
Fourth Mississippi State Conference on Differential Equations and
Computational Simulations, Electronic Journal of Differential Equations,
Conference 03, 1999, pp 13–27.
http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp ejde.math.swt.edu or ejde.math.unt.edu (login: ftp)

Use of discrete sensitivity analysis to transform

explicit simulation codes into design optimization

codes ∗

Clarence O. E. Burg

Abstract

Sensitivity analysis is often used in high fidelity numerical optimiza-
tion to estimate design space derivatives efficiently. Typically, explicit
codes are combined with the adjoint formulation of continuous sensitivity
analysis, which requires the derivation and solution of the adjoint equa-
tions along with appropriate boundary conditions. However, for implicit
codes, which already calculate the Jacobian matrix of the discretized gov-
erning equations, the discrete approach of sensitivity analysis is relatively
easy to implement. Using the complex Taylor’s series expansion method
to generate derivatives, a highly accurate approximation to the Jacobian
matrix can be generated for implicit or explicit codes, allowing uniform
application of discrete sensitivity analysis to both implicit and explicit
codes.

1 Introduction

High fidelity numerical simulation codes have been developed to solve a wide
variety of partial differential equations, including the Euler and Navier-Stokes
equations for compressible or incompressible flow, the shallow water equations
for flow in the ocean, rivers and channels and the porous media equation for
groundwater flow in underground aquifers. The primary goal of these codes has
been to simulate the flow for a particular geometry and/or parameter distri-
bution. The codes are used in conjunction with scale models and field mea-
surements for evaluation and analysis of a particular design. Then, the design
or the parameters are changed based on the knowledge and experience of the
researcher, and a new simulation is run. This trial-and-error approach to design
is inefficient and does not take full advantage of the computational tools.
By changing the simulation code into a gradient-based optimization code, the

results from the flow simulation are used to direct the search and can efficiently

∗Mathematics Subject Classifications: 76N25, 49Q12.
Key words: design optimization, sensitivity analysis, adjoint methods,
computational fluid dynamics.
c©2000 Southwest Texas State University and University of North Texas.
Published July 10, 2000.

13

14 Use of discrete sensitivity analysis

locate much improved designs. For instance, in the inverse design of airfoils, the
designer determines the desired pressure distribution based on certain design
criteria and uses an Euler or Navier-Stokes code to find an airfoil whose pressure
distribution closely matches the target distribution. Thus, the objective function
to be minimized could be a least squares function between the target pressures
and the actual pressures for a particular design, and the design parameters would
be the shape of the airfoil and the flight conditions, such as Mach number and
angle of attack. By varying these parameters, the designer hopes to minimize
the objective function. For notation, ~β is the vector of design parameters, F (~β)
is the objective function, ∂F

∂βi
is the design space derivative of F with respect

to βi and ∇~βF is the design space gradient of F with respect to the vector of

design variables ~β.

These simulation codes can be used to estimate design space derivatives by
using one-sided finite differences

∂F (~β)

∂βi
≈
F (~β + ei∆β)− F (~β)

∆β
(1)

or central differences

∂F (~β)

∂βi
≈
F (~β + ei∆β)− F (~β − ei∆β)

2∆β
(2)

where ei is a unit vector in the ith direction. These finite difference formulae for
estimating the design space gradient are easy to implement. However, for one-
sided finite differences, an N additional steady-state simulations are required
where N is the number of design parameters, and when central differences are
used, an additional 2N steady-state simulations are needed. Since a high-fidelity
flow solver is being used to calculate the steady-state flow variables, the compu-
tational cost of evaluating the objective function is quite large. Thus, the finite
difference method is computationally expensive. Furthermore, the accuracy of
the method is highly dependent on the size of the perturbation ∆β. If the per-
turbation is too large, the non-linearity of the objective function will dominate;
if it is too small, round-off error reduces the accuracy of the derivative. Finally,
if the solutions are not strongly converged, then the accuracy of the function
values will be limited. In this case, the function values being used in these
formulae must be taken from identical locations in the solution process to have
any chance of being accurate.

