MULTIPLE POSITIVE NORMALIZED SOLUTIONS FOR KIRCHHOFF TYPE
SYSTEM WITH VAN DER WAALS TYPE POTENTIALS

ZHEWEN CHEN, MUZI LI

ABSTRACT. This article shows the existence of normalized solutions for Kirchhoff type system
with van der Waals type potentials,

—(a+ b/N |Vui|2da) Aur = Mur + pn (Ta  [ur [P [ur P12 us + Or1 (Ig # [uz]"2)|ur [~ u,
R

—(a+ b/N |Vuz|?dz) Aus = Aous + po (o * |uz|P?)|ua|P2 ~2us + Ora(Ig * [ut]™) Jug] ™ " 2usg,
R

/ |u1\2daz =d; >0, / |u2\2daz =dz >0,
RN RN

N N
where N = 3,4, p1,p2,0 > 0, NIJ\;Q < p1,p2 < W, 2- %ﬁ <711+ <2~22 :2~N—f§,
0 <a,B8< N, Iy and Ig are the Riesz potentials. We show that the system has a positive least
energy solution at negative energy level for © small. In addition, we also prove that the system
admits a high energy positive solution at positive energy level in the special case.

1. INTRODUCTION AND MAIN RESULTS
In this article, we study the existence of the positive normalized solutions for Kirchhoff type

system with van der Waals type potentials

—(a + b/ |VU1|2dl')Au1 = )\1U1 + [}Jl(Ia * \ul\pl)\ul\m*Qul + @Tl(I@ * \uz\rz)|u1|”72u1,
RN

—(a+ b/ |Vug|?dz) Aug = Agug + pio (Lo * [ua|P?)|ua|P22ug + Ora(Ig * [ug|™)|uz|™? 2us,
RN

(1.1)
with the L2-mass constraint

/ |U1|2dx =d; > 0, / |U2|2d1' =dy > 0, (].2)
RN RN

where N = 3,4, a,b > 0, o, 3 € (0, N), I, I are the Riesz potentials defined for every = € RV\{0}
by

Ay (N) I(&5e)
1, = N)=——= "~
() |x|N—a’ a(N) F(%)?TN/QZO‘

(1.3)

with I denoting the Gamma function. Throughout this paper, we always require that a, b, 1, 2, © >
0, and assume that 2 < p1,p2 < 2+ %, 71,79 > w, 2. W <ri+re <2-2%

Because of the appearance of the term [, |Vu|?dz, is regard as a nomnlocal problem,
which implies that equation is not a pointwise identity. Moreover, this phenomenon also
leads to some mathematical difficulties that make the study of more interesting. Problem
originates from the stationary analog of the equation

0%u Yo R [9 0u, 0%u
pﬁ_(?+ﬁ/o 155 74) 55 = O
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which was proposed by Kirchhoff [21] in 1883, and being an extension of the classical D’ Alembert’s
wave equations for free vibration of elastic strings. Kirchhoff’s model takes into account the
changes in length of the string produced by transverse vibrations. In the last decades, Because of
the strong background in physics, starting with the framework of Lions [23], many mathematicians
have established many interesting conclusions about Kirchhoff-type problems [Il [16, 29, 2T, 17,
18, 4] 14, [15].

In , if A € R is fixed, then we call the fixed frequency problem. One can adopt
the traditional variational method, looking for critical points of Fj(u1,us), or fixed point the-
ory, bifurcation, topological methods, Nehari manifold method and Lyapunov-Schmidt reduction,
where

2 2 2 2
a b i

Fiunua) = § 3 IVl + 3 3 19wl = SNl =32 25 [ (el
i=1 i=1 i=1 i=1

_ @/ (I * |u [P us P da
RN

In recent decades, because of the application to physics, mathematicians are interested in solutions
that satisfy L?—mass constraint . In this direction, the mass dy,ds > 0 is prescribed, the
frequency A; cannot be determined a priori, but is a part of unknown which appears as Lagrange
multipliers. In this case, mathematicians often call — the fixed mass problem and the
solution is called a normalized solution. One can get a normalized solution to problem by
looking for a critical point of the functional

F(ui,u2)

2 2 2
a b i
LR - 4—/<m*m

constrained on S(dy) x S(dz), where S(d) := {u € H*(RY) : [on [u|?*dz = d > 0}. It is standard
to check that F' € C*.

For the fixed mass problem, the L?-mass constraint presents some mathematical difficul-
ties. As opposed to the fixed frequency problem, the fixed mass problem will have many technical
difficulties when dealing with it in a variational framework: (I) the Nehari manifold method is
inapplicable; (IT) the Lagrange multipliers must be controlled; (III) for the fixed frequency prob-
lem, usually a nontrivial weak limit is also a solution. However, for the fixed mass problem, even
though the weak limit is nontrivial, the L?-mass constraint may be not satisfied; (IV) the L?*-mass
critical exponent seriously affects the geometric structure of the functional.

The equation

Di dz

Uq

Pz‘)

Uy

pi)

Pidy — @/ (Ig * |uq|P*)|uz|P?dx
RN

10 + AW + (V % |@|P)|@|P~2¥ = 0,inRT x RY, (1.4)
has ¥ : Rt x RN — C is a complex valued function, V(z) = 64@ + 59%(&,6 > 1) is the van
der Waals type potential (see [30, [9]). The van der Waals coefficients dg, ds and d19 of alkaline-
earth interactions calculated by Porsev and Derevianko using relativistic many-body perturbation
theory are believed to be accurate to 1/100 (see[27]). As one of the van der Waals type potentials

the Lennard-Jones potential
1

1
Vis(v) = ig(ﬁ - ﬁ)
with ¢ =6 and 6 = 12, is often used as an approximate model for the isotropic part of a total van
der Waals force as a function of distance (see [30, [0]).

When a = 1, b = 0 and the response function is a delta function, i.e. I,(z) = Ig(x) = d(z), the

nonlinear response is local and problem (1.1) with prescribed mass turns out to be
7Au1 = /\1u1 -+ /1,1|’U,1|p1727.tl -+ @T'1|U2|T2 |U1|T172U1, (1 5)
—Auy = Aty + po|ua|P> " uy + Ora|ug | ug| 2 Pug, '
with the L?-mass constraint [,y [ui|*dz = di > 0, [pn |ug|?dz = dy > 0. In recent years,
mathematicians have drawn rich conclusions concerning the existence, multiplicity and qualitative
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properties of the normalized solutions of system (see [3, 5116l 2 4, [13]). Gou et al. [13] showed
that the system admits two normalized solutions under the conditions that 2 < p,p2 < 2+ % <
T+ Ty < 2F = % (resp. 2+ % <rit+re <24 % < p1,p2 < 2%) by using minimizing methods,
Pohozaev type manifold, Schwarz rearrangements and mountain pass theorem. Bartsch et al. [2]
focused on the choice p; = py = 2%, and allowing 71 + 72 to be mass-subcritical, mass-critical
or mass-supercritical. The authors proved the existence and non-existence of normalized ground
state for different ranges of ©.

When a,b > 0 and the response function is a delta function, i.e. In(z) = Ig(z) = d(z), system

(1.1) becomes

7((1 -+ b/ |VU1|2d$)AU1 = /\1u1 -+ ILL1|U1|p172U1 -+ ®T1|U2|T2|U1|T172U1{E S RN,
RN

(1.6)

7((1 + b/ |Vu2|2dx)Au2 = oo + ,LL2|U2|p2727.L2 + @7”2|U1|T1 |u2|’“272u22 € RY.
RN

When N < 3 and 2 < p1,p2,71 + 72 < 2+ %, Cao et al. [§] proved that system ((1.6) admits
a positive normalized solution. When N = 2,3, Yang [29] showed that system (L.6) admits a
normalized ground state under the condition that 2 + % < p1,p2,r1+Tre <2 and 2 < ry + 19 <
24 % < p1,p2 < 2%, respectively.

