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Abstract

In this paper we summarize the developments of semipositone prob-
lems to date, including very recent results on semipositone systems. We
also discuss applications and open problems.

1 Introduction

Many problems in physics, chemistry, engineering, and biology lead to the study
of reaction diffusion processes. A simple example of a diffusion process is the
heat conduction in a solid. Let u(x, t) be the temperature at position x and time
t, k(x) the “heat conductivity” and let H(t) be the amount of heat contained in
a region Ω in the solid. If c, ρ are constants, and if there is an external source
(or sink) f(x, u, t), then the general inhomogeneous diffusion equation takes the
form

cρut = ∇.(k∇u) + f(x, u, t).

Now, if we assume that the external source (or sink) is independent of t, in
particular f(x, u, t) = f(x, u), then the “steady state” (time independent state)
of the diffusion equation is

∇.(k∇u) + f(x, u) = 0 .

For the past forty years or so, the study of such steady states of diffusion prob-
lems subject to Dirichlet (u is specified on ∂Ω) boundary conditions has been
of considerable interest. In particular, when k is a constant and f(x, u) = f(u),
leads to nonlinear eigenvalue problems of the form

−∆u = λf(u); Ω (1.1)

u = 0; ∂Ω , (1.2)
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where λ > 0 is a parameter, Ω is a bounded domain in Rn; n ≥ 1 with smooth
boundary ∂Ω and ∆ is the Laplacian operator. Cohen and Keller in [37] initi-
ated the study of such problems when f was positive and monotone, and also
introduced the terminology “positone” problems. Their motivation to study
such reaction terms f is the fact that the resistance increases with temperature.
For an excellent review on positone problems see [53]. For important results on
positone problems see [5],[18], [38], [41], [43], [50],[51], [52], [61] and [62].
We next describe briefly a population dynamics model which leads to the

study of steady states different from positone problems. Let N(x, t) denote the
population of a species which is harvested at a constant rate. Assuming that
the logistic growth model fits the normal growth of the population (without
harvesting) and supposing that the quantity harvested per unit time is inde-
pendent of time and is denoted by H(x), the resulting population model is of
the form:

∂N

∂t
= c∆N + (B − SN)N −H ; Ω× (0,∞)

N(x, 0) = A; Ω

N(x, t) = 0; ∂Ω× [0,∞),

where Ω is a bounded domain in R3, c, B, S are positive constants, and A denotes
the initial population. The natural question is whether the population exists
after a long time. This question is equivalent to establishing the existence of a
positive solution to the steady state problem

c∆N + (B − SN)N −H = 0; Ω

N = 0; ∂Ω .

Here one needs to find not only nonnegative solutions but also solutions that
are pointwise larger than H , the amount being harvested. It is worthwhile
mentioning that from a practical point of view, constant effort harvesting is
favored over density dependent (f(x, u) = f̃(u)−H(x)u) harvesting (see [63]).
These observations lead to the study of positive solutions to the problems of the
form (1.1) − (1.2) with f(0) < 0. Such problems are referred in the literature
as “semipositone” problems and are the main focus of this review paper.
Semipositone problems arise in buckling of mechanical systems, design of

suspension bridges, chemical reactions, astrophysics (thermal equilibrium of
plasmas), combustion and management of natural resources (constant effort
harvesting as derived above).
As pointed out by P.L. Lions in [53], semipositone problems are mathemat-

ically very challenging, and from the point of view of many important natural
applications, interesting, particularly for positive solutions. In fact, during the
last ten years finding positive solutions to problems of the form (1.1)-(1.2) with
f(0) < 0 has been actively pursued. The difficulty of studying positive solutions
to such problems was first encountered by Brown and Shivaji in [19] when they
studied the perturbed bifurcation problem

