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Asymptotic and transient analysis of stochastic

core ecosystem models ∗

Thomas C. Gard

Abstract

General results on ultimate boundedness and exit probability estimates
for stochastic differential equations are applied to investigate asymptotic
and transient properties of models of plankton-fish dynamics in uncertain
environments

1 Introduction

Opposing general points of view on whether or not populations ultimately sur-
vive are succinctly expressed recently by Halley and Iwasa ([10]) and Jansen and
Sigmund ([12]). Is extinction certain if random variability is taken into account?
Or if parameters are restricted to realistic ranges and the mitigating effects of
population communities are explicitly considered, will persistence occur possi-
bly after some initial risk period? Answers to such questions for real systems
are more than pedagogical niceties. They can, for example, lead to proposed
strategies for maintaining large scale bio-physico-chemical systems such as the
highly utilized natural systems constituting watershed ecosystems. Central to
dynamical models for watershed ecosystems are what might be called core lake
ecosystem models, such as plankton-fish models which describe the dynamics of
a limiting nutrient P , and algae A, zooplankton Z, and small fish F populations

dP

dt
= δ(PI(t)− P ) + gP (t, P,A, Z, F )

dA

dt
= gA(t, P,A, Z)− δA

dZ

dt
= gZ(t, A, Z, F )− δZ (1)

dF

dt
= gF (t, Z, F ) + FI(t)
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52 Asymptotic and transient analysis

recently discussed in the literature.(See, for example Doveri et. al. [3] where spe-
cific functional forms for the interaction portions gP , gA, gZ , and gF of the net
growth rates are given.) In (1) PI denotes the nutrient input rate, and FI the
small fish recruitment rate from large fish. Simplified submodels of (1) have
been discussed; the PA submodel is a resource-consumer model with similar
dynamics to the simple chemostat model ([18]), the PAZ submodel has been
discussed by Ruan ([16],[17]) and others, and the AZF model is a three-species
food chain. The relative novelty of (1) is the explicit inclusion of small fish
dynamics - the timing and size of large annual recruitment peaks simultane-
ously effecting and being determined by PAZ levels. Temperature and other
seasonality time variations of parameters together with cyclic nonlinearities in
the model can lead to chaotic regimes ([15]). All models of real biological sys-
tems account for uncertainty in parameters and structure in one way or another.
There is always a variability ansatz, although in many cases such assumptions
are implicit. An explicit approach on the other hand is to formulate models
with well-defined stochastic features in order to account for random variability.
The class of stochastic differential equation models for interacting populations
is such a class which can take into account environmental randomness: the SDE
model analogous to (1) has the general form

dP = [δ(PI − P ) + gP ]dt+ σP dWP

dA = [gA − δA]dt+ σA dWA

dZ = [gZ − δZ]dt+ σZ dWZ (2)

dF = [gF + FI ]dt+ σF dWF ,

where WP , WA, WZ , and WF are standard Brownian motions and σP , σA, σZ ,
and σF denote the corresponding intensities of the noise fluctuations; the σ’s
may be functions of the state variables and time. A specific example of (2),
motivated by a stochastic model of two competitors in a chemostat suggested
by Stephanopoulos, Aris, and Fredrickson [19], is given by

dP = [δ0(PI − P ) + gP ]dt+ δ1(PI − P ) dW

dA = [gA − δ0A]dt+ δ1AdW

dZ = [gZ − δ0Z]dt+ δ1Z dW (3)

dF = [gF + FI ] dt .

System (3) arises when the dilution or washout rate δ is viewed as the sum of
an average value δ0 plus a random noise fluctuation with intensity δ1 about the
average:

δ = δ0 + δ1N . (4)

In (4) N represents standard white noise - in a generalized sense

N =
dW

dt
(5)

withW a standard Brownian motion. In the next section we give a result which
obtains asymptotic estimates for the average values of the state variables in (2)
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which is analogous to uniform persistence for the corresponding deterministic
model (1). Application to specific PAZF models is incomplete at this time and
the subject of ongoing work. Transient behavior of the model may be important
whether or not the former result applies. The third section contains a result
which gives estimates for first exit location probabilities from certain bounded
sets in the feasible region which may indicate initial survival or extinction ten-
dencies of populations. We show that this result can be applied to models of
the form (3).