When a = 1, b = 0 and the response function is a delta function, i.e. I,(z) = Ig(x) = §(x),
system becomes the Choquard system (Hartree system)

—Aug = Aug + p1 (I * |u1|p1)|u1|p172u1 + Or (I, * \ug\r2)|u1|”72u1x e RY,
—Auy = Aaus + pia(In * [uz|P?)|ualP>~2ug + Ora (I * |ur|™)|us|™ *usz € RY.

When pq, o, ® > 0 and N]J\}O‘ < 11,79, Geng et al. [I0] proved that system has a normalized
ground state under the condition that N > 3 and Nfgo‘ < p1,p2 < Niat2 r1,r2 < 2% by using
Schwartz rearrangement. In addition, they proved that the system (1.7) has a second solution
for N = 3 and p; = po = a = 2. They also proved that has a second solution for N = 5,
% < ri,re < W < p1,p2 < 2% and p; = pa = o = 2. For Hardy-Littlewood-Sobolev
critical case, i.e. py = pa = 2, Zhang et al. [31] proved that system has a normalized ground
state for different ranges of © when r1 + 5 is set to be mass subcritical, mass critical and mass
supercritical, respectively.

However, as far as we know, for the case of a,b > 0 and the response functions are different

Riesz potential functions, the existence of the solution of the system is still unknown.

Definition 1.1. (u1,us2) is a normalized ground state to (L.1)-(1.2)) if F'|g(4,)xs(ds) (U1, u2) =0
and

(1.7)

F(uhug) = inf{F(vhvg) . (1}1,’[}2) S S(dl) X S(dg), Fl|S(d1)><S(d2)(v17v2) = 0}
Furthermore, (w1, ws) is a high energy normalized solution to — if F'|5(dy)x S (ds) (w1, w2) =
0 and

F(wl,’LUg) > inf{F(Ul,’Ug) : (1)1,’1]2) S S(dl) X S(dg),Fl|5(d1)><s(d2)(’l}1,’l)2) = 0}

In this article, we demonstrate our main results in the following two cases:
(Al) % <p1,p2<%,7"1,7’2> w and2~% <7‘1+T2<2'w.
(AQ) % < p1,p2 < N+ﬁ;+2, r1,T9 > NTJ'_’B and 2 - N+TB+4 <ri+re<2- 22
To restore some compactness, we search for critical points of F' constrained on S,(d1) x S, (ds2),

where S,.(d) := {u € H}(RY) : ||ul|3 = d} and

H!RY) = {u € H'(RY) : uis a radially symmetric function.
For case of (Ay), F is unbounded below in S,.(d;) x S;-(d2). Hence, we need the Pohozaev manifold
P(dl,dz) = {(’Lbl,’LLQ) € Sr(dl) X Sr(dg) : P(uhuQ) = 0}, where

2

2 2
i ; ;
Pluru) = a3 Vaslf+ b3 [Vl = 30 2N = N =) [ (T oo
i=1 i=1 i=1 "
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Nr—2(N + : :
- @#/ (Ig * |u1]™)|ue| ™ dz
RN
with r = r; + ro. We define W (k) := {(u1,u2) € S.(d1) x S-(d2) : ||Vui||3 + ||Vuz||3 < k} and
O’(dl, d2) = V%/I%i) F(ul,u2) < 0. (18)

For each u € S,(d), we define
TRu; t=e? Tu(eTx), =12

Hence,
\Ijul,u2 (7—) = F(T * UL, T * u2)

2 2

a b

= 5627 Z Vi3 + 1647 Z I Vusll5
=1 =1
2
_ Z ﬂe(Npi—N—a)T/ (Lo * g |P*) ;|7 dae
= 2pi RN
- @e%*N*ﬁ/ (Ig * |ur |™) | ug| ™ .
RN

By direct computations, we have (¥4, ,) (0) = P(u1, uz). We divide P(d1,d2) into 3 parts,
P(dl, dg) =P_ (d1, dg) U Po(dl, dg) U P+(d17 dg),

where
,Pf(dth) = {(’LL17’U,2) S P(dl,dg) . (\I]ul,ug)//(o) < 0}7
Po(dy,d2) = {(u1,u2) € P(d1,dz) : (Vu, uy)"(0) = 0},
Pi(dr,d2) = {(ur,uz) € P(dy,da) : (o, u,)"(0) > 0},
and
2 2
(Woy )" (0) = 20> (Vi3 + 40 (Va3
i=1 i=1
- Z i (Np; — N — 04)2/ (To * |wilP?)|ui [P de
o 2pi RN
N
-0y =N = [ (sl
]RN

Theorem 1.2. Assume that (Al) holds. Then, every minimizing sequence of (1.8]) is compact,
up to translation, in H}(RY) x HY(RYN). Moreover, system (1.1)) has a positive normalized ground
state.

Theorem 1.3. Assume that (A2) holds and 0 < o —2 < 8 < a < N. Then, there exist
ko = ko(dy,d2) > 0, ©, = O,(dy1,d2) > 0, such that for any 0 < © < O,, system (1.1)-(1.2]) has a
positive radial solution (v1,ve) € W(ky) at negative level F(v1,v2) < 0 for some A1, g < 0.

Theorem 1.4. Assume that (A2) holds,and a = 1, b =0, N =3 andp;1 = p2 = a = =
r1 = ro = 2. Then, there exist kg = ko(d1,d2) > 0, O, = O,(d1,d2) > 0, such that for any
0 < O < Oy, system — has a second positive radial solution (u1,us) € W (ko) at positive
level F(uy,uz) > 0 for some A1, Ay < 0.

Remark 1.5. Definition Theorem and 77 indicate that — admit a normalized
ground state at negative level F(v1,v2) < 0 and a high energy normalized solution at positive
level F(uy,us) > 0, under the condition that (A2),a=1,b=0, N=3 and p; =ps =a ==
TT =T = 2 hold.
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Remark 1.6. For nonlinear classical Choquard system the mass critical exponent is & +]\‘;+2.

In Kirchhoff-Choquard system, by the appearance of the [y |Vu|*dz term, the mass critical

exponent becomes w. In this paper, if Nf\;o‘ < p1,p2 < w, then Lemma and Lemma,

do not hold.

Remark 1.7. Since we do not know whether the inequality
IV {ur, u2}* [l < V|l + | Vuz|l3

holds, we can not use the Schwartz rearrangement method to prove the compactness of minimized
sequence in this paper.

From a physical point of view, it is of great importance to study the solution of problem , as
confirmed in [30, Q] 27]. We emphasize that this study seems to be the first contribution regarding
existence of normalized ground states for a Kirchhoff system with van der Waals type potentials.

The rest of this article organized as follows: In Section 2, we present some preliminaries. In
Section 3, we prove the existence of normalized ground states under the purely mass subcritical
case. In Section 4, we prove the existence of the first solution, which is a local minimizer. In
Section 5, the second solution is proved by using mountain pass theorem.

Notation: L*(RY) is the Lebesgue space with the norms [jul|, = (fp~ [u[*dz)¥/*, 1 < s < cc.
H(RY) is the usual Sobolev space with norm ||| gy = (fon [Vu|? + ul?dz) /2.

