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MULTIPLE POSITIVE NORMALIZED SOLUTIONS FOR KIRCHHOFF TYPE

SYSTEM WITH VAN DER WAALS TYPE POTENTIALS

ZHEWEN CHEN, MUZI LI

Abstract. This article shows the existence of normalized solutions for Kirchhoff type system
with van der Waals type potentials,

−(a+ b

∫
RN

|∇u1|2dx)∆u1 = λ1u1 + µ1(Iα ∗ |u1|p1 )|u1|p1−2u1 +Θr1(Iβ ∗ |u2|r2 )|u1|r1−2u1,

−(a+ b

∫
RN

|∇u2|2dx)∆u2 = λ2u2 + µ2(Iα ∗ |u2|p2 )|u2|p2−2u2 +Θr2(Iβ ∗ |u1|r1 )|u2|r2−2u2,∫
RN

|u1|2dx = d1 > 0,

∫
RN

|u2|2dx = d2 > 0,

where N = 3, 4, µ1, µ2,Θ > 0, N+α
N

< p1, p2 < N+α+2
N

, 2 · N+β
N

< r1 + r2 < 2 · 2∗β = 2 · N+β
N−2

,

0 < α, β < N , Iα and Iβ are the Riesz potentials. We show that the system has a positive least

energy solution at negative energy level for Θ small. In addition, we also prove that the system
admits a high energy positive solution at positive energy level in the special case.

1. Introduction and main results

In this article, we study the existence of the positive normalized solutions for Kirchhoff type
system with van der Waals type potentials

−(a+ b

∫
RN

|∇u1|2dx)∆u1 = λ1u1 + µ1(Iα ∗ |u1|p1)|u1|p1−2u1 +Θr1(Iβ ∗ |u2|r2)|u1|r1−2u1,

−(a+ b

∫
RN

|∇u2|2dx)∆u2 = λ2u2 + µ2(Iα ∗ |u2|p2)|u2|p2−2u2 +Θr2(Iβ ∗ |u1|r1)|u2|r2−2u2,

(1.1)
with the L2-mass constraint∫

RN

|u1|2dx = d1 > 0,

∫
RN

|u2|2dx = d2 > 0, (1.2)

where N = 3, 4, a, b > 0, α, β ∈ (0, N), Iα, Iβ are the Riesz potentials defined for every x ∈ RN\{0}
by

Iα(x) :=
Aα(N)

|x|N−α
, Aα(N) :=

Γ(N−α
2 )

Γ(α2 )π
N/22α

(1.3)

with Γ denoting the Gamma function. Throughout this paper, we always require that a, b, µ1, µ2,Θ >
0, and assume that 2 < p1, p2 < 2 + 4

N , r1, r2 >
N+β
N , 2 · N+β

N < r1 + r2 < 2 · 2∗β .
Because of the appearance of the term

∫
RN |∇u|2dx, (1.1) is regard as a nonlocal problem,

which implies that equation (1.1) is not a pointwise identity. Moreover, this phenomenon also
leads to some mathematical difficulties that make the study of (1.1) more interesting. Problem
(1.1) originates from the stationary analog of the equation

ρ
∂2u

∂t2
−
(Y0
k

+
R

2J

∫ Q

0

|∂u
∂x

|2dx
)∂2u
∂x2

= 0,
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which was proposed by Kirchhoff [21] in 1883, and being an extension of the classical D’Alembert’s
wave equations for free vibration of elastic strings. Kirchhoff’s model takes into account the
changes in length of the string produced by transverse vibrations. In the last decades, Because of
the strong background in physics, starting with the framework of Lions [23], many mathematicians
have established many interesting conclusions about Kirchhoff-type problems [1, 16, 29, 21, 17,
18, 24, 14, 15].

In (1.1), if λ ∈ R is fixed, then we call (1.1) the fixed frequency problem. One can adopt
the traditional variational method, looking for critical points of Fλ(u1, u2), or fixed point the-
ory, bifurcation, topological methods, Nehari manifold method and Lyapunov-Schmidt reduction,
where

Fλ(u1, u2) :=
a

2

2∑
i=1

∥∇ui∥22 +
b

4

2∑
i=1

∥∇ui∥42 −
2∑

i=1

λi∥ui∥22 −
2∑

i=1

µi

2pi

∫
RN

(Iα ∗ |ui|pi)|ui|pidx

−Θ

∫
RN

(Iβ ∗ |u1|p1)|u2|p2dx.

In recent decades, because of the application to physics, mathematicians are interested in solutions
that satisfy L2−mass constraint (1.2). In this direction, the mass d1, d2 > 0 is prescribed, the
frequency λi cannot be determined a priori, but is a part of unknown which appears as Lagrange
multipliers. In this case, mathematicians often call (1.1)-(1.2) the fixed mass problem and the
solution is called a normalized solution. One can get a normalized solution to problem (1.1) by
looking for a critical point of the functional

F (u1, u2)

:=
a

2

2∑
i=1

∥∇ui∥22 +
b

4

2∑
i=1

∥∇ui∥42 −
2∑

i=1

µi

2pi

∫
RN

(Iα ∗ |ui|pi)|ui|pidx−Θ

∫
RN

(Iβ ∗ |u1|p1)|u2|p2dx

constrained on S(d1) × S(d2), where S(d) := {u ∈ H1(RN ) :
∫
RN |u|2dx = d > 0}. It is standard

to check that F ∈ C1.
For the fixed mass problem, the L2-mass constraint (1.2) presents some mathematical difficul-

ties. As opposed to the fixed frequency problem, the fixed mass problem will have many technical
difficulties when dealing with it in a variational framework: (I) the Nehari manifold method is
inapplicable; (II) the Lagrange multipliers must be controlled; (III) for the fixed frequency prob-
lem, usually a nontrivial weak limit is also a solution. However, for the fixed mass problem, even
though the weak limit is nontrivial, the L2-mass constraint may be not satisfied; (IV) the L2-mass
critical exponent seriously affects the geometric structure of the functional.

The equation

i∂tΨ +∆Ψ + (V ∗ |Ψ |p)|Ψ |p−2Ψ = 0, inR+ × RN , (1.4)

has Ψ : R+ × RN → C is a complex valued function, V (x) = δζ
1

|x|ζ ± δθ
1

|x|θ (α, β > 1) is the van

der Waals type potential (see [30, 9]). The van der Waals coefficients δ6, δ8 and δ10 of alkaline-
earth interactions calculated by Porsev and Derevianko using relativistic many-body perturbation
theory are believed to be accurate to 1/100 (see[27]). As one of the van der Waals type potentials
the Lennard-Jones potential

VLJ(ν) = ±ξ( 1

νζ
− 1

νθ
)

with ζ = 6 and θ = 12, is often used as an approximate model for the isotropic part of a total van
der Waals force as a function of distance (see [30, 9]).

When a = 1, b = 0 and the response function is a delta function, i.e. Iα(x) = Iβ(x) = δ(x), the
nonlinear response is local and problem (1.1) with prescribed mass turns out to be

−∆u1 = λ1u1 + µ1|u1|p1−2u1 +Θr1|u2|r2 |u1|r1−2u1,

−∆u2 = λ2u2 + µ2|u2|p2−2u2 +Θr2|u1|r1 |u2|r2−2u2,
(1.5)

with the L2-mass constraint
∫
RN |u1|2dx = d1 > 0,

∫
RN |u2|2dx = d2 > 0. In recent years,

mathematicians have drawn rich conclusions concerning the existence, multiplicity and qualitative
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properties of the normalized solutions of system (1.5) (see [3, 5, 6, 2, 4, 13]). Gou et al. [13] showed
that the system admits two normalized solutions under the conditions that 2 < p1, p2 < 2 + 4

N <

r1 + r2 < 2∗ = 2N
N−2 (resp. 2 + 4

N < r1 + r2 < 2 + 4
N < p1, p2 < 2∗) by using minimizing methods,

Pohožaev type manifold, Schwarz rearrangements and mountain pass theorem. Bartsch et al. [2]
focused on the choice p1 = p2 = 2∗, and allowing r1 + r2 to be mass-subcritical, mass-critical
or mass-supercritical. The authors proved the existence and non-existence of normalized ground
state for different ranges of Θ.

When a, b > 0 and the response function is a delta function, i.e. Iα(x) = Iβ(x) = δ(x), system
(1.1) becomes

−(a+ b

∫
RN

|∇u1|2dx)∆u1 = λ1u1 + µ1|u1|p1−2u1 +Θr1|u2|r2 |u1|r1−2u1x ∈ RN ,

−(a+ b

∫
RN

|∇u2|2dx)∆u2 = λ2u2 + µ2|u2|p2−2u2 +Θr2|u1|r1 |u2|r2−2u2x ∈ RN .

(1.6)

When N ≤ 3 and 2 < p1, p2, r1 + r2 < 2 + 8
N , Cao et al. [8] proved that system (1.6) admits

a positive normalized solution. When N = 2, 3, Yang [29] showed that system (1.6) admits a
normalized ground state under the condition that 2 + 8

N < p1, p2, r1 + r2 < 2∗ and 2 < r1 + r2 <

2 + 8
N < p1, p2 < 2∗, respectively.