2 Persistence in the mean

Permanence (uniform persistence together with dissipativity) is the most basic
general qualitative feature to verify for interacting population models ([11],[20]);
it is the model analog of mutual survival and non-explosion of the populations
represented in the model. Permanence means that there are positive constants
K and L such that for any component population X(t) with any positive initial
value X(0)

K ≤ lim inf
t→∞

X(t) ≤ lim sup
t→∞

X(t) ≤ L. (6)

If

Y (t) = lnX(t) (7)

or some other transformation of the ray (0,∞) to the line (−∞,∞), permanence
of X is equivalent to dissipativity or ultimate boundedness of Y : there is a
positive constant M such that for any initial value Y (0)

lim sup
t→∞

|Y (t)| ≤M. (8)

There are well-known theorems in differential equations which give ultimate
boundedness if a Liapunov function exists. In this section we will apply an
analogous theorem of Miyahara ([14]) for stochastic differential equations. It is
convenient to change notation here: let

X = (X1,X2, X3, X4) = (P,A,Z, F ) , (9)

Y = ln(X)↔ Yi = ln(Xi), i = 1, 2, 3, 4. (10)

Applying Ito’s formula to (2) yields a transformed system of the form

dY = H(t, Y )dt+ Γ(t, Y )dW (11)

where here W= (WP , WA, WZ , WF ), H is a 4-d vector function, and Γ is a
4× 4 diagonal matrix function.

Theorem 1 (Miyahara [14]) Suppose there exists a scalar function V (t, y) which
is C1 in t and C2 in y and a number p ≥ 1 such that for some constants a1 and
a2 and positive constants c1 and c2 and all y
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1. V (t, y) ≥ −a1 + c1‖y‖p

2. LV (t, y) ≤ a2 − c2V (t, y)

where LV = Vt +H · ∇V +
1
2 trace(ΓΓ

TVyy) and Vt is the partial derivative of
V with respect to t, ∇V is the y-gradient of V and Vyy denotes the matrix of
second partial derivatives of V with repect to y. Then for, any solution Y (t) of
(11),

lim sup
t→∞

E‖Y (t)‖p ≤
a1

c1
+
a2

c1c2
(12)

where E(·) denotes the expected value or mean.

Equations (6) - (8) suggest that the conclusion (12) of Theorem 1 could be
called persistence (or permanence) in the mean for X . Applying Theorem 1
requires a candidate for the Liapunov function V . It has been shown by the
author ([8]) that functions of the form

V (y) = exp{U(y)} (13)

with

U(y) =

n∑
i=1

αi[e
yi − yi − 1] (14)

for some positive constants αi can be applied to predator-prey models. The
function U in (14) is Volterra’s Liapunov function transformed from the positive
cone Rn+ to all of R

n by (10). Utilizing the 1-norm

‖y‖ =
n∑
i=1

|yi|

we obtain

U(y) ≥ −β + α‖y‖ (15)

where

β =
n∑
i=1

αi and α = min αi.

From (15) and (13) it follows that

V (y) ≥ exp{−β + α‖y‖} ≥ e−β(1 + α‖y‖).

Condition 1 of Theorem 1 is verified for p = 1 with

a1 = 0 and c1 = αe
−β . (16)

Obtaining Condition 2 is more difficult. Generally one expects

a2 = a2(Γ), c2 = c2(Γ) (17)
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if the function V has negative definite derivative V̇ along trajectories of the
corresponding deterministic system. The following example shows that Condi-
tion 2 can be obtained for a single population dynamics model with a Liapunov
function of the form (13) even when Γ is not necessarily small. Consider the
stochastic logistic model

dX = X(1−X)dt+
1
√
2
XdW (18)

which transforms to

dY =
(3
4
− eY

)
dt+

1
√
2
dW (19)

under Y = ln(X). The Liapunov function (13) here is

V (y) = exp{ey − y − 1}. (20)

It is easy to see that

V (y) ≥ |y|

and so we can actually do a little better than (16): we can take

a1 = 0 and c1 = 1. (21)

To get Condition 2 we need to estimate

LV (y) =
(
1−
1

4
− ey
)
V ′(y) +

1

2

(1
2

)
V ′′(y)

=
(
1−
1

4
− ey
)
(ey − 1)V (y) +

1

4
[(ey − 1)2 + ey]V (y). (22)

A brief calculation gives

LV (y) =
1

4
[1− 3(ey − 1)2]V (y) ≤

1

2
−
1

4
V (y), (23)

i.e., we have Condition 2 satisfied with

a2 =
1

2
and c2 =

1

4
. (24)

Using (21) and (24), the conclusion of the theorem yields

lim sup
t→∞

E‖ ln(X(t))‖ ≤
1/2

1/4
= 2. (25)

Volterra’s Liapunov function does not seem to work for resource-consumer mod-
els; the counterpart to inequality (23) does not hold. So there remain some
problems in applying Miyahara’s result to stochastic PAZF models. We con-
clude this section by summarizing the conditions which would have to be met
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in order to get a specific result here. For clarity in stating the conditions, we
will consider only the following simplified version of (2)

dP = [δ(PI − P ) + PfP (P,A)]dt + (PI − P )µP (P ) dWP

dA = [AfA(P,A,Z)− δA]dt+ AµA(A) dWA

dZ = [ZfZ(A,Z, F )− δZ]dt+ ZµZ(Z) dWZ (26)

dF = [FfF (Z,F ) + FI ]dt+ FµF (F ) dWF .