2. PRELIMINARIES

Lemma 2.1. [Hardy-Littlewood-Sobolev inequality [22]] Let N > 1, p,r > 1, and 0 < 8 < N with
1/p+ (N —B)/N+1/r=2. Letu € LP(RY) and v € L"(RY). Then there exists a sharp constant
C(N,p,B), independent of u and v, such that

u(z)v(y)
U2y < Cuprsllilp ol
‘AN /RN |.’£ 7y|N*B y‘ — N.p, )/8” HPH ||

Ifp=r= —J\?fﬁ, then

v T(9)

{F(%)}*%

CN,p,r,,B:CN,ﬂ =T F(N)

Lemma 2.2 (Gagliardo-Nirenberg inequality of Power type [28]). Let N > 1 and 2 < p < 2%,
then the following sharp Gagliardo-Nirenberg inequality

1-6, Sp
[ullp < Cnpllully ™ IVull (2.1)
holds for any u € H*(RN), where 5, = % — %, the sharp constant Cn p s
» 2p 2N+ (2— N)p vo-2 1
o= aNTe—vp Ne-2 ) =
+ ( )p (r—2) 1@yl
and Qp is the unique positive radial solution of the equation
-AQ+Q = Q" Q.
Lemma 2.3 (Gagliardo-Nirenberg inequality of Choquard type[26]). Let N >3, o € (0, N) and

N+o N+o
N <p < {5, we have

Np—(N+o) N+ta—p(N-2)

/(Ia*m\p)\uwdxgc]v,p(/ VulPdz) (/ uPdz) T, (22)
RN RN RN

where equality holds for w = Q,, Cnp = \QI% and Qp is a nontrivial solution of
rl2
Np—2)+ N -« N+a—-(N-2)p _
Tt Ag, + 2R, — L QIR0 (23)

By [II} (3.3)], we have the following Lemma.
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Lemma 2.4. If 232 < py ry < B2 then

1/2 1/2
/ (L * ua|" sz < (/ (Lo # Jua ™| e (/ (T * [usl ™))
RN RN RN
where I, is given by (1.3).

Lemma 2.5 ([I9, Lemma A.2]). Ifp € (0, i25] when N >3 and p € (0,00) when N = 1,2. Let
u € LP(RN) be a smooth nonnegative function satisfying —Au > 0 in RN. Then u = 0.

We now consider the problem

~a+ [ | I9ude) A= Nkl

/ lu|?dz = d > 0,
RN

and N = 3,4. The corresponding minimization problem of

(2.4)

N+a

where a,b > 0,

ED s

<p< N+]3+2

ob(d) := inf 2.
where G, (u) = &|Vul|3 + %HVuH% — —2‘; Jon (Ta * [ulP)|ulPd.

Lemma 2.6. (i) For any d >0, we have o} (d) < 0.
(ii) o4 (d) is continuous with respect to d > 0.
(iii) For any d >m >0, then al(d) < oh(m) + ob(d —m).

Proof. Ttem (i) follows from [24, Theorem 1.2]. For item (ii), we assume that d* = d + 0,,(1). By
the definition of a4 (d"), for any e > 0, there exists u™ € S,.(d") such that

Gu(u™) < ol (d") + <. (2.6)

Let w™ It is easy to check that w™ € S,(d"™) and

Hu"l\zdl/2
0 (d) < Guw™) = G (u™) + 0n(1). (2.7)
Combining (2.6)) and ., we have
oh(d) <oy (d") + e+ on(1).
Reversing the argument, we obtain similarly that
oh(d") < op(d) + e+ on(1).
Thus, by the arbitrariness of e, we have ok (d™) = o¥(d) + 0,(1). This proves (ii).
By the density of C3°(RN) in H(RYN), for any € > 0, there exist 9, ¥ € C5°(RN) x C5°(RN)
with [|¢]|2 = m, ||*||3 = d —m, i = 1,2 such that
Gu(d) < of(m) +e,
Gu(¥) <oli(d—m)+e.
Since G, is invariant by translation, without loss of generality, we may assume that supp@ N
supp¢ = ), and then || + ¥[|3 = [[¢[3 + [[¢[|3 = d
ol (d) < Gu(¥+ ) < al(m) + ol (d — m) + 2.
Therefore,
ob(d) < aly(m)+ah(d—m).
This proof is complete. O
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Lemma 2.7 ([?, Lemma 2.5]linjie). Let 22 < rq,ry < 8£2 if

(), ug) = (ur,up)inH' (RY) x H'(RY),

then, up to a subsequence,

[ sl )lugde = [ (Tox ual™ualdo + 0 (1), (28)
RN RN
Lemma 2.8. If (A1) holds, then infyy () F(u1,u2) <0 for all k > 0.

Proof. Let u™(z) = 72 u(rz). Then it is easy to check that
(u1,uz) € Sp(di) X Sp(dz),  (u,u3) € W(k)

when 7 is sufficiently small. From

i a i i
F(uf,ug) = QZHVUzHﬁ T4Z||v 14 - Z A

— @T%*N*B/ (Ig * |uq|P*)|us|P?dz,
RN

N+a <p1,p2 < N’Lﬁ“ and NTH’ < 71,72 < 2%, we have @ (4, up) (T) < 0 for 7 small enough. O

Lemma 2.9. Assume that (A2) holds. Then there exist ko = ko(d1,d2) > 0, O, = ©,(dy,d3) >0
such that for any 0 < © < ©,,

inf F(Ul,ug) > 0.
W (2ko)\W (ko)

And there exists g > 0 small enough, such that

U(dl,dg) < inf F(’LL17UQ).
W (ko)\A(ko—eo)

Proof. For (uy,uz) € Sy(d1) x Sr(dz), let k = ||Vuy||3 + ||Vuz||3. Then by Lemma [2.3/and Lemma

we have

F(u17u2)
a b2 2 i
=gk IVl = 3 / s Pl de =6 [ (T s fus s
- 2.9
2 ZB ||Vul||Np1 @Bg N 2(N+B) ( )
b 9 Np,i Nr— 2(N+B)
> ok - ZBik — ©Bsk = g(k),

) Nta—p; (N—2) ) N+B— r1<N 2) N+B—-ro(N-2)
where B; = $-Cn p,d; 2 (t=1,2), and B3 = Cn 4, Cnrpd; dy 4 . By
(A2), we have

Np; — Nr —2(N
0< 2P > Y1 and #>2, i=1,2.

We fix k = kg sufficiently large such that

Np;—N—a—-4

b
ZBk 2 <op

and fix ©® = O, sufficiently small such that

Nr— 2(N+[3) 8 b
O, Bg(zko) < EYR
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Therefore, for each 0 < © < O, and (uy,uz) € W(2ko) \ W(ko), we obtain

2
b pj—IN—« r—2
F(ui,ug) > ng — ZBikN = @Bskw

=1

—k2(f—ZBk OBk %)

1 1 b
>pk2(- — — - — ) = k2,
—bko(s 24 24) 24k0

Next, by continuity of g(k) and g(kg) > 0, there exists g > 0 sufficiently small such that
g(k) > 0 when k € [ko — €, ko|. Hence,

Fui,uz) > g(k) > 0 > o(dy,dz)
for any (u1,u2) € W(ko) \ W (ko — €o). This proof is complete. O
Lemma 2.10. Let NJJ\;O‘ < p1,p2 < 2% and NTW < ri,re < 25 If (w1, u2) # (0,0) is a solution

of (L.1) for some (A1, \2) € R2, then Ay < 0 or Ay < 0. Furthermore, if u1 > 0 and uz > 0, then
A1 <05 difu; >0 and us > 0, then Ay < 0.