When a = 1, b = 0 and the response function is a delta function, i.e. Iα(x) = Iβ(x) = δ(x),
system (1.1) becomes the Choquard system (Hartree system)

−∆u1 = λ1u1 + µ1(Iα ∗ |u1|p1)|u1|p1−2u1 +Θr1(Iα ∗ |u2|r2)|u1|r1−2u1x ∈ RN ,

−∆u2 = λ2u2 + µ2(Iα ∗ |u2|p2)|u2|p2−2u2 +Θr2(Iα ∗ |u1|r1)|u2|r2−2u2x ∈ RN .
(1.7)

When µ1, µ2,Θ > 0 and N+α
N < r1, r2, Geng et al. [10] proved that system (1.7) has a normalized

ground state under the condition that N ≥ 3 and N+α
N < p1, p2 <

N+α+2
N < r1, r2 < 2∗α by using

Schwartz rearrangement. In addition, they proved that the system (1.7) has a second solution
for N = 3 and p1 = p2 = α = 2. They also proved that (1.7) has a second solution for N = 5,
N+α
N < r1, r2 <

N+α+2
N < p1, p2 < 2∗α and p1 = p2 = α = 2. For Hardy-Littlewood-Sobolev

critical case, i.e. p1 = p2 = 2∗α, Zhang et al. [31] proved that system (1.7) has a normalized ground
state for different ranges of Θ when r1 + r2 is set to be mass subcritical, mass critical and mass
supercritical, respectively.

However, as far as we know, for the case of a, b > 0 and the response functions are different
Riesz potential functions, the existence of the solution of the system is still unknown.

Definition 1.1. (u1, u2) is a normalized ground state to (1.1)-(1.2) if F ′|S(d1)×S(d2)(u1, u2) = 0
and

F (u1, u2) = inf{F (v1, v2) : (v1, v2) ∈ S(d1)× S(d2), F
′|S(d1)×S(d2)(v1, v2) = 0}.

Furthermore, (w1, w2) is a high energy normalized solution to (1.1)-(1.2) if F ′|S(d1)×S(d2)(w1, w2) =
0 and

F (w1, w2) > inf{F (v1, v2) : (v1, v2) ∈ S(d1)× S(d2), F
′|S(d1)×S(d2)(v1, v2) = 0}.

In this article, we demonstrate our main results in the following two cases:

(A1) N+α
N < p1, p2 <

N+α+2
N , r1, r2 >

N+β
N and 2 · N+β

N < r1 + r2 < 2 · N+β+4
N .

(A2) N+α
N < p1, p2 <

N+α+2
N , r1, r2 >

N+β
N and 2 · N+β+4

N < r1 + r2 < 2 · 2∗β .
To restore some compactness, we search for critical points of F constrained on Sr(d1) × Sr(d2),
where Sr(d) := {u ∈ H1

r (RN ) : ∥u∥22 = d} and

H1
r (RN ) = {u ∈ H1(RN ) : uis a radially symmetric function.

For case of (A2), F is unbounded below in Sr(d1)×Sr(d2). Hence, we need the Pohožaev manifold
P(d1, d2) := {(u1, u2) ∈ Sr(d1)× Sr(d2) : P (u1, u2) = 0}, where

P (u1, u2) = a

2∑
i=1

∥∇ui∥22 + b

2∑
i=1

∥∇ui∥42 −
2∑

i=1

µi

2pi
(Npi −N − α)

∫
RN

(Iα ∗ |ui|pi)|ui|pidx
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−Θ
Nr − 2(N + β)

2

∫
RN

(Iβ ∗ |u1|r1)|u2|r2dx

with r = r1 + r2. We define W (k) := {(u1, u2) ∈ Sr(d1)× Sr(d2) : ∥∇u1∥22 + ∥∇u2∥22 < k} and

σ(d1, d2) := inf
W (k)

F (u1, u2) < 0. (1.8)

For each u ∈ Sr(d), we define

τ ⋆ ui := e
N
2 τui(e

τx), i = 1, 2.

Hence,

Ψu1,u2
(τ) := F (τ ⋆ u1, τ ⋆ u2)

=
a

2
e2τ

2∑
i=1

∥∇ui∥22 +
b

4
e4τ

2∑
i=1

∥∇ui∥42

−
2∑

i=1

µi

2pi
e(Npi−N−α)τ

∫
RN

(Iα ∗ |ui|pi)|ui|pidx

−Θe
Nr
2 −N−β

∫
RN

(Iβ ∗ |u1|r1)|u2|r2dx.

(1.9)

By direct computations, we have (Ψu1,u2
)′(0) = P (u1, u2). We divide P(d1, d2) into 3 parts,

P(d1, d2) = P−(d1, d2) ∪ P0(d1, d2) ∪ P+(d1, d2),

where

P−(d1, d2) = {(u1, u2) ∈ P(d1, d2) : (Ψu1,u2
)′′(0) < 0},

P0(d1, d2) = {(u1, u2) ∈ P(d1, d2) : (Ψu1,u2
)′′(0) = 0},

P+(d1, d2) = {(u1, u2) ∈ P(d1, d2) : (Ψu1,u2)
′′(0) > 0},

and

(Ψu1,u2
)′′(0) = 2a

2∑
i=1

∥∇ui∥22 + 4b

2∑
i=1

∥∇ui∥42

−
2∑

i=1

µi

2pi
(Npi −N − α)2

∫
RN

(Iα ∗ |ui|pi)|ui|pidx

−Θ(
Nr

2
−N − β)2

∫
RN

(Iβ ∗ |u1|r1)|u2|r2dx.

Theorem 1.2. Assume that (A1) holds. Then, every minimizing sequence of (1.8) is compact,
up to translation, in H1

r (RN )×H1
r (RN ). Moreover, system (1.1) has a positive normalized ground

state.

Theorem 1.3. Assume that (A2) holds and 0 < α − 2 ≤ β < α < N . Then, there exist
k0 = k0(d1, d2) > 0, Θ∗ = Θ∗(d1, d2) > 0, such that for any 0 < Θ ≤ Θ∗, system (1.1)-(1.2) has a
positive radial solution (υ1, υ2) ∈W (k0) at negative level F (υ1, υ2) < 0 for some λ1, λ2 < 0.

Theorem 1.4. Assume that (A2) holds,and a = 1, b = 0, N = 3 and p1 = p2 = α = β =
r1 = r2 = 2. Then, there exist k0 = k0(d1, d2) > 0, Θ∗ = Θ∗(d1, d2) > 0, such that for any
0 < Θ ≤ Θ∗, system (1.1)-(1.2) has a second positive radial solution (u1, u2) ∈ W (k0) at positive
level F (u1, u2) > 0 for some λ1, λ2 < 0.

Remark 1.5. Definition 1.1, Theorem 1.3 and ?? indicate that (1.1)-(1.2) admit a normalized
ground state at negative level F (υ1, υ2) < 0 and a high energy normalized solution at positive
level F (u1, u2) > 0, under the condition that (A2), a = 1, b = 0, N = 3 and p1 = p2 = α = β =
r1 = r2 = 2 hold.
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Remark 1.6. For nonlinear classical Choquard system 1.7, the mass critical exponent is N+α+2
N .

In Kirchhoff-Choquard system, by the appearance of the
∫
RN |∇u|4dx term, the mass critical

exponent becomes N+α+4
N . In this paper, if N+α

N < p1, p2 <
N+α+4

N , then Lemma 4.1 and Lemma
4.2 do not hold.

Remark 1.7. Since we do not know whether the inequality

∥∇{u1, u2}∗∥42 ≤ ∥∇u1∥42 + ∥∇u2∥42
holds, we can not use the Schwartz rearrangement method to prove the compactness of minimized
sequence in this paper.

From a physical point of view, it is of great importance to study the solution of problem (1.1), as
confirmed in [30, 9, 27]. We emphasize that this study seems to be the first contribution regarding
existence of normalized ground states for a Kirchhoff system with van der Waals type potentials.

The rest of this article organized as follows: In Section 2, we present some preliminaries. In
Section 3, we prove the existence of normalized ground states under the purely mass subcritical
case. In Section 4, we prove the existence of the first solution, which is a local minimizer. In
Section 5, the second solution is proved by using mountain pass theorem.

Notation: Ls(RN ) is the Lebesgue space with the norms ∥u∥s = (
∫
RN |u|sdx)1/s, 1 < s <∞.

H1(RN ) is the usual Sobolev space with norm ∥u∥H1(RN ) = (
∫
RN |∇u|2 + |u|2dx)1/2.

2. Preliminaries

Lemma 2.1. [Hardy-Littlewood-Sobolev inequality [22]] Let N ≥ 1, p, r > 1, and 0 < β < N with
1/p+(N −β)/N +1/r = 2. Let u ∈ Lp(RN ) and v ∈ Lr(RN ). Then there exists a sharp constant
C(N, p, β), independent of u and v, such that∣∣ ∫

RN

∫
RN

u(x)v(y)

|x− y|N−β
dxdy

∣∣ ≤ CN,p,r,β∥u∥p∥v∥r.

If p = r = 2N
N+β , then

CN,p,r,β = CN,β = π
N−β

2
Γ(β2 )

Γ(N+β
2 )

{Γ(N2 )

Γ(N)

}− β
N

.

Lemma 2.2 (Gagliardo-Nirenberg inequality of Power type [28]). Let N ≥ 1 and 2 ≤ p < 2∗,
then the following sharp Gagliardo-Nirenberg inequality

∥u∥p ≤ CN,p∥u∥
1−δp
2 ∥∇u∥δp2 (2.1)

holds for any u ∈ H1(RN ), where δp = N
2 − N

p , the sharp constant CN,p is

Cp
N,p =

2p

2N + (2−N)p
(
2N + (2−N)p

N(p− 2)
)

N(p−2)
4

1

∥Qp∥p−2
2

and Qp is the unique positive radial solution of the equation

−∆Q+Q = |Q|p−2Q.

