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Abstract

It is shown that, with an appropriate scaling, the energy of low-lying
excitations of the (1, 1, . . . , 1) interface in the d-dimensional quantum
Heisenberg model are given by the spectrum of the (d − 1)-dimensional
Laplacian on a suitable domain.

1 Introduction and main results

We consider the spin 1/2 XXZ Heisenberg model on the d-dimensional lattice
Zd. For any finite volume Λ ⊂ Zd, the Hamiltonian is given by

HΛ = −
∑
x,y∈Λ
|x−y|=1

∆−1(S(1)x S(1)y + S
(2)
x S(2)y ) + S

(3)
x S(3)y , (1.1)

where ∆ > 1 is the anisotropy. We refer to the next section for more precise
definitions. By adding an appropriate boundary term one can insure that the
ground states of this model describe an interface in the (1, 1, . . . , 1) direction
between two domains with opposite magnetization. For a particular choice of
boundary term, the model has exactly one ground state ψn for each fixed number
of down spins, n. We call these the canonical ground states. In analogy with
statistical mechanics of particle systems one can introduce the grand canonical
ground states of the form

Ψ =
∑
n

znψn.

It turns out that these states are inhomogeneous product states [3]. In this
paper, we consider a class of perturbations of these product states, of which we
calculate the energy. By the variational principle this leads to bounds for the
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2 A continuum approximation

energy of the first excited state of the model. As the excitation spectrum above
the interface states is gapless [4, 5], this bound should vanish as the volume
tends to infinity. This is indeed the case (see (1.2)).
The perturbations we consider are in correspondence with functions f : Λ→

C. Furthermore, we consider functions which are slowly-varying in all directions
perpendicular to (1, 1, . . . , 1) though they may have discrete jumps parallel to
this direction. In other words ‖∇f · v‖∞ � ‖f‖∞ for all v ⊥ (1, 1, . . . , 1).
We consider general perturbations of this type and conclude that the optimal
perturbations, in the sense of minimizing energy, are localized near the inter-
face. With this restriction, the Hamiltonian, projected to and restricted to the
appropriate subspace, is just the Laplacian.
This result may be compared to the recent bound of [2]. The main difference

is that there we considered a canonical ensemble, for which there were a fixed
number of down-spins (hence a fixed number of up-spins). We developed a ver-
sion of equivalence of ensembles whereby we estimated the canonical expectation
of a gauge invariant observable by a grand canonical expectation, provided that
the interfaces of the canonical and grand canonical states occupied the same
position.
In the present paper, we begin with the grand canonical ensemble, so that

we make no reference to equivalence of ensembles. Specifically, we consider a
cylindrical region of total height L + 1 whose cross-section is a region ΩR with
linear size R. Then a class of excitations is parametrized by smooth functions
Φ on a fixed domain Ω = R−1ΩR.
Main Result: Excitations on Λ have a normalized energy〈

ψf
∣∣H ∣∣ψf〉
〈ψf |ψf 〉

≈
1

2∆R2
·
‖∇Φ‖2L2(Ω)
‖Φ‖2L2(Ω)

· g(∆, µ) (1.2)

where

g(∆, µ) =

∑L/2−1
l=−L/2 sech(α[l − µ]) sech(α[l + 1− µ])∑L/2
l=−L/2 sech(α[l − µ]) sech(α[l − µ])

.

Here, µ is a real parameter of the grand canonical ground state describing the
location of the interface between the regions of homogeneous up and down spins.
As µ → −∞, the ground state has all spins up, and for µ → ∞, all spins are
down. For all µ ∈ R, and sufficiently large L, g satisfies the bounds

1

2∆
≤ ∆−

√
∆2 − 1 ≤ g(∆, µ) ≤ 1

Remark. The normalized energy of (1.2) is exactly the same as that for the
Laplacian. Equating the first variation to zero, we see that the local extrema
of the normalized energy are precisely the solutions of ∇2Φ = −λΦ (here ∇2

is the Laplacian), and λ = ‖∇Φ‖2L2(Ω)/‖Φ‖
2
L2(Ω). The space of excitations we

consider does not form an invariant subspace of H , so that the eigenvectors
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of the Laplacian are not truly eigenvectors of H . But, using the variational
inequality, we see that the spectral gap of H is bounded thus:

γ1 ≤
λ1

2∆R2
· g(∆, µ)(1 +O(

1

R2
)),

where λ1 is the first positive eigenvalue of −∇2 with Dirichlet boundary condi-
tions on the domain Ω.