Other methods being investigated to generate numerically exact derivatives
include automatic differentiation such as ADIFOR and the complex Taylor’s se-
ries expansion method. These two methods are relatively easy to implement but
are approximately as computationally expensive as finite differences, although
current research efforts are being investigated to reduce their computational
cost for steady-state problems. Table 1 shows a comparison of these meth-
ods in regards to their computational cost, accuracy of derivative and ease of
implementation.

Clarence O. E. Burg 15

Derivative Cost of Accuracy of Ease of
Method Comput. Derivative Implement.

Finite Difference Expensive Moderate Very Easy
Automatic Differentiation Expensive Num. Exact Easy
Complex Taylor’s Series
Expansion Method Expensive Num. Exact Easy

Continuous Sensitivity Analysis
for Explicit Codes Cheap Moderate Very Difficult

Discrete Sensitivity Analysis
for Implicit Codes Cheap Highly Moderate

Discrete Sensitivity Analysis
for Explicit Codes Cheap Moderate Difficult

Table 1. Costs and Benefits of Various Methods
to Generate Design Space Derivatives.

Sensitivity analysis can be used to reduce the computational cost of estimat-
ing the design space gradient, by taking advantage of derivative information
obtained via differentiation of the governing system of equations. Sensitivity
analysis can be divided into two different approaches - the continuous approach
and the discrete approach. In the continuous approach, the system of govern-
ing differential equations is differentiated to form a separate set of continuous
adjoint equations. In the discrete approach, the system of governing equations
is discretized first, creating a system of discretized equations W (Q) = 0. These
discretized equations are differentiated to form a system of discrete adjoint equa-
tions. For an overview of sensitivity analysis as applied to complex aerodynamic
applications, see Newman, etal [3]. Figure 1 gives a breakdown of the various
formulations within sensitivity analysis. The adjoint formulations of both con-
tinuous and discrete sensitivity analysis are typically used due to the need to
calculate the adjoint variable once per objective function regardless of the num-
ber of design variables. Each formulation can be implemented within an explicit
or an implicit code; however, traditionally, discrete sensitivity analysis has been
used for implicit codes while continuous sensitivity analysis has been used for
explicit codes.

Adjoint Direct
FormulationFormulation

Adjoint Direct
FormulationFormulation

Sensitivity Analysis

Discrete ApproachContinuous Approach

Figure 1. Breakdown of Formulations within Sensitivity Analysis.

For explicit codes, the continuous adjoint equations can be discretized and solved
in any consistent fashion; however, Shubin and Frank [6] showed that to achieve

16 Use of discrete sensitivity analysis

the best agreement between the derivatives produced via the continuous ap-
proach with the finite difference derivatives, the same discretization method
should be employed to solve the continuous adjoint equations as was used to
solve the continuous governing equations. Reuther [5], in his dissertation re-
search, demonstrated these techniques for the two-dimensional Euler equations
as applied to airfoil design. Once the adjoint equations are derived and success-
fully implemented, they are driven to steady-state, which takes approximately
twice as long as a flow simulation, according to Reuther. Since the adjoint
equations must be solved only once for each objective function regardless of the
number of design variables and since the number of objective functions is often
quite small in comparison to the number of design variables for single discipline
designs, the computational savings of using the adjoint formulation as opposed
to finite differences can be quite large.
More recently, Nadarajah and Jameson [2] showed that the discrete approach

of sensitivity analysis could be applied to explicit codes by differentiating the
discretized equations solved via the explicit code. However, in his derivations,
Nadarajah froze certain terms to reduce the complexity of the differentiated
equations, which resulted in a loss of accuracy between the finite difference
derivative and the derivative calculated via his approach. Furthermore, the com-
putational cost of solving the discrete adjoint equations via an explicit method
is quite similar to solving the discrete governing equations. Thus, for explicit
codes, both the continuous and discrete approaches of sensitivity analysis can
be used, although the complexity of the derivations, the computational cost and
the inaccuracy between the derivative results are limitations for these codes.
For implicit codes, both the continuous and discrete approaches can also