Lemma 2.3 (Gagliardo-Nirenberg inequality of Choquard type[26]). Let N ≥ 3, α ∈ (0, N) and
N+α
N < p < N+α

N−2 , we have∫
RN

(Iα ∗ |u|p)|u|pdx ≤ CN,p

(∫
RN

|∇u|2dx
)Np−(N+α)

2
(∫

RN

|u|2dx
)N+α−p(N−2)

2

, (2.2)

where equality holds for u = Qp, CN,p = p

|Qp|2p−2
2

and Qp is a nontrivial solution of

−N(p− 2) +N − α

2
∆Qp +

N + α− (N − 2)p

2
Qp = (Iα ∗ |Qp|p)|Qp|p−2Qp. (2.3)

By [11, (3.3)], we have the following Lemma.
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Lemma 2.4. If N+α
N < r1, r2 <

N+α
N−2 , then∫

RN

(Iα ∗ |u1|r1)|u2|r2dx ≤
(∫

RN

(Iα ∗ |u1|r1)|u1|r1dx
)1/2(∫

RN

(Iα ∗ |u2|r2)|u2|r2dx
)1/2

,

where Iα is given by (1.3).

Lemma 2.5 ([19, Lemma A.2]). If p ∈ (0, N
N−2 ] when N ≥ 3 and p ∈ (0,∞) when N = 1, 2. Let

u ∈ Lp(RN ) be a smooth nonnegative function satisfying −∆u ≥ 0 in RN . Then u ≡ 0.

We now consider the problem

−(a+ b

∫
RN

|∇u|2dx)∆u = λu+ µ(Iα ∗ |u|p)|u|p−2u,∫
RN

|u|2dx = d > 0,

(2.4)

where a, b > 0, N+α
N < p < N+α+2

N and N = 3, 4. The corresponding minimization problem of
(2.4) is

σµ
p (d) := inf

u∈S(d)
Gµ(u), (2.5)

where Gµ(u) =
a
2∥∇u∥

2
2 +

b
4∥∇u∥

4
2 −

µ
2p

∫
RN (Iα ∗ |u|p)|u|pdx.

Lemma 2.6. (i) For any d > 0, we have σµ
p (d) < 0.

(ii) σµ
p (d) is continuous with respect to d ≥ 0.

(iii) For any d ≥ m ≥ 0, then σµ
p (d) ≤ σµ

p (m) + σµ
p (d−m).

Proof. Item (i) follows from [24, Theorem 1.2]. For item (ii), we assume that dn = d+ on(1). By
the definition of σµ

p (d
n), for any ε > 0, there exists un ∈ Sr(d

n) such that

Gµ(u
n) ≤ σµ

p (d
n) + ε. (2.6)

Let wn := un

∥un∥2d1/2 . It is easy to check that wn ∈ Sr(d
n) and

σµ
p (d) ≤ Gµ(w

n) = Gµ(u
n) + on(1). (2.7)

Combining (2.6) and (2.7), we have

σµ
p (d) ≤ σµ

p (d
n) + ε+ on(1).

Reversing the argument, we obtain similarly that

σµ
p (d

n) ≤ σµ
p (d) + ε+ on(1).

Thus, by the arbitrariness of ε, we have σµ
p (d

n) = σµ
p (d) + on(1). This proves (ii).

By the density of C∞
0 (RN ) in H1(RN ), for any ε > 0, there exist ψ̃, ψ̄ ∈ C∞

0 (RN )× C∞
0 (RN )

with ∥ψ̃∥22 = m, ∥ψ̄∥22 = d−m, i = 1, 2 such that

Gµ(ψ̃) ≤ σµ
p (m) + ε,

Gµ(ψ̄) ≤ σµ
p (d−m) + ε.

Since Gµ is invariant by translation, without loss of generality, we may assume that supp ψ̃ ∩
supp ψ̄ = ∅, and then ∥ψ̃ + ψ̄∥22 = ∥ψ̃∥22 + ∥ψ̄∥22 = d,

σµ
p (d) ≤ Gµ(ψ̃ + ψ̄) ≤ σµ

p (m) + σµ
p (d−m) + 2ε.

Therefore,

σµ
p (d) ≤ σµ

p (m) + σµ
p (d−m).

This proof is complete. □
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Lemma 2.7 ([?, Lemma 2.5]linjie). Let N+α
N < r1, r2 <

N+α
N−2 , if

(un1 , u
n
2 )⇀ (u1, u2)inH

1(RN )×H1(RN ),

then, up to a subsequence,∫
RN

(Iα ∗ |un1 |r1)|un2 |r2dx =

∫
RN

(Iα ∗ |u1|r1)|u2|r2dx+ on(1). (2.8)

Lemma 2.8. If (A1) holds, then infW (k) F (u1, u2) < 0 for all k > 0.

Proof. Let uτ (x) = τ
N
2 u(τx). Then it is easy to check that

(u1, u2) ∈ Sr(d1)× Sr(d2), (uτ1 , u
τ
2) ∈W (k)

when τ is sufficiently small. From

F (uτ1 , u
τ
2) =

a

2
τ2

2∑
i=1

∥∇ui∥22 +
b

4
τ4

2∑
i=1

∥∇ui∥42 −
2∑

i=1

µi

2pi
τNpi−N−α

∫
RN

(Iα ∗ |ui|pi)|ui|pidx

−Θτ
Nr
2 −N−β

∫
RN

(Iβ ∗ |u1|p1)|u2|p2dx,

N+α
N < p1, p2 <

N+α+2
N and N+β

N < r1, r2 < 2∗β , we have Φ(u1,u2)(τ) < 0 for τ small enough. □

Lemma 2.9. Assume that (A2) holds. Then there exist k0 = k0(d1, d2) > 0, Θ∗ = Θ∗(d1, d2) > 0
such that for any 0 < Θ < Θ⋆,

inf
W (2k0)\W (k0)

F (u1, u2) > 0.

And there exists ε0 > 0 small enough, such that

σ(d1, d2) < inf
W (k0)\A(k0−ε0)

F (u1, u2).

Proof. For (u1, u2) ∈ Sr(d1)×Sr(d2), let k = ∥∇u1∥22+∥∇u2∥22. Then by Lemma 2.3 and Lemma
2.4, we have

F (u1, u2)

=
a

2
k +

b

4

2∑
i=1

∥∇ui∥42 −
2∑

i=1

µi

2pi

∫
RN

(Iα ∗ |ui|pi)|ui|pidx−Θ

∫
RN

(Iβ ∗ |u1|p1)|u2|p2dx

≥ b

8
k2 −

2∑
i=1

Bi∥∇ui∥Npi−N−α
2 −ΘB3k

Nr−2(N+β)
4

≥ b

8
k2 −

2∑
i=1

Bik
Npi−N−α

2 −ΘB3k
Nr−2(N+β)

4 := g(k),

(2.9)

where Bi =
µi

2pi
CN,pid

N+α−pi(N−2)

2
i (i = 1, 2), and B3 = CN,r1CN,r2d

N+β−r1(N−2)
4

1 d
N+β−r2(N−2)

4
2 . By

(A2), we have

0 <
Npi −N − α

2
< 1 and

Nr − 2(N + β)

4
> 2, i = 1, 2.

We fix k = k0 sufficiently large such that

2∑
i=1

Bik
Npi−N−α−4

2
0 ≤ b

24
,

and fix Θ = Θ∗ sufficiently small such that

Θ∗B3(2k0)
Nr−2(N+β)−8

4 ≤ b

24
.
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Therefore, for each 0 < Θ ≤ Θ∗ and (u1, u2) ∈W (2k0) \W (k0), we obtain

F (u1, u2) ≥
b

8
k2 −

2∑
i=1

Bik
Npi−N−α

2 −ΘB3k
Nr−2(N+β)

4

= k2
( b
8
−

2∑
i=1

Bik
Npi−N−α−4

2 −ΘB3k
Nr−2(N+β)−8

4

)
≥ bk20

(1
8
− 1

24
− 1

24

)
=

b

24
k20.

Next, by continuity of g(k) and g(k0) > 0, there exists ε0 > 0 sufficiently small such that
g(k) ≥ 0 when k ∈ [k0 − ε, k0]. Hence,

F (u1, u2) ≥ g(k) ≥ 0 > σ(d1, d2)

for any (u1, u2) ∈W (k0) \W (k0 − ε0). This proof is complete. □

Lemma 2.10. Let N+α
N < p1, p2 < 2∗α and N+β

N < r1, r2 < 2∗β. If (u1, u2) ̸= (0, 0) is a solution

of (1.1) for some (λ1, λ2) ∈ R2, then λ1 < 0 or λ2 < 0. Furthermore, if u1 > 0 and u2 ≥ 0, then
λ1 < 0; if u1 ≥ 0 and u2 > 0, then λ2 < 0.

Proof. Testing (1.1) by (u1, u2) and integrating in RN , one has

λ1∥u1∥22 + λ2∥u2∥22

= a

2∑
i=1

∥∇ui∥22 + b

2∑
i=1

∥∇ui∥42 −
2∑

i=1

µi

∫
RN

(Iα ∗ |ui|pi)|ui|pidx−Θr

∫
RN

(Iβ ∗ |u1|r1)|u2|r2dx.

Combining P (u1, u2) = 0, 2 < p1, p2 < 2∗ and N+β
N < r1, r2 < 2∗β , we have

λ1∥u1∥22 + λ2∥u2∥22 =

2∑
i=1

µi(Npi −N − α− 1)

∫
RN

(Iα ∗ |ui|pi)|ui|pidx

+Θ

(
Nr − 2(N + β)

4
− r

)∫
RN

(Iβ ∗ |u1|p1)|u2|p2dx < 0.

Thus, at least one of λ1 and λ2 is negative.
Then, we argue by contradiction, suppose λ1 ≥ 0. In view u1 > 0, we have

−
(
a+ b

∫
RN

|∇u1|2dx
)
∆u1 = λ1u1 + µ1(Iα ∗ |u1|p1)|u1|p1−2u1 +Θr1(Iβ ∗ |u2|p2)|u1|p1−2u1 ≥ 0.

