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Abstract

Over the last thirty five years Professor Alan C. Lazer has been a
leading figure in the development of min-max methods and critical point
theory for applications to partial differential equations. The author, his
former student, summarizes from his own perspective Professor Lazer’s
contributions to the subject.

Critical point theory has proven to be one of the most important tools in
the study of nonlinear equations. Among the various critical point techniques,
minmax principles leading to the existence of saddle points have played a central
role. Professor Lazer has been one of the main architects of these developments.
Let us begin by stating the following basic principle proven by Professor Lazer
jointly with Professor E. M. Landesman and D. R. Meyers [16].

Theorem 1 Let H be a real Hilbert space and X,Y closed subspaces with
dim(X) < ∞ and H = X ⊕ Y . Let f : H → R be a functional of class
C2. Let ∇f and D2f denote the gradient and the Hessian of f respectively. If
there exits a positive constant m such that

〈D2f(u)x, x〉 ≤ −m‖x‖2 for all x ∈ X, u ∈ H (1)

and

〈D2f(u)y, y〉 ≥ m‖y‖2 for all y ∈ Y, u ∈ H, (2)

then there exists a unique u0 ∈ H such that ∇f(u0) = 0. Moreover

f(u0) = max
x∈X
min
y∈Y
f(x+ y). (3)

The proof of Theorem 1 is based on the observation that, by (2), the function
f is convex on linear manifolds of the form {x+y; y ∈ Y } ≡ Yx and f(x+y) tends
to +∞ as ‖y‖ → ∞. Hence for each x ∈ X there exists a unique y = φ(x) ∈ Y
such that

f(x+ φ(x)) = min
y∈Y
f(x+ y). (4)
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14 Contributions of Alan C. Lazer

Through a clever use of the implicit function theorem Professor Lazer and his
coauthors show that the function φ is actually of class C1. Since f(x) → −∞
as ‖x‖ → ∞ (see (1)) and f̃(x) ≡ f(x + φ(x)) ≤ f(x), f̃ attains its maximum
value at some point x0. This implies that u0 = x0 + φ(x0) satisfies the claims
of Theorem 1.
Noting that the latter argument only uses the convexity of f on the manifold

Yx and that f(x) → −∞ as ‖x‖ → ∞, Professor Lazer with the help of one of
his students, this author, proved in [10] the following result.

Theorem 2 Let H be a real Hilbert space and X,Y closed subspaces with
dim(X) < ∞ and H = X ⊕ Y . Let f : H → R be a functional of class
C2. Let ∇F and D2f denote the gradient and the Hessian of f respectively. If
there exits a positive constant m such that

〈D2f(u)y, y〉 ≥ m‖y‖2 for all y ∈ Y, u ∈ H (5)

and

f(x)→ −∞ as ‖x‖ → ∞, (6)

then there exists u0 ∈ H such that ∇f(u0) = 0. Moreover

f(u0) = max
x∈X
min
y∈Y
f(x+ y). (7)

In [5], condition (5) is further relaxed by using the variational characteriza-
tion in (4) to prove that φ is continuous and f̃ of class C1 when f is of class
C1. These observations bypass the usage of the implicit function theorem.
The latter results were motivated by the Dirichlet boundary value problem

∆u(x) + g(x, u(x)) = 0 for x ∈ Ω

u(x) = 0 for x ∈ ∂Ω,
(8)

where Ω is a smooth bounded region in Rn, and g : Ω×R→ R is a sufficiently
regular function satisfying an adequate growth condition. Indeed if we let H
denote the Sobolev space of square integrable functions in Ω whose first order
partial derivatives are also square integrable in Ω and which vanish on ∂Ω (see

[1]), G(x, t) =
∫ t
0 g(x, s)ds, and J : H → R is the functional given by

J(u) =

∫
Ω

{‖∇(u(x))‖2/2−G(x, u(x))} dx, (9)

then the critical points of J are the solutions to (8). Moreover, J obeys the
assumptions of Theorem 1 when there exits an integer N and real numbers a, b
such that