be employed. However, because implicit codes already calculate the Jacobian
matrix of the discretized governing equations with respect to the flow variables,
the discrete approach is quite easy to implement; whereas, for the continuous
approach, the Jacobian of the discrete adjoint equations would be needed. The
focus of the research presented herein is to develop a method for easily generating
the Jacobian of the discretized governing equations as implemented within either
an implicit or an explicit code, so that discrete sensitivity analysis can be applied
uniformly to both solution methodologies.
One final distinction between the continuous and discrete approaches of sen-

sitivity analysis should be emphasized. The derivatives generated by the con-
tinuous approach are not “discretely adjoint” to the discretized governing equa-
tions. As a result, the derivatives produced by the continuous approach are
generally not as accurate as those produced by the discrete approach. The error
is a result of the order of discretization and can be summarized by Figure 2. In
discrete sensitivity analysis, the discretization error associated with the adjoint
variable is consistent with the discretization error generated by solving the dis-
cretized governing equations. However, for continuous sensitivity analysis, the
discretization error results from solving the discretized adjoint equations, which
does not have a direct relationship to the discretization error coming from the
governing equations. For discrete simulations, the adjoint variable λ generated
by discrete sensitivity analysis will be discretely adjoint to the discretized gov-

Clarence O. E. Burg 17

erning equations. Since the derivatives are consistent with the discrete solution,
these derivatives will be in better agreement with derivatives produced via fi-
nite differences or the complex Taylor’s series expansion method than those
derivatives produced by the continuous approach. However, as the mesh size
is reduced, the discretization error will tend towards zero, and the derivatives
produced by the two approaches will agree.

Q exactQ discretized Q discretized
error

+=

Discretized
Governing Equations

Q exact

Continuous
Governing Equations

λ exact

Continuous
Adjoint Equations

λ exactλ discretized = +λ discretization
error 1

Discretized
Adjoint Equations

λ exactλ discretized = +λ discretization
error 2

Discretized
Adjoint Equations

Discretization
Discretization

Sensitivity Analysis

Continuous

Discrete Sensitivity Analysis

Figure 2: Effects of Discretization Error on Accuracy of Adjoint Variable.

For discrete sensitivity analysis, one of the primary factors affecting the accu-
racy of the design space derivatives is the accuracy of the Jacobian matrix. To
obtain each term in this matrix by hand-differentiation is also quite challenging
and error-prone. However, the complex Taylor’s series expansion method can
be used to overcome the difficulties associated with determining the Jacobian
matrix, by using complex arithmetic to generate highly accurate derivatives
without the need for hand-differentiation. Since the steady-state discretized
equations are the same for explicit and implicit codes, the complex Taylor’s
series expansion method can be used to generate highly accurate Jacobian ma-
trix for both explicit and implicit codes. Using this method, highly accurate
Jacobian matrices can be generated for explicit and implicit codes, and discrete
sensitivity analysis can be uniformly applied to both solution methodologies.
Sensitivity analysis is presented in detail in the next section. The complex

Taylor’s series expansion method is discussed in section 3. In section 4, transfor-
mation of the Euler simulation code is explained, and in section 5, the resulting
optimization code is discussed and is applied to an inverse design problem.

2 Sensitivity Analysis

The objective function F is explicitly a function of the flow variables Q and
possibly of the grid χ or the design variables ~β, so F (Q(~β), χ(~β), ~β). Thus,

18 Use of discrete sensitivity analysis

the design space derivative of F with respect to the design variable βi can be
expressed as

dF

dβi
=
∂F

∂Q

∂Q

∂βi
+
∂F

∂χ

∂χ

∂βi
+
∂F

∂βi
(3)

Since F is explicitly dependent on Q, χ and β, the terms ∂F
∂Q
, ∂F
∂χ
and ∂F

∂βi

can be calculated easily by hand. The term ∂χ
∂βi
can be estimated via finite

differencing the results of the grid generation code. Unfortunately, the term ∂Q
∂βi

can not be estimated via finite differences without an additional steady-state
simulation. (dFdβi is actually a partial derivative because F depends on several
design variables; however, due to the limitations of notation, it is written as the
total derivative, being the sum of the explicit and implicit dependencies of F
on the design variable βi.)