By Lemma 2.5, we obtain u1 = 0, which contradicts u1 ̸= 0. Therefore, λ1 < 0. The other case
can be proved in the same way. □

Lemma 2.11. Assume that 2 < p1, p2 <
2N
N−2 and N+β

N < r1, r2 <
N+β
N−2 . For any bounded Palais-

Smale sequence {(un1 , un2 )} for F on Sr(d1)×Sr(d2), then there exist (u1, u2) ∈ H1
r (RN )×H1

r (RN )
and a sequence {(λn1 , λn2 )} ⊂ R2, such that up to a subsequence

(a) (un1 , u
n
2 ) ⇀ (u1, u2) in H1

r (RN ) ×H1
r (RN ), (un1 , u

n
2 ) → (u1, u2) in Lp(RN ) × Lp(RN ) for

p ∈ (2, 2N
N−2 ).

(b) (λn1 , λ
n
2 ) → (λ1, λ2) in (R2).

(c) F ′(un1 , u
n
2 )− λn1 (u

n
1 , 0)− λn2 (0, u

n
2 ) → 0 in H−1

r (RN )×H−1
r (RN ).

(d) (un1 , u
n
2 ) is a solution to the system (1.1) for some λ1, λ2 ≤ 0 if (u1, u2) satisfies the

additional property P (un1 , u
n
2 ) → 0, where (λ1, λ2) is given by (b).

Proof. Obviously, item (a) is true Since {(un1 , un2 )} ⊂ H1
r (RN ) ×H1

r (RN ) is bounded, by [7], we
have (F |Sr(d1)×Sr(d2))

′(un1 , u
n
2 ) → 0 in H−1

r (RN )×H−1
r (RN ) is equivalent to

F ′(un1 , u
n
2 )−

1

∥un1∥22
⟨F ′(un1 , u

n
2 ), (u

n
1 , 0)⟩(un1 , 0)−

1

∥un2∥22
⟨F ′(un1 , u

n
2 ), (0, u

n
2 )⟩(0, un2 ) → 0
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in H−1
r (RN )×H−1

r (RN ). Thus, we have

F ′(un1 , u
n
2 )− λn1 (u

n
1 , 0)− λn2 (0, u

n
2 ) → 0 in H−1

r (RN )×H−1
r (RN )

with

λn1 =
1

∥un1∥22

(
a∥∇un1∥22 + b∥∇un1∥42 − µ1

∫
RN

(Iα ∗ |un1 |p1)|un1 |p1dx

−Θr1

∫
RN

(Iβ ∗ |un1 |p1)|un2 |p2dx
)
− on(1),

(2.10)

and

λn2 =
1

∥un2∥22

(
a∥∇un2∥22 + b∥∇un2∥42 − µ2

∫
RN

(Iα ∗ |un2 |p2)|un2 |p2dx

−Θr2

∫
RN

(Iβ ∗ |un1 |p1)|un2 |p2dx
)
− on(1).

(2.11)

This proves (c). By the boundedness of un1 , u
n
2 in H1

r (RN ), Lp(RN ) for p ∈ (2, 2∗), Lemma 2.3
and Lemma 2.4, we obtain {λn1}, {λn2} are bounded. This proves (b). Combining (b) and (c), it
is now standard to deduce (d). □

Lemma 2.12. Under the conditions of Lemma 2.11, un1 → u1 in H1
r (RN ) if λ1 < 0. Similarly,

un2 → u2 in H1
r (RN ) if λ2 < 0.

Proof. In view of Lemmas 2.7 and 2.11, we obtain∫
RN

(Iα ∗ |uni |pi)|uni |pidx→
∫
RN

(Iα ∗ |ui|pi)|ui|pidx(
N + α

N
< pi < 2∗α, i = 1, 2), (2.12)∫

RN

(Iβ ∗ |un1 |r1)|un2 |r2dx→
∫
RN

(Iβ ∗ |u1|r1)|u2|r2dx(
N + β

N
< r1, r2 < 2∗β), (2.13)

⟨F ′(un1 , u
n
2 )− λn1 (u

n
1 , 0), (u

n
1 , 0)⟩ → 0 = ⟨F ′(u1, u2)− λn1 (u1, 0), (u1, 0)⟩. (2.14)

Therefore,

a∥∇un1∥22 + b∥∇un1∥42 − λn1∥un1∥22 → a∥∇u1∥22 + b∥∇u1∥42 − λ1∥u1∥22.
Since

∥u1∥22 ≤ lim
n→+∞

∥un1∥22, ∥∇u1∥22 ≤ lim
n→+∞

∥∇un1∥22, (2.15)

it follows that

∥∇un1∥22 → ∥∇u1∥22, ∥un1∥22 → ∥u1∥22.
This proof is complete. □

3. Proof of Theorem 1.2

Lemma 3.1. Assume that (A1) holds. Then F is bounded form below and coercive on Sr(d1) ×
Sr(d2). Furthermore, there exists a bounded Palais-Smale sequence {(un1 , un2 )} ⊂ Sr(d1)× Sr(d2),
which satisfies (un1 )

− → 0 and (un2 )
− → 0 in H1

r (RN )×H1
r (RN ).

Proof. Since N+α
N < p1, p2 <

N+α+2
N , 2 · N+β

N < r1 + r2 < 2 · N+β+4
N , we have 0 < Npi −N − α <

2 and Nr−2(N+β)
4 < 2. From (2.9), we know that F is bounded form below and coercive on

Sr(d1)× Sr(d2).
Next, let {(un1 , un2 )} ⊂ Sr(d1) × Sr(d2) be a minimizing sequence for F . By the coerciveness

of F , the sequence is bounded. Since the functional F is even, we may assume that wn
1 ≥ 0

and wn
2 ≥ 0. It is easy to check that F is a C1−manifold in H1

r (RN ) × H1
r (RN ), then by

Ekeland’s variational principle, there exists a minimizing sequence {(un1 , un2 )} ⊂ Sr(d1)× Sr(d2),
which is the Palais-Smale sequence for F restricted to Sr(d1) × Sr(d2) and satisfies ∥(un1 , un2 ) −
(wn

1 , w
n
2 )∥H1

r (RN )×H1
r (RN ) → 0 as n → +∞. From wn

1 ≥ 0 and wn
2 ≥ 0, we have (un1 )

− → 0 and

(un2 )
− → 0 in H1

r (RN )×H1
r (RN ). □
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Proof of Theorem 1.2. By Lemma 3.1, there exists a bounded Palais-Smale sequence {(un1 , un2 )} ⊂
Sr(d1)×Sr(d2) and (u1, u2) ∈ H1

r (RN )×H1
r (RN ) with u1 ≥ 0 and u2 ≥ 0, such that limn→+∞(un1 , u

n
2 ) =

σ(d1, d2), (u
n
1 , u

n
2 ) ⇀ (u1, u2) in H1

r (RN ) ×H1
r (RN ). Hence, it suffices to prove that (un1 , u

n
2 ) →

(u1, u2) in H1
r (RN ) ×H1

r (RN ). Indeed, if this holds, then we have {(un1 , un2 )} ⊂ Sr(d1) × Sr(d2)
and F (u1, u2) = σ(d1, d2). Furthermore, by the strong maximum principle, we have u1 > 0 and
u2 > 0. From Θ > 0, obviously, we have σ(d1, d2) ≤ σµ1

p1
(d1) + σµ2

p2
(d2). By Lemma 2.8, we know

σ(d1, d2) < 0. We divide four cases to have that u1 > 0 and u2 > 0.

Case I: u1 = 0 and u2 = 0. Obviously, we can obtain that limn→+∞ F (un1 , u
n
2 ) = 0, which is

contradicts σ(d1, d2) < 0.

Case II: u1 = 0 and u2 ̸= 0. Combining (2.12) and (2.15), we have

lim
n→+∞

F (un1 , u
n
2 ) ≥

a

2
∥∇u2∥22 +

b

4
∥∇u2∥42 −

µ2

2p2

∫
RN

(Iα ∗ |u2|p2)|u2|p2dx ≥ σµ2
p2
(d3), (3.1)

where d3 := ∥u2∥22 ≤ d2. By (i) and (iii) of Lemma 2.6, we have σµ2
p2
(d3) ≥ σµ2

p2
(d2). Thus, by (3.1),

we have σ(d1, d2) ≥ σµ2
p2
(d3). On the other hand, using Lemma 2.6 again, we have σµ1

p1
(d1) < 0.

In view of σ(d1, d2) ≤ σµ1
p1
(d1) + σµ2

p2
(d2), we have σ(d1, d2) < σµ2

p2
(d2). This is a contradiction.

Case III: u1 ̸= 0 and u2 = 0. By the same proof as in Case II, we can obtain a contradiction.

Case IV: u1 ̸= 0 and u2 ̸= 0. From Lemma 2.10, we have λ1 < 0 and λ2 < 0. Thus, by Lemma
2.12, we obtain un1 → u1 and un2 → u2 in H1

r (RN ). This proof is complete. □

4. Proof of Theorem 1.3

Let k = ∥∇u1∥22 + ∥∇u2∥22, then for each (u1, u2) ∈ Sr(d1) × Sr(d2), by the same proof as in
Lemma 2.9, we obtain

F (u1, u2)

=
a

2

2∑
i=1

∥∇ui∥22 +
b

4

2∑
i=1

∥∇ui∥42 −
2∑

i=1

µi

2pi

∫
RN

(Iα ∗ |ui|pi)|ui|pidx−Θ

∫
RN

(Iβ ∗ |u1|p1)|u2|p2dx

≥ b

8
k2 −B1k

Np1−N−α
2 −B2k

Np2−N−α
2 −ΘB3k

Nr−2(N+β)
4 := g(k),

where Bi =
µi

2pi
CN,pi

d
N+α−pi(N−2)

2
i (i = 1, 2), and B3 = CN,r1CN,r2d

N+β−r1(N−2)
4

1 d
N+β−r2(N−2)

4
2 .