λN < a ≤
∂g

∂t
(x, t) ≤ b < λN+1 for all (x, t) ∈ Ω×R, (10)
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where λN , λN+1 are consecutive eigenvalues of

∆u(x) + λku(x) = 0 for x ∈ Ω

u(x) = 0 for x ∈ ∂Ω .
(11)

Thus under this hypothesis the problem (8) has a unique solution. On the other
hand if (10) is replaced by the weaker condition

∂g

∂t
(x, t) ≤ b, and G(x, t) ≥

at2

2
+ C, (12)

where a, b are as in (10) and C is an arbitrary real number then J satisfies the
assumptions of Theorem 2. Hence (8) has a solution which need not be unique
(see [10], [12], and Theorem 6 below).
Conditions (10) and (12), also known as non-resonance conditions, open

the issue of what happens when the range of ∂g
∂t
includes an eigenvalue λk.

Professor Lazer, in collaboration with Professor E. M. Landesman, provided in
[14] a breakthrough in this problem by considering the case in which

g(x, u) = h(u) + λku− p(x),

h(−∞) ≡ lim
t→−∞

h(t) < h(x) < h(+∞) ≡ lim
t→∞

h(t) for all x ∈ R,

p ∈ L2(Ω), and

λk is a simple eigenvalue.

(13)

They proved that if w is an eigenfunction corresponding to the eigenvalue λk
then (8) has a solution if and only if

h(−∞)

∫
Ω+
|w|dx − h(∞)

∫
Ω−
|w| dx

<

∫
Ω

p · wdx (14)

< h(∞)

∫
Ω+
|w|dx − h(−∞)

∫
Ω−
|w| dx,

here Ω+ = {x;w(x) ≥ 0}, and Ω− = {x;w(x) ≤ 0}.
This surprising result is, without doubt, a corner stone in the study of non-

linear boundary value problems and, hence, one of the most cited papers in this
area. Actually, as pointed out by Professor Landesman to the author in a per-
sonal communication, previously Professor Lazer had considered a somewhat
more complicated case with his student D. E. Leach in [15].
By 1974, when this author had the privilege of meeting Professor Lazer,

he was interested in providing a variational proof of his result in [14]. He
concluded this successfully in [2], where he and his coauthors established in a
semivariational way the following result.
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Theorem 3 Let Y denote a subspace solutions to the problem ∆u + λku = 0
in Ω with u = 0 on ∂Ω. Assume g(x, t)−λkt is a continuous bounded function.
If for w ∈ Y

∫
Ω

(G(x,w(x)) −
λkw

2(x)

2
)dx→ ±∞ as ‖w‖ → ∞, (15)

then (8) has a solution.

Motivated by this result, Professor P. H. Rabinowitz (see [19]) provided a varia-
tional proof of Theorem 3. Rabinowitz’s variational proof includes the following
general saddle point principle.

Theorem 4 Let H be a real Banach space and X,Y closed subspaces with
dim(X) < ∞ and H = X ⊕ Y . Let f : H → R be a functional of class C1

that satisfies de Palais-Smale condition (i.e., every sequence {un} for which
{f(un)} is bounded and {f ′(un)} converges to zero, has a convergent subse-
quence.) Suppose that

inf
y∈Y
f(y) = d > −∞ (16)

and

f(x)→ −∞ as ‖x‖ → ∞. (17)

Let D = {x ∈ X ; ‖x‖ ≤ r} with r big enough so that ‖x‖ = r implies F (x) > d.
If Γ denotes the set of continuous mappings p : D → H such that G(x) = x if
‖x‖ = r then

c ≡ inf
p∈Γ
max
x∈D
f(p(x)) > −∞ (18)

and there exists u0 ∈ H such that f(u0) = c and f ′(u0) = 0.

For further details on the proof and applicability of the latter result the
reader is referred to [20].
If one defines the Morse index of a critical point u as the number of negative

eigenvalues of D2f(u) from the hypotheses of Theorem 1 one sees that the
Morse index of u0 is dimX . Given the similarities between the assumptions of
Theorem 1 and those of Theorem 4 one would be tempted to conjecture that
the Morse index of the critical point arising in Theorem 4 is dimX . This, in
general, is not true (see [18]). Professor Lazer, in collaboration with Professor
S. Solimini, in [18] provides a detailed account of this problem. They prove the
following results in [18].