The system of governing equations can be expressed as W (Q(~β), χ(~β), ~β) =
0. Thus,

dW

dβi
=
∂W

∂Q

∂Q

∂βi
+
∂W

∂χ

∂χ

∂βi
+
∂W

∂βi
= 0 (4)

Again, sinceW is explicitly dependent on Q, χ and β, the associated terms ∂W
∂Q
,

∂W
∂χ and

∂W
∂βi
can be calculated efficiently. The term ∂χ

∂βi
is already known via

finite differences. Hence, the only unknown term in this equation is ∂Q
∂βi
. By

multiplying equation (4) by the adjoint variable λ and adding to equation (3),
we get

∂F

∂βi
=

(
∂F

∂Q
+ λT

∂W

∂Q

)
∂Q

∂βi
+

(
∂F

∂χ
+ λT

∂W

∂χ

)
∂χ

∂βi
+

(
∂F

∂βi
+ λT

∂W

∂βi

)
(5)

By choosing λ such that
∂F

∂Q
+ λT

∂W

∂Q
= 0 (6)

or
∂W

∂Q

T

λ = −
∂F

∂Q

T

(7)

the need to calculate the term ∂Q
∂βi
is removed, and the design space derivative

can be calculated without the need of any additional steady-state simulations.
Equation (7) does not depend on the design variables; hence λ is the same for
all the design variables, and equation (7) must only be solved once, regardless
of the number of design variables. However, equation (7) is dependent on the
objective function F ; thus, this equation must be solved for each function for
which a derivative is needed.

In the discrete approach, the terms F and W represent the discretized ob-
jective function and governing equations, whereas in the continuous approach,
these terms are the continuous objective function and governing differential
equations. For the objective function used herein, F is only explicitly dependent

Clarence O. E. Burg 19

on the flow variables Q; hence, after solving for λ, the design space derivative is

∂F

∂βi
= λT

(
∂W

∂χ

∂χ

∂βi
+
∂W

∂βi

)
= λT

dW

dβi

∣∣∣∣
Q fixed

(8)

To study the differences in implementation between the two approaches,
a review of the differences between implicit and explicit simulation codes is
appropriate. For explicit codes, the flow variables are updated via an equation
similar to

Qn+1 = Qn + fexplicit(Q
n, dtn) (9)

whereas for implicit codes, the flow variables are updated via

Qn+1 = Qn + fimplicit(Q
n+1, Qn, dtn) (10)

where Qn+1 is the vector of flow variables at time level n+ 1, Qn is the vector
of flow variables at time level n, which are known, and fexplicit and fimplicit
are functions that define the discretized spatial derivative. If higher order dis-
cretizations of the temporal derivatives are used or if fractional step algorithms
are used, equations (9) and (10) are modified to account for these changes. For
explicit codes, the function fexplicit depends only on known values, whereas for
implicit codes, the unknowns Qn+1 are included within the update function
fimplicit. For implicit codes, equation (10) can be recast as

W (Qn+1, Qn, dtn) = Qn+1 −Qn − fimplicit(Q
n+1, Qn, dtn) = 0 (11)

and can be solved iteratively via

∂W

∂Qn+1
∆Qm = −W (Qn,m, Qn, dtn) (12)

where Qn,m+1 = Qn,m + ∆Qm. This equation is solved iteratively until the
residual vector W (Qn,m, Qn, dtn) is sufficiently small, at which point Qn+1 =
Qn,m. The matrix ∂W

∂Qn+1
is called the Jacobian matrix of the residual vector

with respect to the flow variables. Since equation (12) is solved iteratively in
delta form, the Jacobian matrix does not need to be exact for the flow solver as
long as W is driven to zero.
At steady-state, Qn+1 = Qn, so fexplicit = 0 and fimplicit = 0. Furthermore,

after using the identity thatQn+1 = Qn, the Jacobian matrices can be expressed
as

∂W

∂Qn+1
= −
∂fimplicit

∂Qn+1
(13)

and
∂W

∂Qn
= −
∂fexplicit

∂Qn
(14)

Typically,
∂fexplicit
∂Qn is not calculated in explicit codes because it is not needed

for the flow solver. However, if this matrix were available, discrete sensitivity

20 Use of discrete sensitivity analysis

analysis could be applied to explicit codes in the same way as it is applied to
implicit codes.