By Lemmas 2.8 and 2.9, we consider the minimization problem

σ(d1, d2) := inf
W (k0)

F (u1, u2) < 0for any0 < Θ ≤ Θ∗.

Lemma 4.1. Assume that (A1) holds and 0 < α − 2 ≤ β < α < N . Then there exists Θ1 > 0,
such that if 0 < Θ < Θ1, then the function g(k) has a unique local minimum point at the negative
level and a unique global maximum point at the positive level. Moreover, there exists 0 < k0 < k1,
such that g(k0) = g(k1) = 0 and g(k) > 0 if and only if k ∈ (k0, k1).

Proof. Without loss of generality, we assume that p1 ≥ p2.

Case I: p1 = p2 = p. For k > 0, we have

g(k) =
b

8
k2 − (B1 +B2)k

Np−N−α
2 −ΘB3k

Nr−2(N+β)
4

= k
Np−N−α

2

( b
8
k

4+N+α−Np
2 − (B1 +B2)−ΘB3k

Nr−2Np+2(α−β)
4

)
.

Define h(k) = b
8k

4+N+α−Np
2 −ΘB3k

Nr−2Np+2(α−β)
4 , then g(k) > 0 ⇔ h(k) > B1 +B2. Setting

k̃ =

(
b(4 +N + α−Np)

4ΘB3(Nr − 2Np+ 2(α− β))

) 4
Nr−2(N+β+4)

,

it is easy to check that h(k) is increasing in (0, k̃), decreasing in (k̃,+∞) and

h(k̃) =MΘ− 2(4+N+α−Np)
Nr−2(N+β+4) ,
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where M is a positive constant. Hence, we can take Θ small enough, such that h(k̃) > B1 + B2.
Thus, there exists Θ1 > 0, such that 0 < Θ < Θ1, which implies that g(k) > 0 on k ∈ (k0, k1).
Since g(k) → 0− as k → 0+, g(k) has a local minimum point on (0, k0). Therefore, g(k) has at
least two critical points.

For k > 0, we define

φ(k) =
b

4
k

4+N+α−Np
2 − Nr − 2(N + β)

4
ΘB3k

Nr−2Np+2(α−β)
4 .

By direct computation, g′(k) = k
Np−N−α−2

2 (φ(k) − (B1 + B2)(Np − N − α)) and g′(k) = 0 ⇔
φ(k) = (B1 + B2)(Np −N − α). Since φ(k) has a unique global maximum point, φ(k) = (B1 +
B2)(Np−N − α) has at most two solutions, i.e., g(k) has at most two critical points. Thus, g(k)
has a unique local minimum point at the negative level and a unique global maximum point at
the positive level.

Case II: p1 > p2. In this case, we have

g(k) =
b

8
k2 −B1k

Np1−N−α
2 −B2k

Np2−N−α
2 −ΘB3k

Nr−2(N+β)
4

= k
Np2−N−α

2

( b
8
k

4+N+α−Np2
2 −B1k

Np1−Np2
2 −B2 −ΘB3k

Nr−2Np2+2(α−β)
4

)
=: k

Np2−N−α
2 (Q(k)−B2).

By calculation and analysis, Q(k) has a unique global maximum point k̄ with

k̄ >
( b(4 +N + α−Np1)(4 +N + α−Np2)

2B3Θ(Nr − 2Np1 + 2(α− β))(Nr − 2Np2 + 2(α− β))

) 4
Nr−2(N+β+4)

:= k∗,

and Q(k̄) > Q(k∗) > k̄
N(p2−p1)

2 for Θ small enough. Therefore, we can take Θ small enough, such
that Q(k̄) > B2. The rest of the proof is similar to the case p1 = p2. □

Lemma 4.2. Assume that (A1) holds and 0 < α − 2 ≤ β < α < N . Then there exists Θ2 > 0,
such that if 0 < Θ < Θ2, then P0(d1, d2) = ∅, and P is a submanifold of H1

r (RN )×H1
r (RN ).

Proof. We argue by contradiction. Suppose that there exists (u1, u2) ∈ P0(d1, d2). Then

a

2∑
i=1

∥∇ui∥22 + b

2∑
i=1

∥∇ui∥42 −
2∑

i=1

µi

2pi
(Npi −N − α)

∫
RN

(Iα ∗ |ui|pi)|ui|pidx

−Θ
(N
2

−N − β
)∫

RN

(Iβ ∗ |u1|r1)|u2|r2dx = 0

(4.1)

and

2a

2∑
i=1

∥ui∥22 + 4b

2∑
i=1

∥ui∥42 −
2∑

i=1

µi

2pi
(Npi −N − α)2

∫
RN

(Iα ∗ |ui|pi)|ui|pidx

−Θ
(Nr

2
−N − β

)2
∫
RN

(Iβ ∗ |u1|r1)|u2|r2dx = 0.

(4.2)

By (4.1) and (4.2), we have(Nr
2

−N − β − 2
)
a

2∑
i=1

∥ui∥22 + (
Nr

2
−N − β − 4)b

2∑
i=1

∥ui∥42

=

2∑
i=1

µi

2pi

(Nr
2

−Npi + α− β
)∫

RN

(Iα ∗ |ui|pi)|ui|pidx.

(4.3)

On the one hand, by (4.3), we have

b

2
(∥∇u1∥22 + ∥∇u2∥22)2 ≤ b(∥∇u1∥42 + ∥∇u2∥42) +

Nr
2 −N − β − 2

Nr
2 −N − β − 4

a

2∑
i=1

∥∇ui∥22



12 Z. CHEN, M. LI EJDE-2026/06

=
1

Nr
2 −N − β − 4

2∑
i=1

µi

2pi

(Nr
2

−Npi + α− β
)∫

RN

(Iα ∗ |ui|pi)|ui|pidx

≤
2∑

i=1

Ki(∥∇u1∥22 + ∥∇u2∥22)
Npi−N−α

2 ,

where

Ki :=
1

Nr
2 −N − β − 4

µi

2pi

(Nr
2

−Npi + α− β
)
Cpi

N,pi,α
d

N+α−pi(N−2)

2
i .

Thus, there exists K3 > 0, such that

∥∇u1∥22 + ∥∇u2∥22 ≤ K3. (4.4)

On the other hand, combining (4.1) and (4.2), we have

2b

2∑
i=1

∥ui∥42 +
2∑

i=1

µi

2pi
(Npi −N − α)(N + α+ 2−Npi)

∫
RN

(Iα ∗ |ui|pi)|ui|pidx

= Θ
(Nr

2
−N − β

)(Nr
2

−N − β − 2
)∫

RN

(Iβ ∗ |u1|r1)|u2|r2dx.

Thus,

2∑
i=1

µi

2pi
(Npi −N − α)(N + α+ 2−Npi)

∫
RN

(Iα ∗ |ui|pi)|ui|pidx

≤ 2b

2∑
i=1

∥ui∥42 +
2∑

i=1

µi

2pi
(Npi −N − α)(N + α+ 2−Npi)

∫
RN

(Iα ∗ |ui|pi)|ui|pidx

= Θ
(Nr

2
−N − β

)(Nr
2

−N − β − 2
)∫

RN

(Iβ ∗ |u1|r1)|u2|r2dx.

(4.5)

If
∫
RN (Iβ ∗ |u1|r1)|u2|r2dx = 0, by (4.5), we have u1 = u2 = 0, which is a contradiction. By (4.5),

we obtain

b

2
(∥u1∥22 + ∥u2∥22)2

≤ b(∥u1∥42 + ∥u2∥42) + a(∥u1∥22 + ∥u2∥22)

=

2∑
i=1

µi

2pi
(Npi −N − α)

∫
RN

(Iα ∗ |ui|pi)|ui|pidx+Θ
(Nr

2
−N − β

)∫
RN

(Iβ ∗ |u1|r1)|u2|r2dx

≤ Θ
(Nr

2
−N − β

)( Nr
2 −N − β − 2

N + α+ 2−N ·min{p1, p2}
+ 1

)∫
RN

(Iβ ∗ |u1|r1)|u2|r2dx

≤ ΘK4(∥∇u1∥22 + ∥∇u2∥22)
Nr−2(N+β)

4 .

Since rN−2(N+β)
4 > 2, then we have

∥∇u1∥22 + ∥∇u2∥22 ≥
( b

2K4Θ

) 4
Nr−2(N+β+4)

. (4.6)

Combining (4.4) and (4.6), we obtain( b

2K4Θ

) 4
Nr−2(N+β+4) ≤ ∥∇u1∥22 + ∥∇u2∥22 ≤ K3;

it does not hold for Θ small enough.
Next, we show that P(d1, d2) is a submanifold of H1

r (RN )×H1
r (RN ). Note that

P(d1, d2) := {(u1, u2) ∈ H1
r (RN )×H1

r (RN ) : P (u1, u2) = 0,S1(u1) = 0,S2(u2) = 0},
where S1(u1) = ∥u1∥22 − d1, S2(u2) = ∥u2∥22 − d2. It suffices to show that d(P,S1,S2) : H1

r (RN )×
H1

r (RN ) → R3 is surjective. Otherwise, by the independence of dS1(u1) and dS2(u2), dP (u1, u2)
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must be a linear combination of dS1(u1) and dS2(u2), i.e., there exists κ1, κ2 ∈ R, such that
(u1, u2) is a weak solution of

− (a+ 2b

∫
RN

|∇u1|2dx)∆u1

= κ1u1 + µ1
Np1 −N − α

2
(Iα ∗ |u1|p1)|u1|p1−2u1 +Θr1

Nr − 2(N + β)

4
(Iβ ∗ |u2|p2)|u1|p1−2u1,

− (a+ 2b

∫
RN

|∇u2|2dx)∆u2

= κ2u2 + µ2
Np2 −N − α

2
(Iα ∗ |u2|p2)|u2|p2−2u2 +Θr2

Nr − 2(N + β)

4
(Iβ ∗ |u1|p1)|u2|p2−2u2.