−∆u = λ(u − u3)− ε; Ω
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u = 0; ∂Ω

with ε > 0. However, the study of semipositone problems was formally intro-
duced by Castro and Shivaji in [30]. Also semipositone problems lead to sym-
metry breaking phenomena (see [65]). In [65], the authors proved that f(0) < 0
is a necessary condition for symmetry breaking of positive solutions in a ball in
R
n. Significant progress on semipositone problems has taken place in the last
ten years; in particular, due to the pioneering efforts by Castro and Shivaji.
In general, studying positive solutions for semipositone problems is more

difficult compared to that of positone problems. The difficulty is due to the fact
that in the semipositone case, solutions have to live in regions where the reaction
term is negative as well as positive. We will briefly introduce the method of sub-
super solutions (see [62]), which has been a very successful method in handling
positone problems, to demonstrate the difficulty of studying positive solutions
for semipositone problems over positone problems.
A super solution to (1.1)-(1.2) is defined as a function ψ ∈ C2(Ω) such that

−∆ψ ≥ λf(ψ); Ω

ψ ≥ 0; ∂Ω .

Sub solutions are defined similarly with the inequalities reversed and it is well
known that if there exists a sub solution φ and a super solution ψ to (1.1)-(1.2)
such that φ(x) ≤ ψ(x) for x ∈ Ω̄, then (1.1)-(1.2) has a solution u such that
φ(x) ≤ u(x) ≤ ψ(x) for x ∈ Ω̄. Further note that if φ(x) ≥ 0 for x ∈ Ω then
u ≥ 0 for x ∈ Ω.
In the positone case, φ ≡ 0 is a sub solution to (1.1)-(1.2). Thus to ensure

the existence of a positive solution it is enough to find a positive super solution.
On the other hand, in the semipositone case ψ ≡ 0 is a super solution. Suppose
we try to find a nonnegative sub solution φ such that

−∆φ = h; Ω

φ = 0; ∂Ω,

then we have to choose h to be negative near the boundary of Ω since f(0) < 0
while to ensure that φ is nonnegative it is necessary that h is sufficiently positive
in the interior of Ω. Further h must be such that h ≤ f(φ) for each x in
Ω. In short, finding a nonnegative solution is not an easy task in the case of
semipositone problems. We encounter similar problems when we try to use other
methods that have been successful in the case of positone problems.
However, mathematicians have found their way via sub-super solution meth-

ods, variational methods, degree theory, fixed point theory, shooting methods,
reflection arguments, Maximum principles, bifurcation theory etc. to establish
a rich collection of results for the single equations case(see Section 2).
The study of semipositone systems for positive solutions is even more chal-

lenging since not only one has to deal with the systems, but also needs to
establish the positivity of the solution componentwise. In the single equations
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case a popular plan was to find a solution with “big” enough supremum norm
and use this to establish that the solution is positive. In systems, knowing
that the supremum norm of u = (u1, . . . , um) (say) is large does not necessarily
mean that the supremum norm of each ui is large. Thus establishing that each
component ui of the solution is positive is an additional challenge.
Semipositone systems occur naturally in important applications; for exam-

ple, predator - prey systems with constant effort harvesting. In particular, with
diffusion included, such systems in steady states will be of the form:

−∆u = λ[f(u, v)−K]; Ω

−∆v = λ[g(u, v)−H ]; Ω

u = v = 0; ∂Ω ,

where Ω is a smooth bounded region in Rn, and K and H represent harvesting
(or stocking if they are negative) densities of the predator u and prey v respec-
tively. See [14], [15], [16], [39], [58] and [63] for examples of f ’s and g’s where
the authors study various predator-prey systems with constant effort harvest-
ing but without diffusion. Thus the study when diffusion is included (i.e., the
study of semipositone systems) will greatly enhance the understanding of these
problems in population dynamics.
In summary, while strengthening the result for single equations it would be

challenging and important to extend the theory for single equations to systems
in the following two directions:
[A] To study systems arising in applications such as predator-prey, cooperative
and competitive models with constant effort harvesting.
[B] To identify and study systems that exhibit qualitative properties similar to
that of the single equations case.
To date, no results are known in the direction [A], while some developments
have occured recently in the direction [B] which we will outline in Section 3.
We now conclude this introduction by outlining the rest of the paper. Namely,

in section 2 we provide the known literature on semipositone single equations to
date and open problems. In section 3, we discuss the very recent developments
on semipositone systems.