Proof. Testing (1.1)) by (u1,uz) and integrating in R, one has
Aiflua |3 + Azluz|3

2 2 2
=a ) [[Vull3+b> [Vulls = p /N(Ia s g [P ) [ [P e — @r/N(Ig ¥ Jur | us| "2 du.
i=1 i—1 =1 IR R

Combining P(u1,us) =0, 2 < p1,p2 < 2* and w < 11,72 < 23, we have

2
Aol + dollual3 = 3 us(Npi — N — o — 1) / (L * Jus
RN

Pi)
i=1

Nr—2(N
+0 (w - r) / (Ig * |ur [PV [us|P2dz < 0,
RN

Thus, at least one of A; and Ao is negative.
Then, we argue by contradiction, suppose A; > 0. In view uy; > 0, we have

U; Pidg

f(a + b/ \Vu1|2dx> Aug = Mug + p (I, * |u1|p1)|u1|p1*2u1 + Or (I * \uQ|p2)\u1|p1*2u1 > 0.
]RN

By Lemma we obtain u; = 0, which contradicts u; # 0. Therefore, \; < 0. The other case
can be proved in the same way. O

Lemma 2.11. Assume that 2 < p1,p2 < 3—5 and N+6 <ry,re < N+6 . For any bounded Palais-

Smale sequence {(u},uy)} for F on S, (dl) X S (da), then there exist (ul, ug) € HYRN) x HN(RY)
and a sequence {(\},\3)} C R?, such that up to a subsequence

(a) (ul,ug) — (ug,ug) in HXRYN) x HYRY), (uf,ud) — (uy,uz) in LP(RN) x LP(RYN) for

€ (2, %)

(b) (/\?7/\") (A1, A2) in (R?).

(c) F'(uf,uf) — A} (uf,0) — AZ(0,uf) — 0 in H,(RY) x H'(RY).

(d) (uy,ul) is a solution to the system for some A1, Ao < 0 if (u1,us) satisfies the

additional property P(uy,ul) — 0, where (A1, A2) is given by (b).
Proof. Obviously, item (a) is true Since {(uf,u%)} C H}(RY) x H}(RY) is bounded, by [7], we
have (F|s, (d,)xs,(ds)) (u],u5) — 0 in HYRN) x H7Y(RY) is equivalent to
1

Fl(”??“?) - T<F/(U?,Ug), (U?,O»(U?,O) - T<F/(u?7ug)7 (O,U;»(O,U;) -0
[[ur]l3 lluz 13
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in H-Y(RY) x H-Y(RY). Thus, we have
F'(uf,up) = Af (uf, 0) = A5 (0,up) =0 in H, H(RY) x HH(RY)

with
n 1 n . . .
Al = 75 <a||VU1 2+ b||Vu?||5 — ul/ (Lo # | [P |uf P dae
[lut |13 RN .10
_ @T‘l/ (IB * |u?|p1)|ug|p2dm) _ On(l),
RN
and
n 1 n N . .
Ap = W(CLHV%H% + bl Vusls — uz/ (Lo [ P2) |y P2 dac
5T . -

—ors [ (L) - 0,(1).
RN

This proves (c). By the boundedness of uf,u% in H}(RY), LP(RY) for p € (2,2*), Lemma
and Lemma [2.4] we obtain {A7}, {\} are bounded. This proves (b). Combining (b) and (c), it
is now standard to deduce (d). O

Lemma 2.12. Under the conditions of Lemma uft — uy in HYRY) if Ay < 0. Similarly,
uf — ug in HX(RYN) if Ay < 0.

Proof. In view of Lemmas [2.7] and we obtain

N
[ astupylurpde > [ o ) doCpS <pi< 2, =12, (212)
RN RN
N
[ setagipgreas » [ @l s < < 25), (2.13)
RN RN
<F/(uwllvug) - )‘?(uilvo)’ (u?,O)) - 0= <F/(u1’u2) - )\?(Ul,O), (u1’0)>' (2'14)
Therefore,
al|Vul'[13 + bl Vul |3 — AP ut |13 = al Vualls 4 bl Vualls — A flua 3.
Since
Jua]l3 < lim [lufl3, [Vl < lim [[Vu}]3, (2.15)
n—-+o0o n—-+o0o
it follows that
IVuill3 = [Vuallz,  [lufll3 = fluall3.
This proof is complete. O

3. PROOF OF THEOREM [I.2]

Lemma 3.1. Assume that (Al) holds. Then F is bounded form below and coercive on Sy(dy) X
Sy(dz). Furthermore, there exists a bounded Palais-Smale sequence {(u},u5)} C Sr(d1) x Sy(dz),
which satisfies (ut)™ — 0 and (u3)~ — 0 in HY(RY) x HY(RY).

Proof. Since NJJ\;Q <p1,p2<W,2-NT+ﬁ<r1+r2<2~N+Tﬁ+4,wehave0<]\fpi—]\7—oz<

2 and w < 2. From , we know that F' is bounded form below and coercive on
Sr(dl) X Sr(dg)

Next, let {(ul,ul)} C Sy(dy) x S.(d2) be a minimizing sequence for F'. By the coerciveness
of F', the sequence is bounded. Since the functional F' is even, we may assume that w} > 0
and wf? > 0. It is easy to check that F is a Cl'—manifold in H}(RY) x H}(RY), then by
Ekeland’s variational principle, there exists a minimizing sequence {(uf,u%)} C Sr(d1) x Sy(d2),
which is the Palais-Smale sequence for F' restricted to S,(dy) x Sy(dz) and satisfies ||(uf,ul) —
(Wi, wi )| g1 @y @Y) — 0 as n — +00. From wi > 0 and wy > 0, we have (uf)~ — 0 and
(uf)~ — 0in H}(RN) x HY(RY). O
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Proof of Theorem[1.4 By Lemma there exists a bounded Palais-Smale sequence {(u,u%)} C

S, (dy) xSy (dg) and (u1,uz) € H}(RM)x HY(RYN) with u; > 0 and up > 0, such that lim,, s y o (u}, u}) =
o(dy,ds), (uf,ul) — (u1,uz) in HY(RY) x H}(RY). Hence, it suffices to prove that (u},u}) —
(u1,uz) in HY(RN) x HY(RYM). Indeed, if this holds, then we have {(u},u%)} C S,.(dy) x S,(d2)

and F(ui,us) = o(dy,ds). Furthermore, by the strong maximum principle, we have u; > 0 and

uz > 0. From © > 0, obviously, we have o(d1,d2) < o41(d1) + 042(d2). By Lemma we know
o(dy,ds) < 0. We divide four cases to have that u; > 0 and us > 0.

Case I: u; = 0 and ug = 0. Obviously, we can obtain that lim, . F(u},uy) = 0, which is
contradicts o(dy, ds) < 0.