Testing the above system with (u1, u2) and combining with Pohožaev identity, we obtain (Φ(u1,u2))
′′(0) =

0. Then (u1, u2) ∈ P0(d1, d2) = 0, which is contradicted to P0(d1, d2) = ∅. The proof is com-
plete. □

Let Θ∗ = min{Θ1,Θ2}, Π1 := {(u1, u2) ∈ H1
r (RN ) × H1

r (RN ) :
∫
RN (Iβ ∗ |u1|r1)|u2|r2dx > 0}

and Π2 := {(u1, u2) ∈ H1
r (RN ) ×H1

r (RN ) :
∫
RN (Iβ ∗ |u1|r1)|u2|r2dx = 0}. Next, we analyze the

geometric structure of Φ(u1,u2)(τ).

Lemma 4.3. Assume that (A1) holds and let 0 < Θ < Θ∗. Then for each (u1, u2) ∈ Sr(d1) ×
Sr(d2) ∩Π1, Φ(u1,u2)(τ) has exactly two critical points τ(u1,u2) < s(u1,u2) and two zeros e(u1,u2) <
f(u1,u2) with τ(u1,u2) < e(u1,u2) < s(u1,u2) < f(u1,u2). Moreover,

(i) τ ⋆ (u1, u2) ∈ P+(d1, d2) if and only if τ = τ(u1,u2), τ ⋆ (u1, u2) ∈ P−(d1, d2) if and only if
τ = s(u1,u2).

(ii) If τ < e(u1,u2), then ∥∇(τ ⋆u1)∥22+∥∇(τ ⋆u2)∥22 ≤ k0, and F (τ(u1,u2)⋆(u1, u2)) = min{F (τ ⋆
(u1, u2)) : τ ∈ R, ∥∇(τ ⋆u1)∥22+∥∇(τ ⋆u2)∥22 < k0} < 0. Moreover, F (s(u1,u2) ⋆ (u1, u2)) =
maxτ∈R F (τ ⋆ (u1, u2)).

(iii) The maps (u1, u2) 7→ τ(u1,u2) and (u1, u2) 7→ s(u1,u2) are of class C1.

Proof. For (u1, u2) ∈ Sr(d1, d2), we obtain

(Φ(u1,u2))
′(τ) = ae2τ

2∑
i=1

∥∇ui∥22 + be4τ
2∑

i=1

∥∇ui∥42 −
2∑

i=1

µi

2pi
e(Npi−N−α)τ

∫
RN

(Iα ∗ |ui|pi)|ui|pidx

−Θ(
Nr

2
−N − β)e(

Nr
2 −N−β)τ

∫
RN

(Iβ ∗ |u1|r1)|u2|r2dx

= a

2∑
i=1

∥∇(τ ⋆ ui)∥22 + b

2∑
i=1

∥∇(τ ⋆ ui)∥42

−
2∑

i=1

µi

2pi
(Npi −N − α)

∫
RN

(Iα ∗ |τ ⋆ ui|pi)|τ ⋆ ui|pidx

−Θ(
Nr

2
−N − β)

∫
RN

(Iβ ∗ |τ ⋆ u1|r1)|τ ⋆ u2|r2dx

= P (τ ⋆ u1, τ ⋆ u2).

Therefore, τ ⋆ (u1, u2) ∈ P(d1, d2) if and only if (Φ(u1,u2))
′(τ) = 0. Obviously,

Φ(u1,u2)(τ) = F (τ ⋆ u1, τ ⋆ u2) ≥ g(e2τk).

By Lemma 4.1, we have

Φ(u1,u2)(τ) > 0, for all τ ∈
(1
2
ln
k0
k
,
1

2
ln
k1
k

)
.

In view of Φ(u1,u2)(−∞) = 0− and Φ(u1,u2)(+∞) = −∞, it follows that Φ(u1,u2)(τ) has at least two
critical points τu1,u2

< s(u1,u2), where s(u1,u2) is global maximum point at positive level, τ(u1,u2) is
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a local minimum point on (−∞, 12 ln
k0

k ) at negative level. Similar to Lemma 4.1, Φ(u1,u2)(τ) has
at most two critical points. Therefore, Φ(u1,u2)(τ) has exactly the two critical points τ(u1,u2) and
s(u1,u2). From τ ⋆ (u1, u2) ∈ P(d1, d2) if and only Φ′

(u1,u2)
(τ) = 0, then τ ⋆ (u1, u2) ∈ P(d1, d2) if

and only τ = τ(u1,u2) or τ = s(u1,u2). Since τ(u1,u2) is a local minimum point, we have that

(Φτ(u1,u2)⋆(u1,u2))
′′(0) = (Φ′′

(u1,u2)
(τ(u1,u2)) ≥ 0.

Since P0(d1, d2) = ∅, it follows that (Φτ(u1,u2)⋆(u1,u2))
′′(0) > 0. Then τ(u1,u2)⋆(u1, u2) ∈ P+(d1, d2)

and s(u1,u2) ⋆ (u1, u2) ∈ P−(d1, d2). By the monotonicity, Φ(u1,u2)(τ) has exactly two zeros
e(u1,u2) < f(u1,u2) with τ(u1,u2) < e(u1,u2) < s(u1,u2) < f(u1,u2). Finally, let Ψ(τ, u1, u2) :=
(Φ(u1,u2))

′(τ). Then

Ψ(τ(u1,u2), u1, u2) = Ψ(s(u1,u2), u1, u2) = 0

∂τΨ(τ(u1,u2), u1, u2) = (Φ(u1,u2))
′′(τ(u1,u2)) > 0,

∂sΨ(s(u1,u2), u1, u2) = (Φ(u1,u2))
′′(s(u1,u2)) < 0.

Applying the implicit function theorem, the maps (u1, u2) 7→ τ(u1,u2) and (u1, u2) 7→ s(u1,u2) are

of class C1. □

Lemma 4.4. Assume that (A1) holds and let 0 < Θ < Θ∗. Then for each (u1, u2) ∈ Sr(d1) ×
Sr(d2) ∩ Π2, Φ(u1,u2)(τ) has a unique critical point τ(u1,u2) and a zero e(u1,u2) with τ(u1,u2) <
e(u1,u2). Moreover,

(i) P(d1, d2) = P+(d1, d2) and τ ⋆ (u1, u2) ∈ P+(d1, d2) if and only if τ = τ(u1,u2).
(ii) F (τ(u1,u2) ⋆ (u1, u2)) = minτ∈R F (τ ⋆ (u1, u2)).

(iii) ∥∇(τ ⋆ u1)∥22 + ∥∇(τ ⋆ u2)∥22 < k0 for all τ < e(u1,u2).

Proof. Without loss of generality, we assume that p1 ≥ p2. It is easy to see that Φ(u1,u2)(τ) → 0−

as τ → −∞, and Φ(u1,u2)(τ) → +∞ as τ → +∞ for any (u1, u2) ∈ Sr(d1, d2) ∩ Π2. Hence,
Φ(u1,u2)(τ) has a global minimum point τ(u1,u2) at negative level. Note that (Φ(u1,u2))

′(τ) = 0 if
and only if

ae(N+α+2−Np2)τ
2∑

i=1

∥∇ui∥22 + be(N+α+4−Np2)τ
2∑

i=1

∥∇ui∥42

− µ1

2p1
(Np1 −N − α)eN(p1−p2)τ

∫
RN

(Iα ∗ |u1|p1)|u1|p1dx

=
µ2

2p2
(Np2 −N − α)

∫
RN

(Iα ∗ |u2|p2)|u2|p2dx.

By direct calculation, it is not difficult to check that equation has exactly one solution. Hence, τ ⋆
(u1, u2) ∈ P(d1, d2) if and only if τ = τ(u1,u2). Since τ(u1,u2) is global minimum point of Φ(u1,u2)(τ),
then (Φ(u1,u2))

′′(τ(u1,u2)) ≥ 0. Since P0(d1, d2) = ∅, we obtain that (Φτ(u1,u2)⋆(u1,u2))
′′(0) > 0,

and thus τ(u1,u2) ⋆ (u1, u2) ∈ P+(d1, d2). Furthermore, using the monotonicity and the behav-
ior at infinity, Φ(u1,u2)(τ) has a unique zero e(u1,u2) with τ(u1,u2) < e(u1,u2). By Φ(u1,u2)(τ) ≥
g(e2τ (∥∇u1∥22 + ∥∇u2∥22)), then Φ(u1,u2)(τ) ≥ g(k0) = 0 at τ = 1

2 ln
k0

∥∇u1∥2
2+∥∇u2∥2

2
. Therefore,

∥∇(τ ⋆ u1)∥22 + ∥∇(τ ⋆ u2)∥22 < k0 for all τ < e(u1,u2). □

Lemma 4.5. Assume that (A1) holds. If 0 < Θ < Θ∗, then

σ(d1, d2) = inf
P(d1,d2)

F (u1, u2) = inf
P+(d1,d2)

F (u1, u2),

and there exists ε0 > 0 small enough, such that

σ(d1, d2) < inf
W (k0)\W (k0−ε0)

F (u1, u2).
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Proof. We first prove that σ(d1, d2) = infP+(d1,d2) F (u1, u2). For any (u1, u2) ∈ P+(d1, d2),

τ(u1,u2) = 0. By Lemma 4.3, 0 < 1
2 ln

k0

∥∇u1∥2
2+∥∇u2∥2

2
, so k0 > ∥∇u1∥22 + ∥∇u2∥22. Hence,

P+(d1, d2) ⊂W (k0) and
σ(d1, d2) ≤ inf

P+(d1,d2)
F (u1, u2).