In particular, we are ignoring nutrient recycling and we are assuming that pa-
rameters are constants. Under the log transformation:

Y1 = ln(P/PI), Y2 = ln(A), Y3 = ln(Z), Y4 = ln(F ) (27)

the system becomes

dY1 = [δ(e−Y1 − 1)−
µ2P
2
(e−Y1 − 1)2 + fP ]dt+ (e

−Y1 − 1)µP dWP

> dY2 = [fA − δ −
µ2A
2
]dt+ µA dWA

> dY3 = [fZ − δ −
µ2Z
2
]dt+ µZ dWZ (28)

dY4 = [fF + FIe
−Y4 −

µ2F
2
]dt+ µF dWF ,

where in (28) fP = fP (PIe
Y1 , eY2), µP = µP (PIe

Y1),. . . . If we choose a C2

function V which satisfies Condition 1 of Miyahara’s Theorem: for some number
p ≥ 1 there is a constant a1 and a positive constant c1 such that

V (y) ≥ −a1 + c1‖y‖
p (29)

we need to verify Condition 2. Condition 2 in Miyahara’s Theorem is, for some
positive constant c

LV + cV =
∂V

∂y1
[δ(e−y1 − 1) + fP ] +

∂V

∂y2
[fA − δ]

+
∂V

∂y3
[fZ − δ] +

∂V

∂y4
[fF + FIe

−y4 ]

+
1

2

{
µ2P

(∂2V
∂y21

−
∂V

∂y1

)
(e−y1 − 1)2 + µ2A

(∂2V
∂y22

−
∂V

∂y2

)
(30)

+µ2Z

(∂2V
∂y23

−
∂V

∂y3

)
+ µ2F

(∂2V
∂y24

−
∂V

∂y4

)}
+ cV

is bounded. The result then is

Theorem 2 Suppose there exists a C2 function V defined on R4 which satisfies
(29) and (30). Then, for any solution Y (t) of (28),

lim sup
t→∞

E‖Y (t)‖p ≤
a1

c1
+
b

c1c
(31)
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where b is a bound for LV + cV i. e., for any solution (P (t),A(t), Z(t), F (t)) of
(26) and any positive number ε,

E‖(ln(P (t)/PI), ln(A(t)), ln(Z(t)), ln(F (t)))‖
p ≤
a1

c1
+
b

c1c
+ ε (32)

for all sufficiently large t.

3 Exit probabilities

Even when some form of stability can be verified for a model, transient behavior
may still be important to investigate. If trajectories enter a region of state space
where one or more model components are small, features neglected in the model
could lead to collapse before a predicted recovery can occur. For models which
attempt to account for random effects, the situation is particularly critical.
Estimating certain exit statistics is a natural first approach to deal with this
problem ([6],[7],[9],[13]). Suppose

X = (X1,X2, . . . , Xn) (33)

represents the n components of a stochastic dynamical population model taking
values in the usual positive cone

Rn+ = {x = (x1,x2, . . . , xn) : xi > 0, i = 1, 2, . . . , n} (34)

in n-dimensional space, and B ⊆ Rn+ is a bounded set. Then for any fixed
x ∈ B, we can consider the realization

X = X(t, x), t ≥ 0

of the model with X(0, x) = x ∈ B, and the corresponding first exit time of X ,

τ = τx(B) = inf
{
t : X(t, x) /∈ B

}
(35)

from B. The first exit time τ or even its mean or expected value

u(x) = E(τx) (36)

gives an indication of persistence of X relative to the set B ([13]). For example,
if τx = ∞ for all x ∈ B, then B is positive invariant for X , and if also the
boundary ∂B of B is contained in Rn+, then the set B is a candidate for a
practical persistence estimate for the model. If it could also be shown that each
realizationX which begins at an x outside B hits B in a finite time before hitting
the boundary of Rn+, verification of practical persistence would be complete. If
the model for Xtakes the form of a stochastic differential equation

dX = G(X)dt+ Λ(X)dW (37)
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as discussed in the previous section, then it is known that the expected exit
time u solves the boundary value problem

Lu(x) = −1, x ∈ B (38)

u(x) = 0, x ∈ ∂B ,

where, as in Theorem 1 above,

Lu = G · ∇u+
1

2
trace(ΛΛTuxx) . (39)

For example, for the simple scalar problem,

dX =
√
ε dW,X(0) = x ∈ B = (0, 1) (40)

with ε any positive number, the boundary value problem for u(x) = E(τx) is

−1 = LU(x) =
ε

2
u′′(x), u(0) = 0 = u(1). (41)

The solution is easily calculated:

u(x) =
1

ε
(x− x2). (42)