Case II: u; = 0 and us # 0. Combining (2.12)) and (2.15)), we have
. a b
lim  F(uf,uf) > 5[ Vual3 + 2| Vually = 22 | (T * [usl™)usl™d > ot2(d3), (3.1
n—+00 2 4 2p2 RN

where ds := ||uz||3 < do. By (i) and (iii) of Lemma we have 04?(d3) > 0h2(dz). Thus, by (33),
we have o(dy,da) > o2(d3). On the other hand, using Lemma again, we have of1(d;) < 0.
In view of o(dy,dz) < of1(dy) + oh2(dz), we have o(dy,d) < op2(dz). This is a contradiction.
Case III: u; # 0 and us = 0. By the same proof as in Case II, we can obtain a contradiction.
Case IV: u; # 0 and us # 0. From Lemma [2.10, we have A\; < 0 and Ay < 0. Thus, by Lemma

we obtain u} — u; and u% — ug in H}(RY). This proof is complete. O
4. PROOF OF THEOREM [[3]

Let k = ||[Vuq |3 + || Vuzl|3, then for each (u1,uz2) € S,(d1) x S,(dz), by the same proof as in
Lemma [2.9] we obtain

F(Ul, UQ)

2 2 2
a b i
= O Vw4 2 S V- —/ (Lo * |u

b
> k2 — Bk
78 1

Pi)

Uj

Pidy — @/ (Ig * |uq|P*)|ug|P2dx
RN

Npy—N
2

— _ Bok

Npo—N Nr—2(N+pB)
2

~ OBk~ = g(k),

N+4a—p;(N-2) N+B—r1(N—-2) NH4B—ro(N—-2)
4

where B; = %Ovaidi 2 (t=1,2), and B3 = Cn,Cn,rpyd; 4 d,
By Lemmas [2.8 and we consider the minimization problem

o(dy,ds) := M}?kfo)F(ul,uz) < Ofor any0 < © < O,.

Lemma 4.1. Assume that (A1) holds and 0 < o —2 < 8 < a < N. Then there exists ©1 > 0,
such that if 0 < © < Oy, then the function g(k) has a unique local minimum point at the negative
level and a unique global maxzimum point at the positive level. Moreover, there exists 0 < kg < kq,
such that g(ko) = g(k1) =0 and g(k) > 0 if and only if k € (ko, k1).

Proof. Without loss of generality, we assume that p; > ps.

Case I: p; = py, = p. For k > 0, we have

Np—N—«a Nr—2(N+p8)

g(k)ngQ—(Bl +By)k™ 2 —OBsk f

— (Bl + BQ) — ©B3k

Np-N-—a /b 4tNta_Np Nr—2Np+2(a—B)
=k 2 (*k 2 1 )

44+ N+a—Np Nr—2Np+2(a—28)
P

Define h(k) = 2k~ 2  — ©Bsk , then g(k) > 0 < h(k) > By + Bsy. Setting

0 b4+ N +a — Np) NN AT
N (4@B3(Nr —2Np+ 2(a — B)))

)

it is easy to check that h(k) is increasing in (0, k), decreasing in (k, +oc) and

2(4+N+a—Np)

h(k) = MO~ Nr—2vprh)
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where M is a positive constant. Hence, we can take © small enough, such that h(l::) > B + Bs.
Thus, there exists ©1 > 0, such that 0 < © < ©1, which implies that g(k) > 0 on k € (ko, k1).
Since g(k) — 0~ as k — 0T, g(k) has a local minimum point on (0, kq). Therefore, g(k) has at
least two critical points.

For k > 0, we define

(k) = Qki‘“’“” e Nr 2N +P) T_QELN Ry

NpNa2

By direct computation, ¢'(k) = k (p(k) — (B1 + B2)(Np— N —a)) and ¢'(k) = 0 &
o(k) = (B1 + B2)(Np — N — «). Since (k) has a unique global maximum point, p(k) = (By +
Bs)(Np — N — ) has at most two solutions, i.e., g(k) has at most two critical points. Thus, g(k)
has a unique local minimum point at the negative level and a unique global maximum point at
the positive level.

Case II: p; > ps. In this case, we have

g(k) = gkg - BlkNm;Nia - BQkN”EN*" _ @ngw
_ e <gk4+w+ng gt g @ng%)

P2

= kT (QUE) — Ba).

By calculation and analysis, @(k) has a unique global maximum point & with

I;:>( b4+ N+a—Np1)(4+ N+ a— Nps) )m'*k
QB3®(N7°—2Np1+2(a—5))(Nr—2Np2+2(a—ﬂ)) N
and Q(k) > Q(k.) > U for © small enough. Therefore, we can take © small enough, such

that Q(k) > Bs. The rest of the proof is similar to the case p1 = ps. O

Lemma 4.2. Assume that (A1) holds and 0 < « — 2 < 8 < o < N. Then there exists Oy > 0,
such that if 0 < © < Og, then Po(dy,d2) =0, and P is a submanifold of HX(RN) x HI(RY).

Proof. We argue by contradiction. Suppose that there exists (u1,us) € Po(dy,ds). Then

GZ Vgl + bz Vi3 — Z

(Npl N —a)/ (To * |ui|P?)|wi| PP da
]RN

(4.1)
- - — — T1 T _
(% -N-3) [ e vloP s <o
and
2‘12“%”#%2!'%“2 Z (Vo= N = [
RN
(4.2)
- —_— = — 1 T _
9( 5 N 5) /RN(Iﬁ*Wl\ )uz|"dz = 0.
By (4.1) and (4.2), we have
N?“ 2 )
(T’N 5*2) leuz\lz —fN B=4)b>" fluild
=1
: N (4.3)
- " . |Pi | Pi
_;2@-( 5 — Np; +a— ﬁ)/N(Ia*|ul| )i P d.

On the one hand, by (4.3]), we have

b 2 242 4 4 % ~N-p-2 - 2
UVl + [ Vuz|l2)” < b([Vullz + [ Vuzll2) + Waz Vi3
i=1
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1 wi (Nr . ;
:NT N 4;2%(2 Np%+o‘_5>/w(la*|“ip)uipdx
2
N—a
Z (IVur 3 + [ Vuz]3) ™ )
where 1 N N+ (N —2)
r 7“_“ =
Ki=w—— (7—]\71—}—0[— )CPL z 2
N _N-pg-azpl2 7 P)CNpia
Thus, there exists K3 > 0, such that
IIVU1||§ +[[Vuz 3 < K. (4.4)
On the other hand, comblnlng ) and (| ., we have
QbZHuiH%—FZ 2" (Np; —N—a)(N+oz+2—Np,-)/RN(Ia s« |w P9 |wi [P da
N
_ @(7 _N- ﬁ) (J _N-f- 2) / (Is * [ug|"™)|uz| 2 da.
RN
Thus,
2
> Wp - N =)V a2 = Np) [ (T el
i=1 2p1 RN
< %Z i1 +Zﬂ<Npi ~N-a)(N+a+2 —Nm/ (Lo * luaP)usPide - (45)
o i i 2 ) RN

=@(%—N 8) (5 =N =8-2) [ (<l el

If [on (I * [u1|™)|ug|"2dz = 0, by (4.5), we have u; = ug = 0, which is a contradiction. By (4],

we obtain
b
§(HU1||§ + [luzl3)?
< b([lunllz + uzll2) + allluallz + [[uzll3)

2
N
S BNy - N - a)/ (Lo * ™) s da + ©( 55 = N = ) / (I * ur ™) s e
i=1 2pi RN 2 RN
Nr ~N-B-2
<@(7—N— )( 1)/ I 1 T2
- 2 b N+a+2—N min{p1, p2} ]RN( o fua|) ] da
Nor— 2(N+[3)
< OK4([|Vur |3 + [ Vuz|3)
Since w > 2, then we have
b\ e
Vel + 1V2l3 > (55) . (4.6)

Combining (4.4) and (4.6), we obtain
( b )W
2K40
it does not hold for ©® small enough.
Next, we show that P(dy, dz) is a submanifold of H}(RY) x H!(RY). Note that
P(dhdg) = {(Ul,UQ) S H,,}(RN) X H,,}(RN) : P(ul,’UQ) = O,Sl(ul) = O,SQ(UQ) = 0},

where Sl(ul) = ||’LL1||% — d1, SQ(’U,Q) = ||U2H% — dg. It suffices to show that d(P, S1,S2) : H}(RN) X
H!(RM) — R? is surjective. Otherwise, by the independence of dS;(u;) and dSa(uz), dP(u1,uz)

<[V |3 + [ Vsl < Ks;
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must be a linear combination of dS;(u1) and dSa(uz), i.e., there exists k1,k2 € R, such that
(u1,us) is a weak solution of

—(a+ Qb/ |V |?dr) Auy
RN

Np1 — N -« N Nr—2(N+8 B
:Hlul—’—'ul1f(la*|/U'1|p1>|'ufl|p1 2U1+@T1#([5*|’IL2|p2)|u1|p1 2u1’
f(aJrQb/ |Vug|2dz) Aug

RN

Npy — N -« _ Nr —2(N + _

= Kouz + ,uzmi(la % |ug|P?)|ug P2~ 2uy + 67"2M(I5 s [ug |P1) [uo P2~ 2us.