2 Survey of semipositone problems for single
equations case

Semipositone problems were formally introduced by Castro and Shivaji in [30]
where the authors studied two point boundary value problems of the form

−u′′ = λf(u); 0 < x < 1

u(0) = u(1) = 0

and obtained detailed results via a quadrature method for various classes of reac-
tion terms f . In particular they considered classes of superlinear nonlinearities
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(eg: f(u) = up − ε; ε > 0, p > 1, f(u) = eu − 2 etc.) for which they proved
that there exists λ1 > 0 such that for 0 < λ ≤ λ1 there is a unique positive
solution while for λ > λ1 there are no positive solution. For classes of sublinear
nonlinearities (eg: f(u) = (1+u)1/3−3, f(u) = au−bu2−c; a > 0, b > 0, c > 0
etc.) they proved that there exists 0 < µ < λ1 such that for λ < µ there are
no positive solutions, for µ < λ ≤ λ1 there are at least two positive solu-
tions, and for λ = µ and λ > λ1 there is exactly one positive solution. They
also studied classes of superlinear nonlinearities which were initially concave
and later convex (eg: f(u) = u3! − au2 + bu − c; a > 0, b > 0, c > 0 and
b > (32/81)a2, a3 > 54c) and established that there are ranges of λ for which
there are at least three positive solutions. Further, in all cases, they established
a sequence {λn};n = 1, 2, . . . such that for λ = λn, the problem had a unique
nonnegative solution with (n−1) interior zeros, which satisfy both the Dirichlet
as well as Neumann boundary conditions. Note that such solutions are possible
only if f(0) < 0.
Many mathematicians during the past ten years or so have successfully ex-

tended these results to higher dimensions. The first major breakthrough came
in [31] when the authors proved that all nonnegative solutions for

−∆u = λf(u); Ω

u = 0; ∂Ω

with λ > 0, f(0) < 0 and Ω = Bn a ball in R
n; n > 1 are in fact positive.

Since positivity implies radial symmetry (see [43]), various results appeared in
the literature following this result for positive (radial) solutions for semipositone
problems.
This positivity result when Ω is a ball in Rn; n > 1 is unlike the case when

n = 1, and authors in [31] used the fact that the boundary is connected. In
[43], due to the result for n = 1, it was conjectured that the problem may have
nonnegative solutions with interior zeros in higher dimensions as well, which we
see is false when at least Ω is a ball. However, the conjecture remains to be
proven/disproven in general bounded regions.

2.1 Superlinear nonlinearities

In this section we discuss results on superlinear nonlinearities. See [32] and
[66] where the authors establish the existence of positive solutions for λ small
for classes of superlinear nonlinearities when Ω is a ball. In [66] authors use
shooting methods to prove this existence result for nonlinearities of the form
f(u) = up − ε; ε > 0, 1 < p < n

n−2 . In [32] authors do better by combining
shooting methods with Pohozaev’s identity. In fact, their theorem gives this
existence result for f(u) = up − ε; ε > 0, 1 < p < n+2

n−2 which is an optimal

result since it can be proven that positive solution do not exist if p ≥ n+2
n−2

(the critical exponent). This existence result has been extended to the general
bounded regions (see [3], [6] and [69]). In [3] the authors use degree theory, in
[69] the authors use variational methods while in [6] the result is obtained via
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bifurcation from infinity. The often successful technique has been to obtain a
solution with big enough supremum norm and use this fact to show that the
solution is positive. See also [9] and [13] for extensions of this existence result
for λ small.
For classes of superlinear problems non-existence result for λ large has been

proven in [3], [13] and [17]. Here the authors prove the result by analyzing the
qualitative behavior of solutions (if they exist) near the boundary and obtaining
a contradiction using an energy analysis or on the positivity of the solution.
The instability of the solution for convex monotone nonlinearities was first

established in [19] where the authors use Green’s identities to prove that the
first eigenvalue of the linearized equation about the solution has the appropriate
sign. See [67] and [55] for an extension of this result for non-monotone functions.
The uniqueness result for superlinear nonlinearities for λ small for the case

when Ω is a ball was established in [1] and [23] using the Implicit function
theorem, variations with respect to parameters, the Pohozaev’s identity and
comparison arguments. In [23], it was further established in the ball that if
f(u) = up − ε; ε > 0, 1 < p < n+2

n−2 then the problem has at most one positive
solution for any λ. However, this uniqueness result remains an open question
in general bounded regions even in convex regions other than a ball. Also the
case when the nonlinearity is concave first and then convex needs to be studied
beyond the n = 1 case discussed in [30].