Theorem 5 If f satisfies the hypotheses of Theorem 4 and has only a finite
number of critical points, all of which are nondegenerate, then there exists a
critical point of f with Morse index equal to dimX.
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The reader is invited to consult [13] for extensive ellaborations on the results
of Professors Lazer and Solimini in [18].
Professor Lazer has masterfully utilized the variational characterizations pro-

vided in (7) and (18) to establish the existence of multiple solutions for problems
like (8). For example, in a paper with this author (see Theorem A of [11]) he
proved the following multiplicity result.

Theorem 6 If a, b are as in (12) g(x, 0) = 0, and ∂g
∂t
(x, 0) < λN then the

problem (8) has at least two solutions. Moreover, if ∂g∂t (x, 0) 6= λk for any k
then (8) has at least three solutions.

The key ingredient in the proof of Theorem 6 is the fact that the solution
obtained via the characterization (7), if isolated, gives a critical point of Morse
index N while zero is a critical point of Morse index less than N . The third
solution in Theorem 6 comes from the combining the fact that the degree of ∇J
in a large ball is N . Actually the argument extends to the case when the first
part of the hypothesis in (12) is replaced by

G(x, t) ≤
bt2

2
+ C . (19)

In this case one may use theorems 4 and 5 to show that either c or a dual value
c̄ is a critical value containing a critical point whose Morse index is not that of
0. For other results where multiple solutions for (8) are studied using the above
devices the reader is referred to [7], [8], [9], and references therein.
Another line of research motivated by Professor Lazer’s work in [16] is the

continuous dependence of the saddle point arising in (3) and its applications.
Extensive developments in this direction are due to Professor H. Amann and
his coworkers (see [3], [4]). The following generalization of Theorem 1 can be
found in [3].

Theorem 7 Let H be a real Hilbert space and X,Y, Z closed subspaces with
H = X ⊕ Y ⊕ Z. Let f : H → R be a functional of class C2. Let ∇f and D2f
denote the gradient f . If there exits a positive constant m such that

〈f(x+ y + z)− f(x1 + y + z), x− x1〉 ≤ −m‖x− x1‖
2

for all x, x1 ∈ X, y ∈ Y, z ∈ Z ,
(20)

and

〈f(x+ y + z)− f(x+ y1 + z), y − y1〉 ≥ m‖y − y1‖
2

for all x ∈ X, y, y1 ∈ Y, z ∈ Z,
(21)

then there exists a continuous function φ : Z → X ⊕ Y such that < ∇f(z +
φ(z)), x+ y >= 0 for all (x, y, z) ∈ X × Y × Z. Moreover

f̂(z) ≡ f(z + φ(z)) = max
x∈X
min
y∈Y
f(x+ y + z) (22)

is of Class C1, and z0 is a critical point of f̂ if and only if z0+φ(z0) is a critical
point of f
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This latter theorem is particularly useful for the study of equations of the
form L(u)+N(u) = 0 where L is a self-adjoint linear operator having infinitely
many eigenvalues both positive and negative. This is the case where L comes
from a wave operator (see [6]) or a Hammerstein integral operator (see [5]).
The techniques involved in the construction of the function φ in (4) have been

extended in many directions and Professor Lazer has utilized them exquisitely.
For example, in [17], he and Professor P. J. McKenna use it to study the exis-
tence of multiple solutions for (8) in the case of jumping nonlinearities. They
establish sufficient conditions on g for (8) to have three solutions when

g(x, t) = h(t)− sθ(x) + p(x), lim
t→−∞

h′(t), lim
t→∞

h′(t) ∈ (λN−1, λN+1),

where p is orthogonal to θ, and θ is and eigenfunction correponding to the
eigenvalue λ1 of (11).

Conclusion. Over thirty five years Professor Lazer has provided the Nonlinear
Analysis community with fundamental new ideas and has left for others to
ellaborate. AL, please keep on giving us exciting food for thought.
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