2 4

Testing the above system with (u1, u2) and combining with Pohozaev identity, we obtain (®(y, 4,))"(0) =
0. Then (uy,us) € Po(di,d2) = 0, which is contradicted to Py(di,ds) = . The proof is com-
plete. O

Let ©, = min{O1, 0}, I} := {(u1,u2) € H}(RY) x H}RN) : [on (I * [ug|™)|ug|"2dz > 0}
and Iy := {(u1,uz) € H}(RY) x H}RY) : [on (Ig * Jug|™)|uz|"2dz = 0}. Next, we analyze the
geometric structure of @, ,,,)(7).

Lemma 4.3. Assume that (A1) holds and let 0 < © < ©.. Then for each (ui,us) € Sp(d1) x
Sr(d2) N IL, D@, u0) (T) has exactly two critical points Ty, u,) < S(u,,us) aNd WO 2€T08 €(yy ) <
Jurua) With Teuy sy < €(urus) < S(u,uz) < f(ur,ug)- Moreover,

(i) 7x (ur,u2) € Py(dy,d2) if and only if T = T(y, uy), T* (u1,u2) € P_(dy,dz) if and only if
T = S(u17u2).

(1) If 7 < €(uyuz)s then ||V (mxur)||3+||V(Txu2) (|3 < ko, and F(T(y, uy)*(u1,uz)) = min{ F(r%
(ur,u2)) : 7 € R |V (T%u1) |3 +||V(r*u2)||3 < ko} < 0. Moreover, F(s(ul,uz)*(ul,uﬂ) =
max,er F(7 % (u1,uz)).

(iii) The maps (u1,uz) = T(u, uy) and (U1, U2) = Sy, uy) are of class Ct.

Proof. For (uy,us) € S,(d1,dz), we obtain

2 2 2
(@) (7) = 06 3 [V + b6t 3 [Vl = S BP0 [ (1 d
i=1 i=1 i=1 "

Pi)

Usg

N r
— G)(—; — N —pe NT_N_B)T/ (Ig * |u1|™)|ue| ™ dz
RN

2 2
=ay |V(rxw)ll3+b) [V(r*u)l;

=1 i=1
2 .
_Z'u (Npl—N—Oé)/ (Ia*|7—*u1pl)7-*u1p7d$
i=1 2p; RN

N
0 =N =5) [ (Tyxlrew )l sl ds
2 RN
= P(T % u1, T *ug).
Therefore, 7% (u1,u2) € P(dy,d2) if and only if (® (4, 4,))' (1) = 0. Obviously,
Dy ) (T) = F(T w1, 7 % u) > g(e*Tk).
By Lemma we have

1. ko 1. Kk
By ) (1) > 0, for all 7 € (5 In=2, >l ?1)
In view of @y, 4,)(—00) = 07 and @y, ,,)(+00) = —o0, it follows that ®(,, ,,)(7) has at least two
critical points Ty, w, < S(uy,uy), Where sy, ) is global maximum point at positive level, 7(y, ) is
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a local minimum point on (—oo, % In k—k") at negative level. Similar to Lemma D@ (4, uz) (7) has
at most two critical points. Therefore, ®(,, ,)(7) has exactly the two critical points 7(,,,.,) and
5( From 7 % (u1,u2) € P(dy,dz) if and only @/ (1) =0, then 7 * (u1, uz) € P(dy,ds) if

u1,u2)" (u1,u2)
and only 7 = Ty, uy) OF T = S(y; up)- SINCE T(y, uy) i @ local minimum point, we have that

(q)‘r(ul,uz)*(ulv“Q))//(O) = (q)l(lul,UZ)(T(ulv'“Q)) Z 0.

Since Po(d1,d2) = 0, it follows that ((I)T(ul,uz)*(ul,m))/,(o) > 0. Then T(ul,uz)*(ulv uz) € Py (di,dz)
and Sy, u,) * (u1,u2) € P_(di,dz). By the monotonicity, ®(,, u,)(7) has exactly two zeros
€(uy,u2) </ f(ul’uz) with Tlupuz) < Clupuz) < S(upuz) < f(uhu2). Finally, let W(T,ul,UQ) =
(®(uy,us)) (7). Then

u7(7—(u1,u2)7u13u2) = W(S(ul,u2)7u17u2) 0
(I)(u1,u2))”(7-(u1,u2 ) >0

aTW(T(u1,u2)aulvu2) = (
asw(s(m,uz)aulauZ) = (q)(m,uz)) (S(m,uz)) <0

Applying the implicit function theorem, the maps (u1,u2) = T(u; ug) and (U1, u2) = Sy, u,) are
of class C'. O

Lemma 4.4. Assume that (A1) holds and let 0 < © < ©,. Then for each (ui,uz) € Sy(dy) X
Sr(da) NIz, Py, u,)(T) has a unique critical point T(y, u,) and a zero e(y, u,) With T, u,) <
€(u1,us)- Moreover,

(i) P(di,d2) = Py(di,d2) and 7% (ur,u2) € Py(di,da) if and only if T = T(y, u,)-
(i) F(T(uy,up) * (u1,u2)) = minger F(T % (u1, u2)).
(iit) V(T u)[l3 + V(7 x u2)[[3 < ko for all T < e(u, us)-

Proof. Without loss of generality, we assume that p; > ps. It is easy to see that ®(,, ,)(7) = 0~
as T — —00, and Py, 4,)(7) = +00 as 7 — +oo for any (ui,u2) € Sy(di,d2) N Il. Hence,
(4, up) () has a global minimum point 7(,, .,) at negative level. Note that (®(y, u,)) (7) = 0 if
and only if

5 2
ae(N+at2=Npy)r Z Vs + pe(N+a+i—Nps)T Z | Vi |3
i=1 =1

2L (Npy— N — a)eN(pl_pZ)T/ (Lo * [uaP)ur [P da
2p1 RN

= 22 (Npy — N — a)/ (I * |uz|P?)|ug|P?dx.