2 The Spin-12 Heisenberg XXZ Ferromagnet

A quantum spin model, such as the Heisenberg XXZ ferromagnet, is defined in
terms of a family of local HamiltoniansHΛ, acting as self-adjoint linear operators
on a Hilbert space HΛ. This family is parametrized by finite subsets Λ ⊂ Zd.
We choose Λ to be “cylindrical” in the following sense: Let {ej}dj=1 be the

set of coordinate unit vectors and define the vector e∗ =
∑d
j=1 ej = (1, 1, . . . , 1),

which is the axial direction for the cylinder. Define the functional l(x) = x ·e∗ =∑d
j=1 x

j , where x =
∑d
j=1 x

jej. Observe that the kernel of l in Z
3 is a (d− 1)-

dimensional sublattice perpendicular to the axial direction. Take for the base of
Λ a finite subset of this (d− 1)-dimensional sublattice, and call it Γ. A discrete
approximation to the line of all scalar multiples of e∗ is the one-dimensional
stick Σ. Σ is a bi-infinite sequence of points {xn}∞n=−∞ such that x0 = 0 and
all other points xn are specified by the relation xn − xn−1 = enmodd. So

Σ = {. . . ,−(ed + ed−1 + · · ·+ e1 + ed),−(ed + ed−1 + · · ·+ e1), . . . ,−ed,

0, e1, (e1 + e2), . . . , (e1 + e2 + · · ·+ ed), (e1 + e2 + · · ·+ ed + e1), . . .}.

A finite stick of length L+ 1, where L is even, is ΣL = {x ∈ Σ : −L/2 ≤ l(x) ≤
L/2}. Now define Λ to be the translates of Γ along ΣL, i.e.

Λ = Γ + ΣL = {x+ y : x ∈ Γ, y ∈ ΣL}. (2.1)

Let us now define nearest neighbors to be points x, y ∈ Zd such that |l(x)−
l(y)| = 1 and ‖x − y‖l1 = 1. Also, we define oriented bonds between nearest
neighbors as ordered pairs (x, y) satisfying l(y) = l(x) + 1 and ‖x − y‖l1 = 1.
Hence {(x, x + ej)}dj=1 is the set of all oriented bonds with lower point x. The
collection of all oriented bonds with both points in Λ, will be called B(Λ).
The local Hilbert spaces are HΛ = (C2)⊗|Λ|. Each copy of C2 comes with

an ordered basis (|↑〉 , |↓〉) and a spin- 12 representation of SU(2) defined by the
Pauli matrices:

S(1) =

(
0 1/2
1/2 0

)
, S(2) =

(
0 −i/2
i/2 0

)
, S(3) =

(
1/2 0
0 −1/2

)
.

(2.2)
(So, for example, S(3) |↑〉 = 1

2 |↑〉 and S
(3) |↓〉 = − 12 |↓〉.) We consider a family

of Hamiltonians parametrized by a real number ∆ ≥ 1. In order to define the
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total Hamiltonian, we first define pair interactions hxy for each oriented bond
(x, y):

hx,y = −∆
−1(S(1)x S(1)y + S

(2)
x S(2)y )− S

(3)
x S(3)y +

1

4
+
1

4
A(∆)(S(3)y − S

(3)
x ), (2.3)

where A(∆) = 1
2

√
1− 1/∆2. The total Hamiltonian is

HΛ =
∑

(x,y)∈B(Λ)

hqx,y. (2.4)

∆ parametrizes anisotropy. The case ∆ = 1 is the isotropic model, also known
as the Heisenberg XXX ferromagnet, which exhibits SU(2) symmetry (because
HΛ commutes with S

1, S2 and S3).
We find it convenient to introduce a positive constant α, which solves ∆ =

cosh(α). We note that the nearest neighbor interaction hxy is an orthogonal
projection

hxy = |ξxy〉 〈ξxy| ⊗ 1IΛ\(x,y), (2.5)

where

ξxy =
e−α/2 |↓↑〉 − eα/2 |↑↓〉√

2 cosh(α)
. (2.6)

This also shows that each hxy is a nonnegative self-adjoint operator, hence HΛ
is, as well. To simplify the notation we will often drop the subscript Λ when
the volume is obvious from the context.