Note that τx is finite almost surely in this example. The unit interval B here
is not an estimate for practical persistence; in fact persistence fails in this ex-
ample. Although the above example is not a very interesting population model,
it does exhibit what has become anticipated behavior of randomly perturbed
deterministic models - loss of stability. In this situation the size of τx or E(τx)
still can indicate relative persistence. One can also try to determine other exit
statistics such as exit point location probabilities

v(x) = P{X(τx) ∈ ∂ηB} (43)

where ∂ηB is some particular subset of the boundary of B. This can be both
physically relevant and mathematically tractable if the set B and the boundary
portion ∂ηB are suitably chosen. Suppose V is a C2 function, and

B ⊆ {x : η ≤ V (x) ≤ γ} (44)

and
∂ηB = ∂B ∩ {x : V (x) = η}. (45)

We have the following result (See also [8].)

Theorem 3 Let p = v(x), and q = u(x) = E(τx). Suppose there is a constant
c ≥ 0 such that

LV (x) ≥ c, for all x ∈ B (46)

where L is the operator given by (39). Then

p ≤ [γ − V (x)− cq]/[γ − η]. (47)
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Remark 1. Note that, if, for example,

V (x) =
η + γ

2
(48)

then (47) becomes

p ≤
1

2
− cq/[γ − η] (49)

i. e., the term −cq/[γ−η] gives an estimate of the net bias due to the drift G(x)
and diffusion Λ(x) terms in (37).

Proof of Theorem 3. By Dynkin’s formula ([4]) (or by Ito’s formula and taking
expected values - see [5], for example) applied to the process V (X(t)) on the
random interval [0, τ ] we have

EV (X(τ))− V (x) = E

∫ τ
0

LV (X(s))ds (50)

and then (46) yields

E

∫ τ
0

LV (X(s))ds ≥ cE(τ). (51)

From (50) and (51) then we have

EV (X(τ)) ≥ V (x) + cE(τ). (52)

On the other hand, taking into account (44) and (45) , we get

EV (X(τ)) ≤ pη + (1 − p)γ. (53)

Inequalities (52) and (53) give

pη + (1− p)γ ≥ V (x) + cE(τ). (54)

or
p ≤ [γ − V (x) − cq]/[γ − η]. (55)

♦

Returning to the example (40): dX =
√
ε dW,X(0) = x ∈ B = (0, 1)

for a simple application of Theorem 3, we take

η = 0, γ = 1, and V (x) = xr ,

for any number r satisfying 1 < r < 2. Then, we have

LV (x) =
εr(r − 1)

2
xr−2 ≥

εr(r − 1)

2
, (56)

for x ∈ B. Recalling (42), the conclusion (47) of the theorem is

p ≤ [1− xr −
εr(r − 1)

2
(
1

ε
(x− x2))] = [1− xr −

r(r − 1)

2
(x− x2)]. (57)
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Further in this case, p = v(x) also can be found exactly, since it solves the BVP

0 = Lv(x) =
ε

2
v′′(x), v(0) = 1, v(1) = 0. (58)

The solution of (58) is easily seen to be

p = v(x) = 1− x (59)

Thus the application of the theorem to this example results in the estimate of
the linear function 1− x by a concave function on the interval (0, 1)

1− x ≤ 1− xr −
r(r − 1)

2
(x− x2). (60)

We conclude this paper with an application of Theorem 3.1 to the PAZF model

dP = [δ0(PI − P ) + gP ]dt+ δ1(PI − P ) dW

dA = [gA − δ0A]dt+ δ1AdW

dZ = [gZ − δ0Z]dt+ δ1Z dW (61)

dF = gFdt

mentioned in section 1 where we assume gP , gA, gZ and gF are time independent.
Actually all we show here is that the crucial estimate (46) can be obtained.
Complete application of this result would also necessitate obtaining at least
an estimate of E(τx) which could be accomplished by numerically solving the
appropriate BVP (38), mentioned in the last section for the particular set B
chosen. We make use of the function

V (x) = x1

4∏
i=2

xrii , (62)

where the ri are constants. Functions V of the form (62) have been used to
verify uniform persistence in deterministic models. (See [1],[2] and references
for some examples.) For constants η and γ with 0 < η < γ, let

B ⊆ {η ≤ V (x) ≤ γ}

be a bounded set. Then we have, if r2 and r3 > 0 and δ1 sufficiently large,

LV (x) = {[δ0(PI − x1) + gP +
1

2
(δ1(PI − x1))

2]/x1

+r2[gA − δ0x2 +
1

2
(δ1x2)

2] (63)

+r3[gZ − δ0x3 +
1

2
(δ1x3)

2]

+r4gF }V (x) ≥ c

for some positive constant c and for all x ∈ B, since everything in (63) is
bounded, and all of the terms involving δ1 are positive. We remark finally that
it should be noted that both c and q in (47) generally will depend on δ1.
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