Since the Jacobian matrix is used in implicit codes, it is relatively straight-
forward to convert implicit flow solvers into optimization codes using discrete
sensitivity analysis, although the accuracy of the resulting design space deriva-
tives will be limited by the accuracy of the Jacobian matrix. By using the
complex Taylor’s series expansion method, the exact Jacobian can be generated
regardless of the complexity of the turbulence models or spatial discretization
methods, and highly accurate design space derivatives can be achieved.

To avoid the difficulties associated with the continuous approach of sensi-
tivity analysis, the complex Taylor’s series expansion method can be applied to
explicit codes at steady-state to calculate the Jacobian matrix

∂fexplicit
∂Qn

. Hence,
discrete sensitivity analysis can be used in conjunction with explicit codes to
generate the design space derivatives efficiently without the need for deriving
and implementing the adjoint equations as well as driving these equations to
steady-state.

3 Complex Taylor’s Series Expansion Method

The complex Taylor’s series expansion method has been recently used by Squire
and Trapp [7] to calculate the derivatives of real-valued functions and by New-
man etal [4] to estimate derivatives for an aero-structural design problem. This
simple method can be applied to any numerical code that yields real-valued func-
tional information and is based on the Taylor’s series expansion of F (x + i∆x)
or

F (x+ i∆x) = F (x) + iF ′(x)∆x −
F ′′(x)∆x2

2!
− i
F (3)(x)∆x3

3!
+O(∆x4) (15)

Since F (x) is real valued, the Taylor’s series alternates between real and imag-
inary terms and can be decomposed as

F (x+ i∆x) (16)

=

(
F (x) −

F ′′(x)∆x2

2!
+O(∆x4), F ′(x)∆x −

F (3)(x)∆x3

3!
+O(∆x5)

)

Hence,

Im(F (x+ i∆x)) = F ′(x)∆x −
F (3)(x)∆x3

3!
+O(∆x5) (17)

or

F ′(x) =
Im(F (x+ i∆x))

∆x
+
F (3)(x)∆x2

3!
+O(∆x4) (18)

This method is second order accurate as is the central finite difference equations,
but as there is no subtraction error, there are no round-off errors, and ∆x can

Clarence O. E. Burg 21

be as small as the computer will allow. Hence, choosing ∆x such that the higher
order terms are smaller than machine precision, we have

F ′(x) =
Im(F (x+ i∆x))

∆x
(19)

Thus, numerically exact Jacobians can be estimated via the application of the
complex Taylor’s series expansion method to the residual vector W (Qn,∆tn).
For a two-dimensional, structured grid, using a first-order spatial discretiza-
tion, the equations at an interior node (i, j) will be dependent on the values at
(i, j), (i − 1, j), (i + 1, j), (i, j − 1) and (i, j + 1), as shown in Figure 3. For
the two-dimensional Euler equations, there are four differential equations to be
solved and four flow variables to be determined at each node. Hence, there are
four discretized equations associated with each node, and each equation can be
dependent on as many as twenty different flow variables.

(i,j)(i-1,j) (i+1,j)

(i,j-1)

(i,j+1)

Figure 3. Grid Dependencies for Two-Dimensional, First-Order Scheme.

Repeated application of the complex Taylor’s series expansion method to each
discretized equation represented in the residual vectorW will generate the values
of the twenty derivative terms associated with a row in the Jacobian matrix,
without any need for hand-differentiation. Hence, any turbulence model or
spatial discretization scheme can be used, regardless of its complexity, as long
as the derivatives exist. Furthermore, for unstructured grids, or for higher-order
spatial discretizations, the only added complexity is the connectivity stencil. In
other words, to generate the exact Jacobian matrix, the dependencies of the
vector of discretized equations with the flow variables must be known, but the
knowledge of the particulars of these dependencies is unnecessary as the complex
Taylor’s series expansion method will handle these complexities.