2.2 Sublinear nonlinearities

In this section we discuss results on sublinear semipositone problems. For
classes of sublinear concave nonlinearities when Ω is a general bounded region
in Rn; n > 1, existence results were established in [6], [8], [26] and [36]. In [36]
for nonlinearities with falling zeros, variational methods were used to prove an
existence result for λ large. In [8] and [26], the method of sub-super solutions
was employed to establish existence results, one for λ large, and the other near
the first eigenvalue of the Laplacian operator with Dirichlet boundary condi-
tions. For this latter existence result, the Anti-maximum principle (see [35])
was used to create a nonnegative sub solution. Further in [8] nonexistence of
positive solutio! ns for λ small was established via Green’s identities using the
fact that f(0) < 0 and the sublinearity assumption. In [6], an existence result
for λ large was established via bifurcation from infinity. See also [56] where
existence result from semipositone problems is used to establish existence and
multiplicity results for classes of sublinear nonlinearities which vanish at the
origin but negative near the origin.
When Ω is a ball, for classes of sublinear nonlinearities complete details

are known. In [22] and [33] they established the exact bifurcation diagram.
In particular, there exists 0 < µ < λ1 such that for λ < µ no solution, for
µ < λ ≤ λ1 exactly two solution, and for λ ≥ λ1 as well as for λ = µ exactly
one solution. Further, the upper branch of the solution is stable while the lower
branch including at λ = µ is unstable. In [22], the authors study increasing
nonlinearities (eg: f(u) = (u+1)1/3−2) while in [33] nonlinearities with falling
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zeros (eg: f(u) = au2− bu− c; a, b, c > 0) are discussed. The Implicit Function
Theorem, variation with respect to parameters, the above mentioned existence
and nonexistence results, and the uniqueness and stability results established in
[1]! were useful in proving this exact bifurcation diagram. In [1], the authors
use again the Implicit function theorem, variations with respect to parameters
and Sturm comparison theorem to establish the uniqueness and stability results.
See also [24] and [25] where evolution of bifurcation curves for positive solution
are studied with concave nonlinearities.
However to date, the uniqueness result for λ large, in general bounded re-

gions, has been proven only for classes of increasing nonlinearities and when the
outer boundary of the region is convex (see [27]). Here the authors prove their
results by first establishing qualitative properties of the solution near the bound-
ary, namely they establish that for large λ the solution u(x) ≥ k dist(x, ∂Ω)
where k > 0 is a constant. Uniqueness result for λ large when the outer bound-
ary of the region is non-convex is open. For the case when the nonlinearity has
a falling zero, this uniqueness result has been proven only in the case when Ω
is a ball (see [33]). Finally, the multiplicity result is also open in regions other
than a ball.

2.3 Quasilinear equations

In this section we discus existence results for radial solutions to quasilinear
equations of the form

− div(α(|∇u|2)∇u) = λf(|x|, u); x ∈ Ω

u = 0; x ∈ ∂Ω ,

where λ > 0 and Ω is an annulus. Here α(s2)s is an odd increasing homeo-
morphism on the real line. The special case when α(|∇u|2) = |∇u|p−2, p > 1
corresponds to the p-Laplacian case. Some existence results has been estab-
lished in [47] via fixed point theory in a cone for such systems. For classes of
superlinear functions they prove the existence result for λ small and for classes
of sublinear functions they prove the existence result for λ large. The exis-
tence result for λ small for classes of superlinear functions has been extended
to the case when Ω is a ball in Rn in [44] via degree theory. To our knowledge
these are the only two papers in this direction and thus many questions on
uniqueness, non-existence, multiplicity all remain open even for radial solutions
when Ω is a ball/annulus. Further, the study of such quasilinear equations with
semipositone structure is open in the case of general bounded regions.