On the other hand, for any (u1, u2) ∈W (k0), there exists a unique τ(u1,u2) ∈ R, such that

τ(u1,u2) ⋆ (u1, u2) ∈ P+ ⊂W (k0).

Using (ii) in Lemma 4.3 and Lemma 4.4, we have

F (τ(u1,u2) ⋆ (u1, u2)) = min{F (τ ⋆ (u1, u2)) : τ ∈ R, ∥∇(τ ⋆u1)∥22+∥∇(τ ⋆u2)∥22 < k0} ≤ F (u1, u2).

Hence, σ(d1, d2) ≥ infP+(d1,d2) F (u1, u2). Therefore, σ(d1, d2) = infP+(d1,d2) F (u1, u2). By (ii) in
Lemma 4.3, we obtain

inf
P(d1,d2)

F (u1, u2) = inf
P+(d1,d2)

F (u1, u2).

This proof is complete. By g(k0) = 0 and continuity of g, there is ε0 > 0 such that g(k) ≥ σ(d1,d2)
2

if k ∈ [k0 − ε, k0]. Therefore,

F (u1, u2) ≥ g(k) ≥ σ(d1, d2)

2
> σ(d1, d2) for all (u1, u2) ∈W (k0) \W (k0 − ε0).

□

Lemma 4.6. Assume that (A1) holds. Let 0 < Θ < Θ∗, then σ(d1, d2) < min{σ0(d1, 0), σ0(d2, 0)}.

Proof. For each (u1, u2) ∈W (k0), we have

F (u1, u2) = Gµ1
(u1) +Gµ2

(u2)−Θ

∫
RN

(Iβ ∗ |u1|r1)|u2|r2dx

≤ Gµ1(u1) +Gµ2(u2).

Hence, σ(d1, d2) ≤ infW (k0)(Gµ1(u1) +Gµ2(u2)). For any u1 ∈ Sr(d1) with ∥∇u1∥22 = k0, then

Gµ1
(u1) =

a

2
∥∇u1∥22 +

b

4
∥∇u1∥42 −

µ1

p1

∫
RN

(Iα ∗ |u1|2p1)|u1|p1dx

≥ b

4
k20 −Bi∥∇u1∥

δpipi

2 ≥ g(k0) = 0,

where Bi is defined by Lemma 2.9. Therefore,

inf
Sr(d1)

Gµ1
= inf

E(d1,k0)
Gµ1

(u1) < 0,

where E(d, k) := {u ∈ Sr(d) : ∥∇u∥22 < k}. Since the map k 7→ b
4k

2
0 −Bi∥∇u1∥

δpipi

2 is continuity,
by similar proof in Lemma 4.5, there is ε0 > 0 such that

σ(d1, µ1) < inf
E(d1,k0)\E(d1,k0−ε0)

Gµ1(u1),

and infE(d2,ε0)Gµ2
(u2) < 0. We define Λ := {(u1, u2) : u1 ∈ E(d1, k0 − ε0), u2 ∈ E(d2, ε0)}; then

Λ ⊂W (k0). Therefore,

inf
W (k0)

(Gµ1
(u1) +Gµ2

(u2)) ≤ inf
Λ
(Gµ1

(u1) +Gµ2
(u2))

= inf
E(d1,k0−ε0)

Gµ1
(u1) + inf

E(d2,ε0)
Gµ2

(u2)

< inf
E(d1,k0−ε0)

Gµ1(u1)

= σ0(d1, 0).

Thus, σ(d1, d2) < σ0(d1, 0). It can be shown that σ(d1, d2) < σ0(d2, 0) in the same way as
above. □

Lemma 4.7. Let {(un1 , un2 )} ⊂ Sr(d1)× Sr(d2) be a Palais-Smale sequence for F |Sr(d1)×Sr(d2) at

level σβ(d1, d2), and P (u
n
1 , u

n
2 ) → 0 as n→ +∞. Then, (un1 , u

n
2 ) → (u1, u2) in H

1
r (RN )×H1

r (RN ).
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Proof. By F (|un1 |, |un2 |) = F (un1 , u
n
2 ), then we can assume that un1 , u

n
2 ≥ 0. Since {(un1 , un2 )} ⊂

Sr(d1)× Sr(d2) be a Palais-Smale sequence for F |Sr(d1)×Sr(d2) at level σ(d1, d2), we have

σ(d1, d2) + on(1) =
a

2

2∑
i=1

∥∇uni ∥22 +
b

4

2∑
i=1

∥∇uni ∥42 −
2∑

i=1

µi

2pi

∫
RN

(Iα ∗ |uni |pi)|uni |pidx

−Θ

∫
RN

(Iβ ∗ |un1 |p1)|un2 |p2dx

= a

(
1

2
− 2

Nr − 2(N + β)

) 2∑
i=1

∥∇uni ∥22 + b

(
1

4
− 2

Nr − 2(N + β)

) 2∑
i=1

∥∇uni ∥42

−
2∑

i=1

µi

2pi

(
1− 2(Npi −N − α)

Nr − 2(N + β)

)∫
RN

(Iα ∗ |uni |pi)|uni |pidx

≥ a

(
1

2
− 2

Nr − 2(N + β)

)
k +

b

2

(
1

2
− 2

Nr − 2(N + β)

)
k2

−
2∑

i=1

µi

2pi
Mi

(
1− 2(Npi −N − α)

Nr − 2(N + β)

)
∥∇uni ∥

Npi−N−α
2 ,

where k = ∥∇un1∥22 + ∥∇un2∥2, Mi := Cpi

N,pi
d

N+α−(N−2)pi
2

i (i = 1, 2), 8 < Nr − 2(N + β) < 4 · 2∗β
and 0 < Npi −N − α < 2. We obtain the sequence {(un1 , un2 )} is bounded in H1

r (RN )×H1
r (RN ).

Hence, we have

(un1 , u
n
2 )⇀ (u1, u2) in H1

r (RN )×H1
r (RN )

(un1 , u
n
2 ) → (u1, u2) in Lp(RN )× Lp(RN )forp ∈ (2, 2∗).

By (c) in Lemma 2.11, there exist two sequences of real numbers {λn1}, {λn2}, such that

a

2∑
i=1

∫
RN

∇uni ∇ϕidx+ b

2∑
i=1

∫
RN

|∇uni |2dx
∫
RN

∇uni ∇ϕidx

−
2∑

i=1

µi

∫
RN

(Iα ∗ |uni |pi)|uni |pi−2uni ϕidx−Θr1

∫
RN

(Iβ ∗ |un2 |r2)|un1 |r1−2un1ϕ1dx

−Θr2

∫
RN

(Iβ ∗ |un1 |r1)|un2 |r2−2un2ϕ1dx−
2∑

i=1

∫
RN

λni u
n
i ϕidx

= on(1)∥(ϕ,ϕ2)∥H1
r (RN )×H1

r (RN ),

where on(1) → 0 as n → +∞. By Lemma 2.11, λni → λi (i = 1, 2), and (u1, u2) is a solution to
(1.1). Since

F (u1, u2) ≤ lim
n→+∞

F (un1 , u
n
2 ) = σ(d1, d2) < 0, (4.7)

we have (u1, u2) ̸= (0, 0). From Lemma 2.10, we obtain that λ1 < 0 or λ2 < 0. Without loss
of generality, we assume that λ1 < 0. Using Lemma 2.12, un1 → u1 in H1

r (RN ). Suppose by
contradiction that λ2 ≥ 0. Then

−(a+ b

∫
RN

|∇u2|2dx)∆u2 = λ2u2 + µ2(Iα ∗ |u2|p2)|u2|p2−2u2 +Θr2(Iβ ∗ |u1|r1)|u2|r2−2u2 ≥ 0.

By Lemma 2.5, we have u2 = 0. And u1 satisfies

−(a+ b

∫
RN

|∇u1|2dx)∆u = λ1u1 + µ1(Iα ∗ |u1|p1)|u1|p1−2u1,∫
RN

|u|2dx = d1 > 0.
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Hence,

σβ(d1, d2) = lim
n→+∞

F (un1 , u
n
2 )

= lim
n→+∞

a

2

2∑
i=1

∥∇ui∥22 +
b

4

2∑
i=1

∥∇ui∥42 −
2∑

i=1

µi

2pi

∫
RN

(Iα ∗ |ui|pi)|ui|pidx

−Θ

∫
RN

(Iβ ∗ |u1|r1)|u2|r2dx

= lim
n→+∞

a

2

2∑
i=1

∥∇ui∥22 +
b

4

2∑
i=1

∥∇ui∥42 −
µ1

2p1

∫
RN

(Iα ∗ |u1|p1)|u1|p1dx

≥ a

2
∥∇u1∥22 +

b

4
∥∇u1∥42 −

µ1

2p1

∫
RN

(Iα ∗ |u1|p1)|u1|p1dx

= Gµ1
(d1)

≥ σ(d1, 0),

which contradicts Lemma 4.6. Hence, λ2 < 0, and then, un2 → u2 in H1
r (RN ). □

Proof of Theorem 1.3. Let {(un1 , un2 )} ⊂W (k0) be a minimizing sequence for σ(d1, d2), i.e.
F (un1 , u

n
2 ) → σ(d1, d2). By Lemma 4.3, τ(un

1 ,u
n
2 )
⋆ (un1 , u

n
2 ) ∈ P+(d1, d2) for every n, ∥∇(τ(un

1 ,u
n
2 )
⋆

un1 )∥22 + ∥∇(τ(un
1 ,u

n
2 )
⋆ un2 )∥22 < k0 and

F (τ(un
1 ,u

n
2 )
⋆ un1 , τ(un

1 ,u
n
2 )
⋆ un2 ) ≤ F (un1 , u

n
1 ).