4 Application to Euler Code

The explicit flow simulation code that has been transformed into a design op-
timization code solves the two-dimensional Euler equations for flow around the
NACA64A006 airfoil, using a structured C-grid. A wide variety of solution
methods are available within the code, including implicit methods and frac-
tional step methods; however, these subroutines have been deleted, leaving only

22 Use of discrete sensitivity analysis

the explicit implementation of the first order Flux-Vector-Split method of Steger
and Warming [8]. Since knowledge of the implementation of this method is not
used in the transformation of the simulation code, a discussion of this method
will not be presented here - the key element is that this method is explicit, and
the stencil is the same as shown in Figure 3.

Input NACA64A006 Grid

βInput Design Variables

Calculate Grid

Q
W

Q
Fλ = −Solve

T

Q
W

Q
F

Setup and

β i
Q fixed

d
d

W F
β i β i

Q fixed

d
d

W= λTCalculate and

β iFor each design variable

β
FUpdate Design Variables based on

βEvaluate F() by Solving Steady-State Euler Equations

Figure 4. Flow-Chart for Algorithm to Estimate Derivatives

The algorithm for using discrete sensitivity analysis to estimate the design space
derivatives is presented in Figure 4. The grid is determined by perturbing the
shape of the NACA64A006 airfoil and propagating the perturbation into the
two-dimensional grid. The shape of the airfoil was controlled by a B-spline curve
with 14 control points. Ten of these control points were determined by the ten
design variables, with the additional control points controlling the smoothness
at the ends of the curve. Given a set of design variables, the B-spline curve was
determined for each node on the surface of the airfoil. The value of the curve at
each node determined the displacement in the y-direction that the new airfoil
was from the NACA64A006 airfoil. Hence, if the B-spline curve’s value at node
98 was +0.0012, then the y-location of the surface at node 98 for the new airfoil
was the value for the NACA airfoil plus 0.0012. Once the displacement values
were determined for the surface of the airfoil, these values were propagated into
the grid by solving Laplace’s equation for the NACA grid where the boundary

Clarence O. E. Burg 23

conditions were the displacement values. Once the values were propagated into
the interior of the grid, the y-values for the new grid were determined by adding
the value at a node to its original value.
The complex Taylor’s series expansion method is used to generate the Ja-

cobian matrix ∂W∂Q . The vector
∂F
∂Q is calculated via hand differentiation of the

function F which is explicitly a function of the flow variables Q. The vector
dW
dβi

∣∣
Q fixed is calculated via central differences or

dW

dβi
=
W (Q(~β), χ(~β + ei∆βi), ~β + ei∆βi)−W (Q(~β), χ(~β − ei∆βi), ~β − ei∆βi)

2∆βi
(20)

This calculation requires the formation of the grids associated with χ(~β+ei∆βi)

and χ(~β − ei∆βi).

1. Interior Nodes

2. Far-Field Boundary

3. Impermeable Boundary

4. Re-entrant Boundary

1.

2.

3. 4.

Figure 5. Typical C-grid around an airfoil.

To generate the Jacobian matrix, the nodal dependencies of the residual vector
must be analyzed. The NACA64A006 grid is a C-grid, similar to the grid shown
in Figure 5. For the interior nodes, the nodal connectivity stencil is the same
as shown in Figure 3, resulting in a banded, block structure for the Jacobian
matrix. For the far-field boundary and impermeable boundary, the connectivity
stencil is a subset of the stencil for the interior nodes, so the banded, block
structure of the Jacobian matrix is unchanged at these boundaries. However,
for the re-entrant boundary, the nodal connectivity reaches to the other side
of the grid, destroying the banded, block structure of the Jacobian. Thus, to
solve the matrix equation (7), an iterative solver is employed. Unfortunately,
this solver does not converge rapidly, and the solution is not highly converged.
Finally, to update the design variables, the BFGS update method has been

employed. This method gradually builds an approximation to the Hessian ma-
trix by updating the approximate Hessian matrix with gradient and design
variable information. One additional function evaluation is performed in the
search direction to determine a more appropriate step size. See Gill, Murray
and Wright [1] for more details on this method.