2.4 Remarks

Here we summarize the known results to date for semipositone problems with
Neumann/Robin boundary conditions and in unbounded regions. For results on
positive solutions for semipositone problems with Neumann boundary conditions
see [2] and [57]. In [57] the authors study two point boundary value problems via
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a quadrature method. In [2] the authors study classes of superlinear problems
via degree theory.
See also [10] and [11] where classes of two point boundary value problems with
Robin boundary conditions are discussed via quadrature methods. Further note
that the results in [2], [3], [8], [19], [55] and [67] holds for Robin boundary
conditions as well.
For results on positive solutions in unbounded regions see [4]. Here the authors
discuss existence result for λ small for classes of superlinear nonlinearities via
variational methods.
Finally, for the study of sign-changing solutions see [12] and [23]. In [12], a two
point boundary value problem is discussed via a quadrature method while in
[23], a thorough study is carried out for all branches of solutions when Ω is a
ball in Rn; n > 1 via the Implicit function theorem and variations with respect
to parameters.

3 Recent developments on semipositone systems

Here we describe recent developments on semipositone systems, namely results
in [28], [29], [44], [45], [48] and [49]. These results give the complete picture to
date in this direction.

Result 1: In[28], the authors study cooperative semipositone systems in a
ball. In particular, they consider a classical nonnegative solution u := (u1 ≥
0, u2 ≥ 0, . . . , um ≥ 0) for the system

−∆ui = fi(u1, u2, . . . , um); Ω 1 ≤ i ≤ m,

ui = 0 ∂Ω,

where Ω is a ball in Rn; n > 1 and fi : [0,∞)× [0,∞) . . . , [0,∞)︸ ︷︷ ︸
m times

→ R are C1

functions satisfying

fi(0, 0, . . . , 0) < 0, i = 1, 2, . . . ,m (semipositone system) and

∂fi

∂uj
≥ 0, i 6= j (cooperative system) .

Then they prove that ui > 0 for each i = 1, 2, . . . ,m i.e., nonnegative solutions
are componentwise positive. This result is of great importance since positivity
implies that the solutions are radially symmetric and radially decreasing (see
[68]). They prove the result by combining Lemma 4.2 of [68], Maximum princi-
ple/reflection arguments and analysis of solutions near the boundary. This result
holds even if Ω is a region between two balls or the union of balls. However,
the question of positivity of nonnegative solutions in general bounded region
remains open including in the single equation case. On the other hand, in un-
bounded regions there are nonnegative solutions with interior zeros. Indeed,
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consider the two point boundary value problem

−u′′ = λf(u); 0 < x < 1) (3.1)

u(0) = u(1) = 0 , (3.2)

where f(0) < 0, f ′(u) > 0 and lim
u→∞

f(u) = ∞. Then from [30] it follows that

there exists an increasing sequence of positive numbers λn such that (3.3)−(3.4)
has a nonnegative solution un(x) with n interior zeros xn in (0, 1). Now consider

−∆w = λf(w); Ω := {(x, y) : 0 < x < 1, y ∈ R} (3.3)

w = 0; ∂Ω := {(z, y) : z ∈ {0, 1}, y ∈ R}. (3.4)

Clearly for λ = λn, wn(x, y) = un(x) is a nonnegative solution of (3.5) − (3.6)
which vanishes on

Ω̃ := {(xn, y) : y ∈ R, n = 1, 2, . . . , } ⊂ Ω.

Result 2: In [48], the authors discuss existence results for radial solutions in
an annulus for classes of semilinear semipositone systems. In particular, they
consider the existence of positive solutions for the system

−(rn−1u′)′ = λrn−1f(u, v); a < r < b

−(rn−1v′)′ = λrn−1g(u, v); a < r < b

u(a) = u(b) = 0; v(a) = v(b) = 0 ,

where λ > 0 is a parameter, f, g : [0,∞) × [0,∞) → R are continuous and
there exists M > 0 such that f(u, v) ≥ −M2 , g(u, v) ≥ −

M
2 for every (u, v) ∈

[0,∞)× [0,∞). They first consider the case when f, g further satisfy:

(A1) lim
v→∞

f(u, v) = ∞, lim
u→∞

g(u, v) = ∞, where each limit is uniform with

respect to the other variable and lim
z→∞

h∗(z)
z
=∞, where

h∗(z) := inf
u,v≥z

{min(f(u, v), g(u, v))}.

and prove that the system has a positive solution (uλ, vλ) for λ small with
|(uλ(t), vλ(t))|∞ →∞ as λ→ 0 uniformly for t in compact intervals of (a, b).
Next, they consider the case when f, g satisfy:

(A2) lim
v→∞

f(u, v) = ∞, lim
u→∞

g(u, v) = ∞, where each limit is uniform with

respect to the other variable and lim
z→∞

h̃(z)
z
= 0, where

h̃(z) := sup
0≤u,v≤z

{max(f(u, v), g(u, v))}

and prove that the system has a positive solution (uλ, vλ) for λ large with
λ−1max(uλ(t), vλ(t)) → ∞ as λ → ∞ uniformly for t in compact intervals of
(a, b).
Finally, they consider the case when f(u, v) = f(v), g(u, v) = g(u) satisfy (A1)
and
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(A3) there exists r > 0 and 0 < α < 1 such that h(x) ≥ (x
r
)αh(r) for x ∈ [0, r]

where h(x) = min{f(x)− f(0), g(x)− g(0)},

and establish the existence of at least two positive solutions for certain ranges
of λ under some additional conditions.

Note that no sign conditions are required on the reaction terms at the origin
and thus allowing the semipositone structure. Also no monotonicity assump-
tions are required for these results to hold. They establish these result by using
fixed point theory in a cone.

Result 3: In [29], the authors establish an existence result for classes of sublin-
ear cooperative semipositone systems in general bounded regions. In particular,
they consider the existence of positive solutions to the system

−∆ui = λ[fi(u1, u2, . . . um)− hi]; Ω

ui = 0; ∂Ω

where λ > 0 is a parameter, Ω is a bounded domain in Rn; n ≥ 1 with a smooth
boundary ∂Ω, hi are nonnegative continuous functions in Ω for i = 1, 2, . . . ,m
and fi : [0,∞)× [0,∞)× . . .× [0,∞)︸ ︷︷ ︸

m times

→ R are C1 functions for i = 1, 2, . . . ,m.

Further, we assume that for each i = 1, 2, . . . ,m, we have

fi(0, 0, . . . , 0) = 0

∂fi

∂uj
(z1, z2, . . . , zm) ≥ 0, i 6= j z1, z2, . . . , zm ∈ R

∂fi

∂ui
(z, z, . . . , z) ≥ 0 , ∀z ∈ R

m∑
j=1

∂fi

∂uj
(0, . . . , 0) > 0

lim
z→∞

fi(z, . . . , z)

z
= 0 ; and lim

z→∞
fi(z, . . . , z) =∞ .

Then they establish that there exists λ̃ > 0 such that for λ > λ̃, the system
has a positive solution (u1, u2, . . . , um). Further, ui(x)/ dist(x, ∂Ω) = O(λ) as
λ → ∞ for i = 1, 2, . . . ,m. They prove this result by producing a nonnegative
sub solution and then applying the method of sub-super solutions. As pointed
out earlier, producing nonnegative sub solution is non-trivial in semipositone
problems, and this is the important step in the proof of this result. See [8] and
[26] where the single equation case of this problem was studied using the method
of sub-super solutions. Sub-super solutions are in general hard to apply in the
semipositone case since it is hard to construct a nonnegative sub-solution. In
fact, in [8] and [26], a non-trivial existence result proved in [36] for a class of
semipositone problem with reaction term having “falling zeros”, played a crucial
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role in the construction of the nonnegative sub solution. However here authors
provide a direct method of constructing sub-super solutions.
We note here that semipositone sublinear systems have also been studied in

the past in [7]. However, in [7] the coupling was weak so that one could use
existence results from the study of single equations case in the construction of
the nonnegative sub solution.