3 Ground States and a Perturbation

The ground states of the XXZ ferromagnet can be calculated exactly [1]. We
will choose a particular ground state and construct an orthogonal subspace (but
not the entire orthogonal complement) which is parametrized by H1-functions
on a compact domain Ω0 ⊂ Rd−1. The inner product becomes approximately
the L2 inner-product and the orthogonal projection of the Hamiltonian is ap-
proximately the Laplacian.
The lowest eigenvalue for H , which is zero, has a (|Λ| + 1)-fold degeneracy

in the eigenspace. This space of ground states is spanned by the simple tensor
ground states, which we will call grand canonical states. Specifically, let z be
any complex number, and µ = Re(z). Define the vector

vx(z) =
exp(α2 (lx − z)) |↑〉+ exp(−

α
2 (lx − z)) |↓〉√

2 cosh(α[lx − µ])
, (3.1)

for each site x ∈ Λ. We define the product of these vectors

ψ0(z) =
⊗
x∈Λ

vx(z), (3.2)
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and we may quickly establish that it is a ground state. Indeed, the oriented
bonds are defined between points x and y with l(y) = l(x) + 1, from which we
see

〈↑↓ |vx(z)⊗ vy(z)〉 = e
α〈↓↑ |vx(z)⊗ vy(z)〉. (3.3)

This implies vx(z) ⊗ vy(z) is orthogonal to ξxy, for each (x, y) ∈ B(Λ), which
proves that ψ0(z) is a ground state. As we have said, the states ψ0(z) span the
entire ground state space, as z ranges over all the complex numbers [3]. (More
than this can be said. The simple tensor ground states are parametrized by
elements of CP 1, so that the submanifold of all such states in H is topologically
a sphere. But to obtain the north and south poles of the sphere, it is necessary
to take the limits z →∞ and z → −∞.)
Let us now fix z, and for simplicity we will just write ψ0 and vx without

explicit reference to z. For each site x we define a vector orthogonal to vx,

wx =
exp(−α2 (lx − z)) |↑〉 − exp(

α
2 (lx − z)) |↓〉√

2 cosh(α[lx − µ])
. (3.4)

We will make use of wx to define an orthonormal system of states

ψx = wx ⊗
⊗
y∈Λ\x

vy, (3.5)

where x ranges over Λ. Each of these states is also orthogonal to ψ0, let us call
their span V . An arbitrary state in V is characterized by a function f : Λ→ C.
Explicitly, ψf =

∑
x∈Λ f(x)ψ

x. It is then clear that 〈ψf |ψg〉 =
∑
x∈Λ f(x)g(x).

Our interest is the case that Λ↗ Zd, i.e. the thermodynamic limit. In terms
of vx and wx, we see that the local interaction hxy describes a nearest-neighbor
interaction. It may be interpreted as a bilinear form, which is a first order finite-
difference operator in each variable. To be clear, a straightforward calculation
gives

〈
ψf
∣∣ hxy |ψg〉 = 1

2
sech(α) sech(α[lx − µ]) sech(α[ly − µ])

×
(
cosh(α[ly − µ])f(y)− cosh(α[lx − µ])f(x)

)
×
(
cosh(α[ly − µ])g(y)− cosh(α[lx − µ])g(x)

)
. (3.6)

Recall that µ = Re(z)) and the energy is

〈
ψf
∣∣H |ψg〉 = L/2−1∑

l=−L/2

∑
x∈Γl

d∑
j=1

〈
ψf
∣∣ hx,x+ej |ψg〉 , (3.7)

where Γl refers to the set of points x ∈ Λ with l(x) = l. In the thermody-
namic limit, we may scale the plane e⊥∗ = {v ∈ R

d : v · e∗ = 0} so that H
becomes, to first order, a differential operator with respect to each direction
of the plane. However, the inhomogeneity in the e∗ direction admits no such
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scaling for that coordinate, so that H is genuinely a finite-difference operator
even in the thermodynamic limit.
We now make precise the intuitive description of the last paragraph. Let Ω

be a bounded, open subset of e⊥∗ with a C
1 boundary. Let ΩR be the dilation

R ·Ω = {Rx : x ∈ Ω}, and let Γ = ΩR∩Zd be the discrete approximation to ΩR.
As before, Γ is the base of Λ. Now we choose a smooth, complex-valued function
Φ on Ω, and extend it to the infinite cylinder Ω × Re∗ so that ∇Φ · e∗ = 0.
(In other words, Φ is constant along the direction e∗.) Let φ(x) = Φ(x/R),
which is defined on ΩR × Re∗ with the property that ∇φ · e∗ = 0. Finally, let
f(x) = F (lx)φ(x), where F is a sequence F (−L/2), . . . , F (L/2). Note that f is
not the most general form possible for a function on Λ, most notably because
it is the product of functions which vary on perpendicular subspaces. However,
the span of such functions does correspond to all of V for a fixed value of L and
R.
Next we consider the norm and energy for such a state. We will introduce

estimates for these quantities, but we will postpone analysis of the actual error
terms until the next section. First we replace the sum over Γ with the integral
over Ω, and thus obtain an expression for the norm:

〈ψf |ψf 〉 =

L/2∑
l=−L/2

∑
x∈Γl

|f(x)|2

≈ |Γ|

L/2∑
l=−L/2

|F (l)|2 ·
1

m(ΩR)

∫
ΩR

|φ(x)|2 dx

= |Γ|

L/2∑
l=−L/2

|F (l)|2 ·
1

m(Ω)

∫
Ω

|Φ(x)|2 dx. (3.8)

To obtain an approximation for
〈
ψf
∣∣H ∣∣ψf〉, we decompose a step of f along a

coordinate direction into a step parallel to e∗ and a step perpendicular to e∗,

f(x+ ej) = F (lx + 1)φ(x+ ej)

≈ F (lx + 1)φ(x) + F (lx + 1)∇φ(x) · ej .

Then using the fact that

d∑
j=1

∇φ(x) · ej = ∇φ(x) · e∗ = 0,

and referring to (3.6) and (3.7) we have the apparently cumbersome expression

〈
ψf
∣∣H ∣∣ψf〉 ≈

3|Γ|

2 cosh(α)
·
1

m(Ω)

∫
Ω

|Φ(x)|2dx

×

L/2∑
l=−L/2

[
sech(α[l − µ]) sech(α[l + 1− µ])
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| cosh(α[l + 1− µ])F (l + 1)− cosh(α[l − µ])F (l)|2
]

+
|Γ|

2R2 cosh(α)
·
1

m(Ω)

∫
Ω

|∇Φ(x)|2dx

×

L/2∑
l=−L/2

sech(α[l − µ]) cosh(α[l + 1− µ])|F (l + 1)|2.

We notice that the first summand is order 1, while the second summand is
order 1/R2. We wish to minimize the energy in the limit R → ∞, so it seems
sensible to eliminate the order 1 summand. This is accomplished by letting
F (l) = 1

2 sech(α[l − µ]), or any constant multiple thereof. One point of interest
is that the perturbation takes place primarily in a neighborhood of the interface.
The expression for the energy is

〈
ψf
∣∣H ∣∣ψf〉 ≈

|Γ|

8R2 cosh(α)
·
1

m(Ω)

∫
Ω

|∇Φ(x)|2dx

×

L/2−1∑
l=−L/2

sech(α[l − µ]) sech(α[l + 1− µ]). (3.9)

Similarly, (3.8) may be rewritten as

〈ψf |ψf 〉 ≈
|Γ|

4
·
1

m(Ω)

∫
Ω

|Φ(x)|2dx ·

L/2∑
l=−L/2

2

sech(α[l − µ]). (3.10)

Taking the ratio, we arrive at a normalized energy〈
ψf
∣∣H ∣∣ψf〉
〈ψf |ψf 〉

≈
sech(α)

2R2
·
‖∇Φ‖2L2(Ω)
‖Φ‖2L2(Ω)

×

∑L/2−1
l=−L/2 sech(α[l − µ]) sech(α[l + 1− µ])∑L/2
l=−L/2 sech(α[l − µ]) sech(α[l − µ])

. (3.11)

Let P be the orthogonal projection to the subspace of perturbations consid-
ered so far, i.e. the span of ψf , where f(x) = 1

2 sech(α[lx−µ])φ(x). Then the pro-
jection of H to this subspace is PHP . We have determined that PHPψf = ψg

where g has in place of Φ

Ψ = −
sech(α)

2R2
·

∑L/2−1
l=−L/2 sech(α[l − µ]) sech(α[l + 1− µ])∑L/2
l=−L/2 sech(α[l − µ]) sech(α[l − µ])

∇2Φ. (3.12)

(We write ∇2 for the Laplacian. The symbol ∆ is reserved for the anisotropy.)
We should note that it really is necessary to consider PHP instead of H . The
reason for this is that

ξxy =
−2 cosh(α[lx − µ])wx ⊗ vy + 2 cosh(α[ly − µ])vx ⊗ wy + 2 sinh(α)wx ⊗ wy√

2 cosh(α[lx − µ]) · 2 cosh(α[ly − µ]) · 2 cosh(α)
,

(3.13)
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which means that H does not preserve the total number of vx’s or wx’s. Thus
the perturbations we have considered (those with a single wx) do not form an
invariant subspace of H .