2p2 RN
By direct calculation, it is not difficult to check that equation has exactly one solution. Hence, 7%
(u1,uz) € P(dy,dz) if and only if 7 = 7(y, u,). Since 7(y, u,) is global minimum point of @, 4,,)(7),
then (q)(uhuz))H(T(uhuz)) > 0. Since Po(dl,dg) = (Z), we obtain that (q)T(ul,uQ)*(uhuz))N(O) > 0,
and thus 7, 4,) * (u1,u2) € Py(di,dz). Furthermore, using the monotonicity and the behav-
ior at infinity, ®(y, 4,)(7) has a unique zero e(y, u,) With T4, ) < €(urus): BY Pruy,us)(T) >

g(e>([[Vur||3 + [|[Vuz|3)), then @y, up)(7) > g(ko) =0 at 7 = $In val‘%km. Therefore,

IV (7 un)l[3 + V(7 *u2) |13 < ko for all 7 < €(uy,u)- -

Lemma 4.5. Assume that (A1) holds. If 0 < © < O, then

U(dl,dg) = inf F(ul,u2) = inf F(ul,u2),

and there exists g > 0 small enough, such that

o(di,ds) < inf F(uy,us).
W (ko) \W (ko—e0)
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Proof. We first prove that o(dy,d2) = infp (4, ap) F(ui,uz). For any (ui,uz) € Pi(di,dz),
Tuyup) = 0. By Lemma 0 < 3ln so ko > ||[Vuil]3 + |[Vuzal|3. Hence,

P+(d1,d2) - W(kio) and

0
V341 Vusll3

O'(dl,dg) S inf F(ul,ug).
P (di,d2)

On the other hand, for any (u1,u2) € W (ko), there exists a unique 7(,, ;) € R, such that
Tlurus) * (U1, u2) € Py C Wi(ko).

Using (ii) in Lemma [4.3] and Lemma we have

F(T(uy ug) * (u1,u2)) = min{ F(7x (u1,uz)) : 7 € R, IV (7xup) |3+ ||V (T *u2) |3 < ko} < F(uy,us).

Hence, o(dy,d2) > infp, (4, 4,) F(u1,u2). Therefore, o(dy,ds) = infp, (4, 4,) F(u1,u2). By (ii) in
Lemma 3] we obtain

inf  F(ui,ug) = inf  F(ug,us).

This proof is complete. By g(ko) = 0 and continuity of g, there is €9 > 0 such that g(k) > M
if k € [ko — €, ko]. Therefore,

O'(dl,dg) —_—

F(ul, 'LLQ) > g(k) > 5 > J(dhdg) for all (ul,u2) S W(ko) \ W(k‘o — 60).

O
Lemma 4.6. Assume that (A1) holds. Let0 < © < ©,, then o(dy,ds) < min{og(dy,0),00(d2,0)}.
Proof. For each (uy,us) € W(ko), we have

Flur,ug) = G, (1) + G, (u2) = @/ (Zp * [ua[")|ue|"™ dz
RN

< Glh (ul) + Guz (u2)
Hence, o(dy, dy) < infy (4,) (G, (u1) + G, (u2)). For any uy € S,.(dy) with ||[Vui||3 = ko, then

a b
G () = 51wl + FIVwlls = 2 [ (Lo s fur PP
P1 JrN

b bp, i
> kG = Bil Vun ["" > g(ko) =0,

where B; is defined by Lemma [2.9, Therefore,

inf G,, = inf G 0
SiI(ldl) - E(ilrllyko) M1<U1)< ’

where E(d, k) := {u € S,(d) : [|[Vu||3 < k}. Since the map k — 2kZ — BZ-||Vu1||gpipi is continuity,
by similar proof in Lemma there is g9 > 0 such that

o(dy, ) < inf G, (u1),
E(d1,ko)\E(d1,ko—¢0)

and infE(dg,so) GH2 (Ug) < 0. We define A := {(ul,UQ) tuUp € E(dl, ko — 80),11,2 S E(dg,e’:‘o)}; then
A C Wi(kop). Therefore,

inf (G, (ur) + Gy (u2)) < (G, (ur) + G, (u2))

W (ko)
= inf G inf G
ptaho—ey S gl G2
inf G

<E(d11£o—€o) (1)

= Uo(dl, 0)
Thus, o(dy,d2) < o0¢(dy,0). It can be shown that o(di,d2) < o¢(dz2,0) in the same way as
above. O

Lemma 4.7. Let {(uf,u3)} C Sy(d1) x Sy(d2) be a Palais-Smale sequence for Flg, (4,)x s, (ds) @t
level o5(dy,d2), and P(u},ul) — 0 asn — +o0o. Then, (ul,u}) — (u1,us) in HYH(RN)x HH(RYN).
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Proof. By F(|u}|, |u¥]|) = F(u},u}), then we can assume that u?,uy > 0. Since {(u},u})} C
Sr(dy) x Sr(d2) be a Palais-Smale sequence for F'|g, (4,)xs,(d,) at level o(dy,dz), we have

o(dy,da) + on(1 ZHV |2+ ZHV n|d — Z
-0 / (I » g P g P2
»
:
_a(;m);”v“mMGW)ZIIW”IIQ
e (1 A Nl [
2o (3~ wrmavra) F s (5 wmaes)

2
. 2Np, — N — «
o (1= N gy ) 1T
~ 2p; r—2(N+p5)

/ (I * |ul'|P)|ult|Pi dx

N+a—(N—-2)p;

where k = Va7 |3 + |Vug|z, M; = C¥, d; 7 (i=12),8<Nr—2(N+p)<4-2}
and 0 < Np; — N —a < 2. We obtain the sequence {(u?,u3)} is bounded in H}(RY) x H}(RN).
Hence, we have

(uf,ug) = (u1,uz) in Hy (RY) x Hy (RY)
(ul,ul) — (ur,u) in LP(RY) x LP(RN)forp € (2,2%).
By (c) in Lemma [2.11] there exist two sequences of real numbers {A7}, {A\}}, such that

2 2
aZ/RN Vul'Vida + bZ/RN \Vu? 2da /RN Vul'V;dz
i=1 =1
2
> [ el
i=1 RN

2
o [ T gt ugonds - Y [ Nueds
RN i—1 /RN

Pi)

n
U,

pi*Qu?gbidx — Or /N(IB w lug |72) [uf | T 2u Tordx
R

= on(D)[[(¢,92) | 2 &Yy H11 (RN 5
where 0,(1) — 0 as n — +o00. By Lemma [2.11) A\ — A; (i = 1,2), and (uy,us2) is a solution to

(1.1). Since
F(ui,ug) < lim F(u},uy) =o(dy,da) <0, (4.7

n—4oo

we have (u1,u2) # (0,0). From Lemma we obtain that A\; < 0 or Ay < 0. Without loss
of generality, we assume that A\; < 0. Using Lemma uf — uy in HY(RY). Suppose by
contradiction that Ay > 0. Then
—(a+ b/ |V |*de) Aug = Xoug + pa(In * [u2]P?)[uz|P22ug + Ora(Ig * [ug ™) [ug|™? 2us > 0.
RN
By Lemma we have uy = 0. And u; satisfies

—(a+ b/N (Vs [de) Au = Auy + pr (Lo * ua [P1) [un [P~
R

/ lu|?dx = dy > 0.
RN
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Hence,
Jﬂ(dlde) = ngr—ir-loo F(uf, uy)
02 b2 2 i
S F 2 4 Z 14— ¢ _|Pi | Pi
= ngr-',r-loc 3 1:21 V|3 + 1 ; Vw5 ; o /RN(Ia s |wglP?)|ug [P d
— @/ (Ig * Jug|™)|uz|"?dx
RN
a< b o I
— N2 L2 4 M1
fngrfoo§;||Vqu2+4;||Vul||2 o AN(IQ*|ul|p1)|ul|pldz
a b H1
> §||VU1H% + Z||VU1||§ T2y RN(Ia # Jug [P1)|ug [P da
= GM] (dl)
> 0(d170)7
which contradicts Lemma Hence, Ay < 0, and then, u% — uy in H}(RY). O

Proof of Theorem[1.3 Let {(u},u%)} C W (ko) be a minimizing sequence for o(dy,ds), i.e.
F(ul,uy) — o(di,ds). By Lemma Tlur ug) * (Ut uy) € Py(dy,da) for every n, ||V (7(un up) *
u)|[3 + [V (Tun upy * u3)|3 < ko and

F(T(u{",ug) * u?a T(up up) * ug) < F(u?a u?)