Result 4: In [45], the authors prove an existence result for radial solutions
in an annulus for classes of quasilinear (including p-Laplacian) systems with
superlinear reaction terms. In particular, consider the existence of positive
radial solutions for the system

− div(α(|∇u|2)∇u) = λf(v); a < |x| < b

− div(α(|∇v|2)∇v) = λg(u); a < |x| < b

u = v = 0; |x| ∈ {a, b},

where φ(s) = α(s2)s is an odd increasing homeomorphism of the real line and
λ is a positive parameter. Such radial solutions are solutions to systems of the
form

−(rn−1φ(u′))′ = λrn−1f(v); a < r < b

−(rn−1φ(v′))′ = λrn−1g(u); a < r < b

u(a) = u(b) = 0; v(a) = v(b) = 0 ,

where r = |x| and n is the dimension of x.
Assume:

(B1) For each c > 0 there exist a constant Ac > 0 such that φ
−1(cx) ≥

Acφ
−1(x) for all x ≥ 0 and Ac → ∞ as c → ∞ (which implies the

existence of a constant Bc := 1/A1/c > 0 such that φ
−1(cx) ≤ Bcφ

−1(x)
for all x ≥ 0 and Bc → 0 as c→ 0).

(B2) The functions f, g : [0,∞)→ R are continuous, and there exists M > 0
such that f(z) ≥ −M/2 and g(z) ≥ −M/2 for z ∈ [0,∞)

(B3) lim
z→∞

h∗(z)
φ(z) =∞ and limz→∞

Ah∗(z)
z
=∞ where Ac is as defined in (B1) and

h∗(z) = inf
w≥z
{min(f(w), g(w))}.

Then they establish that there exists λ∗ > 0 such that for 0 < λ < λ∗, the
system has a positive solution. This result is an extension to classes of systems
including p-Laplacian systems (α(s2) = |s|p−2, p > 1) of existence results for
superlinear problems discussed in [3], [6], [9], [30], [32], [42], [46], [47] and [48].
In particular, in [47] the authors study the single equation case of this problem
for both sublinear and superlinear reaction terms. As noted earlier (see Result
2), in [48], authors again establish such existence results for radial solutions in an
annulus but for semilinear elliptic systems. Here authors succeed in establishing
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an existence result for quasilinear systems, for a class of superlinear reaction
terms. Again here (as in Result 2) no monotonicity assumptions are required
on the reaction terms and the semipositone structure is allowed. The result is
established via degree theory.

Result 5: In [44], the authors extend the result in [48] for the superlinear case
when the region is a ball. In particular, they consider a system of the form

−(rn−1u′)′ = λrn−1f(v); 0 < r < 1

−(rn−1v′)′ = λrn−1g(u); 0 < r < 1

u′(0) = v′(0) = 0; u(1) = v(1) = 0 ,

where λ > 0 is a parameter, f, g : [0,∞)→ R are continuous and

(C1) lim
s→∞

f(s)
s
=∞, lim

s→∞

g(s)
s
=∞

(C2) there exists nonnegative numbers α, β with α+β = n−2, and a positive
number ε such that nF (s)−αsf(s) ≥ εsf(s) and nG(s)−βsf(s) ≥ εsg(s)
for s large. Here F (s) =

∫ s
0
f(t) dt, G(s) =

∫ s
0
g(t) dt.

They prove that the system has a positive solution (uλ, vλ) for λ small with
|(uλ, vλ)|∞ →∞ as λ→ 0 via degree theory.
We note here that the common feature of Results 2, 4 and 5 is that solutions

of large supremum norm are obtained and then prove positivity of such solutions
(both in single equation and systems case).

Result 6: In [49], again for the superlinear case a non-existence result is
proven. In particular, they consider the system

−∆u = λf(v); Ω

−∆v = λg(u); Ω

u = 0 = v; ∂Ω ,

where Ω is a ball or an annulus in Rn, λ > 0 is a parameter and f, g : [0,∞)→ R
are continuous, f(0) < 0, g(0) < 0; f ′ ≥ 0, g′ ≥ 0 and

(D1) There exists Ki > 0, Mi > 0; i = 1, 2 such that f(z) ≥ K1z −M1 and
g(z) ≥ K2z −M2 for z ≥ 0.

Then they prove that the system has no nonnegative solutions for λ large. They
prove the result by analyzing the solutions near the outer boundary and using
comparison principles.
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