24 Use of discrete sensitivity analysis

5 Results

The design problem is an inverse design where the pressure distribution for the
target design is specified. The design variables for the target design are (-0.001,
-0.003, 0.001, 0.005, 0.01, 0.01, 0.02, 0.03, 0.02, 0.01). The steady-state solution
for this design is approximated, and the pressure distribution along the surface
of the airfoil are stored in Cptarget. The mach number is 0.8700, which results
in transonic flow across the airfoil, and the angle of attack for the simulation is
+3.2 degrees. The objective function is

F (~βn) =

itu∑
i=itl+1

(
Cpi(~β

n)− Cptargeti

)2
(21)

where itl and itu specify the initial and final nodes for the surface of the airfoil
in the C grid. The initial set of design variables is a vector of 0.0’s, which repre-
sents the unmodified NACA airfoil. To analyze the accuracy of the design space
derivatives, the derivatives for this set of design variables are calculated via
the complex Taylor’s series expansion method applied to the objective function.
Hence, these derivatives are numerically exact, although the computational cost
is quite large. These exact derivatives are compared with the derivatives gener-
ated by discrete sensitivity analysis and by one-sided finite differences and are
presented in Table 2.

Design Complex Taylor’s Finite Adjoint Form. of Discrete
Variables Series Expansion Differences Sensitivity Analysis

1 -58.918524793680 -58.918108 -58.925014473517
2 2.1553606507097 2.155659 2.1527299069564
3 9.3080663602748 9.308617 9.3059170047628
4 -4.4977859312973 -4.496398 -4.5001198714489
5 3.1437212541549 3.146781 3.1419623720023
6 587.33976898291 587.343377 587.35094264658
7 -457.04698505623 -457.044045 -457.04649298139
8 -431.92433510382 -431.923165 -431.98154907862
9 -60.885888964239 -60.885054 -60.878678137755
10 -128.31651602328 -128.315028 -128.20253621961

Comp. Cost 25870.7 sec. 4136.0 sec. 159.9 sec.
Table 2. Comparison of Design Space Derivatives.

Due to the errors introduced into the design space derivatives by the inexact
solution of equation (7), the derivatives produced by discrete sensitivity analysis
are not quite as accurate as those produced by finite differences, although they
agree with the exact derivatives to at least three significant digits. However,
the computational cost of such calculations, given in the bottom row, show the
tremendous savings of discrete sensitivity analysis over the other two methods.
In Table 3, the computational cost for each component in a design iteration using
discrete sensitivity analysis is given. Since there are 10 design variables, the cost

Clarence O. E. Burg 25

of estimating the design space gradient via finite differences is approximately
4100 seconds, which is substantially more than the cost associated with discrete
sensitivity analysis. Furthermore, as the number of design variables increases,
the computational cost of using finite differences scales with the number of de-
sign variables, whereas the cost of discrete sensitivity analysis grows marginally,
because the majority of the cost lies in determining the adjoint vector, which
must only be calculated once, regardless of the number of design variables.

Component Cost

Generating 1 Steady-State Solution 413.8 sec.
Generating ∇~βF Via Discrete Sensitivity Analysis 159.9 sec.

Updating Design Variables (includes an additional solution) 413.6 sec.
Total Cost of Design Iteration Via Discrete Sensitivity Analysis 987.3 sec.

Table 3. Computational Costs for Components of Design Process.

Figure 6 shows the convergence history of the objective function values for the
BFGS update method, using one additional function evaluation. The method
is slow at improving the design variables for the first fifteen design iterations;
however, after the twentieth design iteration, the objective function decreases
greatly, stabilizing near 2.3E − 10. By using the BFGS update method, su-
perlinear convergence results have been obtained, which reduces the number of
design iterations and hence the total computational cost of the design process.
The design variables corresponding to iteration #23 are in agreement with the
target set of design variables to at least seven decimal places. Hence, one can
conclude that the design space derivatives are accurate enough to drive the
design variables quite close to the target.

0 5 10 15 20 25 30
Design Iteration Number

−10.0

−9.0

−8.0

−7.0

−6.0

−5.0

−4.0

−3.0

−2.0

−1.0

0.0

1.0

Lo
g1

0
of

 O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

Figure 6. Optimization History for BFGS Update Method.