Let (@7, @h) = (T(uruz) * UL, Tun up) * u5), then {@wf, @l } C W(ko) is a minimizing sequence
for o5(dy,dz) and (@, wh) € Py (dy,dz). By Lemma [L5] {(w},@5)} € W (ko — &0). Therefore,
by Ekeland’s variational principle, there is a radial symmetric Palais-Smale sequence (v}, v%)
for F|Sr(d1)><ST(d1) satisfying ||(w7f,w§) — (U?avg)HH}(RN)XH%(]RN) — 0 as n — +4o0o0. Thus,
{(v7,v8)} € W(ko) and P(v},v}) — 0 as n — +o00. Now Lemma implies that there exists
v1,v9 > 0 such that (v}, v8) — (v1,v2) in HY(RN) x H}RY), and then (v, v7) is a local mini-
mizer for F|y (x,). Therefore, (v1,v2) is a positive radial solution to for some A1, Ao < 0. O

5. PROOF oF THEOREM [L.4]

In this section, we prove the existence of the second normalized solution. By [25], the Choquard
equation
2
—Au+u = / Mdyu in R® (5.1)
ry |z —y[N 2
has a unique positive solution, which is often a strong help to obtain the second solution of .
By Lemma|2.8|and Lemma [2.9] we introduce a minimax structure of mountain pass type. There
exists k* € (0, k), such that for any 0 < © < O,

Ss1,da) = fnf. max P(h(t)) > max{F(h(0)). F(h(1))}

where I':= {h € C([0,1], S,(d1) x Sy(d2)) : h(0) € W (K), h(1) & W (ko), F(h(1)) < O}.

Lemma 5.1. Assume that (A2) holds. Then for each 0 < © < ©,, there exists a Palais-Smale
sequence {(uf,uy)} for Fls, (d,)x S, (ds) 0 the level 6(dy, d2), which satisfies (uf)™ — 0, (uy)™ — 0
and P(uy,uy) — 0.

Proof. We recall the stretched functional first introduced in [20],
FiRx (H,}(RN) X H,}(RN)) SR, (s, (u,up)) = F(s % up, 5% us).
We define
L= {h € C([0,1),5,(d1) x S,(da)) : h(0) € (0,h(0)), h(1) = (0, h(1)),
h(0) € W(k*), h(1) ¢ W (ko), F(h(1)) < 0}
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and

6(dy,dy) == inf max F(h(t)).
hef te[0,1]

It is not difficult to check that §(dy,ds) = 6(dy,ds). Indeed, by the definitions of &(dy,ds) and
d(dy,ds), this identity follows immediately from the fact that the maps

¢:T =T, h é(h):(0,h),
and
p: =T, h=(w,h)— (p(il) :=wxh with (w*h)(t) = w(t) *xh(t)
satisfying ) )
F(¢(h)) = F(h), F(e(h)) = F(h).
Then, we obtain a sequence {(v}",v%)} C T' such that
max F(0, (v (t),v5 (1)) — 6(dy, da)-

te[0

In view of F(uj,uz) = F(|ui], \uQ|) for (uy,uz) € Sr(d1) x Sr(dz), then we can assume that
V() > 0 and v¥(t) > 0 for t € [0,1]. By [12, Theorem 4.1], there exists a Palais-Smale sequence
{(sn, (ul,ul))} for ﬁ|Rx(Sr(d1)xsr(d2)) at the level 6(dy,ds), such that s, — 0 and ||(ul,ul) —
(v, v3)|| — 0. Tt follows that (u?)~ — 0, (u})~ — 0. Since F(s, (u1,us)) = F(0,5* (uy,us)), we
have
(aSF)(S’ (u1, u2)) = (68F>(07 Sx (ula u2))

and (0, F)(s,u)[)] = (8,F)(0,5 % u)[s x 9] for u = (u1,us), b = (¥1,2). Therefore, {(0,s, *
(ul,u))} is also a Palais-Smale sequence for F|1R><(Sr(d1)><5r(d2)) at the level 6(dy,ds). Then we
may assume that s, = 0, which implies that {(u},u5)} C S.(d1) x Sr(d2) is a Palais-Smale
sequence for F|g (4,)xs,(d2) at the level d(dy,dz) and (0 F)(0, (uf, u})) — 0, that P(uf,uy) — 0
holds. 0

Lemma 5.2. Assume that (A1) holds and 0 < © < O, then there exists a positive and radial
solution (uy,uz) to the system (L.1)) for some (A1, A2), and F(uy,us) = §(dy,d2).

Proof. By proof similar to that of Lemma[4.7] the Palais-Smale sequence {(uf,u%)} for F restricted
to S,.(dy) x S,(da) at the level §(dy,ds) is bounded in H}(RY) x H}(RY). Now we can assume
that
(uf,ug) = (ur,uz) in Hy(RY) x HY(RY),
(ul,ul) — (ur,ug) in LP(RY) x LP(RY) for p € (2,2%).
From Lemma there exists a sequence {(A7,A2)} C R?, such that (A7, A\3) — (A1, A2) in R?,
(u1,ug) is a solution to the system (I.1)) and P(uj,us) = 0. By (u})” — 0, (u})~ — 0, then
uy,uz > 0.
Next, we prove that F(uy,us) = 6(d1,d2). By P(ul,ul) — 0, i.e.,

aZ O +b2 . Z (N =N =) [ (T

Nr—2(N+ﬂ)
+®“7T‘*A(

T [ug ™) |uz | de.
N

Pq‘,)

uy |Pide

(5.2)

By Lemmas and we have

i n|p; n|p; Nr—2(N + n|r n|r
S g =N =) [ (e + AN [ g rfug s
Di RN RN

i=1

pi)

2
n n|p; NT_Q(N—’_B) r r
%Z 2p1(Npl N —a) \/RN(IQ* | uy pld:er@f/RN(Iﬁ* lur|™)|ua| 2 dx.

i=1
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Combining P(u1,us) = 0, we have

2 2 2 2
. ni2 n|4 _ 12 14
nglfoo@2 [Vui]lz + bZ} [Vuillz = a; [Vuillz + bZ} [Vl
Hence, F(uf,u}) = F(u1,us), and then F(uy,us) = §(dy,ds). O

Proof of Theorem[I-]} By Lemma we only need to prove (ui,u2) € Sp(dq) x Sr(dz). Since
(u1,us) is solution of , by Lemma [2.10] we have A; < 0 or Ay < 0. Without loss of generality,
we can assume A\ < 0. By Lemma @%Lobtain that u} — uy in H}(RY) and then u; € S,.(dy).
Suppose by contradiction that Ay > 0, then

—AUQ = )\Q’LLQ + ,U,Q(Ia * |U2|p2)|U2|p2_2’UQ + 67"2([5 * |U1|p1)|U2|p2_2U2 2 0

By Lemma we have uy = 0. Therefore, F(uy,u2) = F(uy,0), and uy € S,(dy) satisfies (2.4).
ByLemmaF(ul,O) :ngl(dl) <0ifa=1,b=0,N=3andpy=py=ri=r=a=[§=2,
which is in contradiction to the fact F'(u1,0) = §(dy1,d2) > 0. Thus, A < 0, and then us € S,.(d2).
By the maximum principle, we obtain the u1,us > 0 in R3. (]
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