4 Error Terms

We now come to the task of tying up some loose ends, in order that non-rigorous
approximations can be replaced by rigorous bounds. We start with a simple
lemma.

Lemma 4.1 Let Γ be a finite subset of a lattice L. Let Ω be the Voronoi domain
of Γ with respect to L, and let Ω0 be the Voronoi domain for the single site 0 ∈ L.
Then, for a smooth function φ : Ω→ C,

∣∣∣ 1
|Γ|

∑
x∈Γ

u(x)−
1

m(Ω)

∫
Ω

φ(x) dx
∣∣∣ < ‖∂2φ‖op,∞ · 1

m(Ω0)

∫
Ω0

|x|2

2
dx, (4.1)

where ∂2φ is the second-derivative matrix and

‖∂2φ‖op,∞ = sup
x∈Ω

sup
v∈Rd\0

v · ∂2u(x)v

v · v
. (4.2)

Note that the second moment m(Ω0)
−1
∫
|x|2 dx is bounded by the radius of the

Voronoi domain, which is in turn bounded by the distance of nearest neighbors
of L.

Proof: For the Voronoi domain Ω0 of 0, we observe that

1

m(Ω0)

∫
Ω0

φ(x) dx − φ(0) =
1

m(Ω0)

∫
Ω0

[φ(x) − φ(0)] dx

=
1

m(Ω0)

∫
Ω0

∫ 1
0

∇φ(tx) · xdt dx

=
1

m(Ω0)

∫
Ω0

∫ 1
0

∫ t
0

x · ∇2φ(sx)xds dt dx

+
1

m(Ω0)

∫
Ω0

∇φ(0) · xdx

=
1

m(Ω0)

∫
Ω0

∫ 1
0

(1− s)x · ∂2φ(sx)xds dx

+∇φ(0) ·
1

m(Ω0)

∫
Ω0

xdx.

But the centroid of Ω0 is 0. Thus∣∣∣ 1

m(Ω0)

∫
Ω0

φ(x) dx − φ(0)
∣∣∣ ≤ 1

m(Ω0)

∫
Ω0

|x|2

2
dx× ‖∂2φ‖op,∞. (4.3)
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The lemma follows by decomposing Ω into the |Γ| affine copies of Ω0, one for
each site, and adding the inequalities obtained from (4.3). �

Using the result of this lemma, we make rigorous the approximation of (3.8).
Thus

〈ψf |ψf 〉 = |Γ|

L/2∑
l=−L/2

|F (l)|2 ·

(
1

m(Ω)

∫
Ω

|Φ(x)|2 dx+ ε1

)
, (4.4)

where

|ε1| ≤
1

R2
‖∂2|Φ|2‖op,∞. (4.5)

(We have used the fact that the distance between nearest-neighbors for Γ is√
2.) In order to fix the approximation of (3.9), we begin with the elementary
bound |φ(x+ ej)− φ(x) −∇φ(x) · ej | <

1
2‖∂

2φ‖op,∞ and its natural successor

∣∣∣ d∑
j=1

|φ(x + ej)− φ(x)|
2 − ‖∇φ(x)‖2

∣∣∣ < d
(
‖∇φ‖∞ +

1

4
‖∂2φ‖op,∞

)
‖∂2φ‖op,∞.

(4.6)
Using this estimate, as well as the lemma, we may replace (3.9) with

〈
ψf
∣∣H ∣∣ψf〉 ≈

|Γ|

8R2 cosh(α)

L/2∑
l=−L/2

sech(α[l − µ]) sec(α[l + 1− µ])

(
1

m(Ω)

∫
Ω

|∇Φ(x)|2dx+ ε2 + ε3

)
, (4.7)

where

|ε2| ≤
d

R

(
‖∇Φ‖∞ +

1

4R
‖∂2Φ‖op,∞

)
‖∂2Φ‖op,∞, (4.8)

and

|ε3| ≤
1

R2
‖∂2|∇Φ|2‖op,∞. (4.9)
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