26 Use of discrete sensitivity analysis

6 Conclusions

Discrete sensitivity analysis in conjunction with the complex Taylor’s series
expansion method has been used to transform an explicit, two-dimensional Euler
solver into a design optimization code. As has been derived in many other
papers, the formulation of discrete sensitivity analysis presented herein requires
the Jacobian of the discretized system of equations, which is not generated
or used in the explicit code. The complex Taylor’s series expansion method
is used to generate the exact Jacobian matrix, once the steady-state solution
has been obtained. Thus, there is no need to derive or solve the continuous
adjoint equations as is typically done when applying the continuous approach
of sensitivity analysis to explicit codes. The only information needed about the
discretized equations is the connectivity stencil, showing the dependence of the
discretized equations on the nodes within the grid. As a result, the complex
Taylor’s series expansion method should be easily applicable to complicated
turbulence models and higher-order schemes.
This method has been applied to an explicit code that solves the two-

dimensional Euler equations for flow around an airfoil. The resulting design
space derivatives have been compared with the numerically exact derivatives,
agreeing to at least three significant digits. These design space derivatives are
also accurate enough to drive the design variables towards the target set of de-
sign variables, with the converged set of design variables agreeing with the target
set to at least seven decimal places. Furthermore, the computational cost of es-
timating these derivatives for the discrete sensitivity analysis is substantially
less than for finite differences.
The explicit code is only first-order in space and does not use fractional

steps. More research is necessary to address the difficulties of using higher-
order spatial discretizations, which increase the connectivity stencil and hence
the computational cost of solving equation (7). Furthermore, more study is
necessary to apply discrete sensitivity analysis to fractional step methods, such
as a predictor-corrector method.

Acknowledgments. The author would like to thank Dr. Mark Janus for
providing the explicit Euler code used in this study. Furthermore, the author
would like to thank Dr. David Huddleston for introducing the author to the
concept of sensitivity analysis and Dr. David Whitfield for introducing the
author to the complex Taylor’s series expansion method.

References

[1] Gill, P. E., Murray, W., and Wright, M. H., Practical Optimization, Aca-
demic Press Ltd., San Diego, 1981.

[2] Nadarajah, S., and Jameson, A., “A Comparison of the Continuous and Dis-
crete Adjoint Approach to Automatic Aerodynamic Optimization”, AIAA
Paper 2000-0667.

Clarence O. E. Burg 27

[3] Newman, J. C. III, Taylor, A. C. III, Barnwell, R. W., Newman, P. A., and
Hou, G. J. W., “Overview of Sensitivity Analysis and Shape Optimization
for Complex Aerodynamic Configurations”, AIAA J. of Aircraft, Vol. 36,
No.1, Jan.-Feb., 1999., pp. 87-96.

[4] Newman, J. C. III, Anderson, K. W., and Whitfield, D. L., “Multidisci-
plinary Sensitivity Derivatives Using Complex Variables”, Mississippi State
University Publication, MSSU-EIRS-ERC-98-08, July, 1998.

[5] Reuther, J. J., “Aerodynamic Shape Optimization Using Control Theory”,
Dissertation, University of California, Davis, 1996.

[6] Shubin, G. R., and Frank, P. D., “A Comparison of Two Closely-Related Ap-
proaches to Aerodynamic Design Optimization”, Third International Conf.
on Inverse Design Concepts and Opt. in Eng. Sciences (ICIDES-III), Wash-
ington, D. C., Oct. 23-25, 1991.

[7] Squire, W., and Trapp, G., “Using Complex Variables to Estimate Deriva-
tives of Real Functions”, Soc. Ind. Appl. Math., Vol. 40, No.1, pp.110-112,
March, 1998.

[8] Steger, J. L., and Warming, R. F., “Flux Vector Splitting of the Inviscid
Gas Dynamic Equations with Applications to Finite-Difference Methods”,
J. Comp. Phys., Vol. 40, 1981, pp. 263-293.

Clarence O. E. Burg
Research Engineer, Computational Simulation and Design Center
Engineering Research Center
Mississippi State University, Mississippi State, MS, USA
email: burg@erc.msstate.edu