Let (ϖn
1 , ϖ

n
2 ) := (τ(un

1 ,u
n
2 )
⋆ un1 , τ(un

1 ,u
n
2 )
⋆ un2 ), then {ϖn

1 , ϖ
n
2 } ⊂ W (k0) is a minimizing sequence

for σβ(d1, d2) and (ϖn
1 , ϖ

n
2 ) ∈ P+(d1, d2). By Lemma 4.5, {(ϖn

1 , ϖ
n
2 )} ⊂ W (k0 − ε0). Therefore,

by Ekeland’s variational principle, there is a radial symmetric Palais-Smale sequence (υn1 , υ
n
2 )

for F |Sr(d1)×Sr(d1) satisfying ∥(ϖn
1 , ϖ

n
2 ) − (υn1 , υ

n
2 )∥H1

r (RN )×H1
r (RN ) → 0 as n → +∞. Thus,

{(υn1 , υn2 )} ⊂ W (k0) and P (υn1 , υ
n
2 ) → 0 as n → +∞. Now Lemma 4.7 implies that there exists

υ1, υ2 > 0 such that (υn1 , υ
n
2 ) → (υ1, υ2) in H

1
r (RN ) ×H1

r (RN ), and then (υ1, υ2) is a local mini-
mizer for F |W (k0). Therefore, (υ1, υ2) is a positive radial solution to (1.1) for some λ1, λ2 < 0. □

5. Proof of Theorem 1.4

In this section, we prove the existence of the second normalized solution. By [25], the Choquard
equation

−∆u+ u =

∫
RN

|u(y)|2

|x− y|N−2
dyu in R3 (5.1)

has a unique positive solution, which is often a strong help to obtain the second solution of (1.1).
By Lemma 2.8 and Lemma 2.9, we introduce a minimax structure of mountain pass type. There

exists k∗ ∈ (0, k0), such that for any 0 < Θ ≤ Θ∗

δ(s1, d2) := inf
h∈Γ

max
t∈[0,1]

F (h(t)) > max{F (h(0)), F (h(1))},

where Γ := {h ∈ C([0, 1], Sr(d1)× Sr(d2)) : h(0) ∈W (k̄), h(1) /∈W (k0), F (h(1)) < 0}.

Lemma 5.1. Assume that (A2) holds. Then for each 0 < Θ < Θ∗, there exists a Palais-Smale
sequence {(un1 , un2 )} for F |Sr(d1)×Sr(d2) at the level δ(d1, d2), which satisfies (un1 )

− → 0, (un2 )
− → 0

and P (un1 , u
n
2 ) → 0.

Proof. We recall the stretched functional first introduced in [20],

F̃ : R×
(
H1

r (RN )×H1
r (RN )

)
→ R, (s, (u1, u2)) 7→ F (s ⋆ u1, s ⋆ u2).

We define

Γ̃ :=
{
h̃ ∈ C([0, 1], Sr(d1)× Sr(d2)) : h̃(0) ∈ (0, h(0)), h̃(1) = (0, h(1)),

h(0) ∈W (k∗), h(1) /∈W (k0), F (h(1)) < 0
}
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and

δ̃(d1, d2) := inf
h̃∈Γ̃

max
t∈[0,1]

F̃ (h̃(t)).

It is not difficult to check that δ̃(d1, d2) = δ(d1, d2). Indeed, by the definitions of δ̃(d1, d2) and
δ(d1, d2), this identity follows immediately from the fact that the maps

ϕ : Γ → Γ̃, h 7→ ϕ(h) : (0, h),

and

φ : Γ̃ → Γ, h̃ = (ϖ,h) 7→ φ(h̃) := ϖ ⋆ h with (ϖ ⋆ h)(t) = ϖ(t) ⋆ h(t)

satisfying

F̃ (ϕ(h)) = F (h), F (φ(h̃)) = F̃ (h̃).

Then, we obtain a sequence {(vn1 , vn2 )} ⊂ Γ such that

max
t∈[0,1]

F̃ (0, (vn1 (t), v
n
2 (t))) → δ̃(d1, d2).

In view of F (u1, u2) = F (|u1|, |u2|) for (u1, u2) ∈ Sr(d1) × Sr(d2), then we can assume that
vn1 (t) ≥ 0 and vn2 (t) ≥ 0 for t ∈ [0, 1]. By [12, Theorem 4.1], there exists a Palais-Smale sequence

{(sn, (un1 , un2 ))} for F̃ |R×(Sr(d1)×Sr(d2)) at the level δ(d1, d2), such that sn → 0 and ∥(un1 , un2 ) −
(vn1 , v

n
2 )∥ → 0. It follows that (un1 )

− → 0, (un1 )
− → 0. Since F̃ (s, (u1, u2)) = F̃ (0, s ⋆ (u1, u2)), we

have

(∂sF̃ )(s, (u1, u2)) = (∂sF̃ )(0, s ⋆ (u1, u2))

and (∂uF̃ )(s, u)[ψ] = (∂uF̃ )(0, s ⋆ u)[s ⋆ ψ] for u = (u1, u2), ψ = (ψ1, ψ2). Therefore, {(0, sn ⋆
(un1 , u

n
2 ))} is also a Palais-Smale sequence for F̃ |R×(Sr(d1)×Sr(d2)) at the level δ(d1, d2). Then we

may assume that sn = 0, which implies that {(un1 , un2 )} ⊂ Sr(d1) × Sr(d2) is a Palais-Smale

sequence for F |Sr(d1)×Sr(d2) at the level δ(d1, d2) and (∂sF̃ )(0, (u
n
1 , u

n
2 )) → 0, that P (un1 , u

n
2 ) → 0

holds. □

Lemma 5.2. Assume that (A1) holds and 0 < Θ ≤ Θ∗, then there exists a positive and radial
solution (u1, u2) to the system (1.1) for some (λ1, λ2), and F (u1, u2) = δ(d1, δ2).

Proof. By proof similar to that of Lemma 4.7, the Palais-Smale sequence {(un1 , un2 )} for F restricted
to Sr(d1) × Sr(d2) at the level δ(d1, d2) is bounded in H1

r (RN ) × H1
r (RN ). Now we can assume

that

(un1 , u
n
2 )⇀ (u1, u2) in H1

r (RN )×H1
r (RN ),

(un1 , u
n
2 ) → (u1, u2) in Lp(RN )× Lp(RN ) for p ∈ (2, 2∗).

From Lemma 2.11, there exists a sequence {(λn1 , λn2 )} ⊂ R2, such that (λn1 , λ
n
2 ) → (λ1, λ2) in R2,

(u1, u2) is a solution to the system (1.1) and P (u1, u2) = 0. By (un1 )
− → 0, (un2 )

− → 0, then
u1, u2 ≥ 0.

Next, we prove that F (u1, u2) = δ(d1, d2). By P (u
n
1 , u

n
2 ) → 0, i.e.,

a

2∑
i=1

∥∇uni ∥22 + b

2∑
i=1

∥∇uni ∥42 =

2∑
i=1

µi

2pi
(Npi −N − α)

∫
RN

(Iα ∗ |uni |pi)|uni |pidx

+Θ
Nr − 2(N + β)

2

∫
RN

(Iβ ∗ |un1 |r1)|un2 |p2dx.

(5.2)

By Lemmas 2.7 and 2.11, we have

2∑
i=1

µi

2pi
(Npi −N − α)

∫
RN

(Iα ∗ |uni |pi)|uni |pidx+Θ
Nr − 2(N + β)

2

∫
RN

(Iβ ∗ |un1 |r1)|un2 |r2dx

→
2∑

i=1

µi

2pi
(Npi −N − α)

∫
RN

(Iα ∗ |uni |pi)|uni |pidx+Θ
Nr − 2(N + β)

2

∫
RN

(Iβ ∗ |u1|r1)|u2|r2dx.
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Combining P (u1, u2) = 0, we have

lim
n→+∞

a

2∑
i=1

∥∇uni ∥22 + b

2∑
i=1

∥∇uni ∥42 = a

2∑
i=1

∥∇ui∥22 + b

2∑
i=1

∥∇ui∥42.

Hence, F (un1 , u
n
2 ) = F (u1, u2), and then F (u1, u2) = δ(d1, d2). □

Proof of Theorem 1.4. By Lemma 5.2, we only need to prove (u1, u2) ∈ Sr(d1) × Sr(d2). Since
(u1, u2) is solution of (1.1), by Lemma 2.10, we have λ1 < 0 or λ2 < 0. Without loss of generality,
we can assume λ1 < 0. By Lemma 2.12, we obtain that un1 → u1 in H1

r (RN ) and then u1 ∈ Sr(d1).
Suppose by contradiction that λ2 ≥ 0, then

−∆u2 = λ2u2 + µ2(Iα ∗ |u2|p2)|u2|p2−2u2 +Θr2(Iβ ∗ |u1|p1)|u2|p2−2u2 ≥ 0.

By Lemma 2.5, we have u2 = 0. Therefore, F (u1, u2) = F (u1, 0), and u1 ∈ Sr(d1) satisfies (2.4).
By Lemma 2.6, F (u1, 0) = σµ1

p1
(d1) < 0 if a = 1, b = 0, N = 3 and p1 = p2 = r1 = r2 = α = β = 2,

which is in contradiction to the fact F (u1, 0) = δ(d1, d2) > 0. Thus, λ2 < 0, and then u2 ∈ Sr(d2).
By the maximum principle, we obtain the u1, u2 > 0 in R3. □
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