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Abstract

The existence of a principal eigenvalue is established for the Tricomi
problem in normal domains; that is, the existence of a positive eigenvalue
of minimum modulus with an associated positive eigenfunction. The ar-
gument here uses prior results of the authors on the generalized solvability
in weighted Sobolev spaces and associated maximum/minimum principles
[17] coupled with known results of Krein-Rutman type.

1 Introduction

In this note, we are interested in establishing the existence of a principal eigen-
value associated to generalized solutions of the classical linear Tricomi problem.
That is; we seek to find an eigenvalue-eigenfunction pair (λ, u) with λ > 0 and
u a positive generalized solution to the problem

Tu = λu in Ω (LTE)

u = 0 on AC ∪ σ.

The results will apply as well to the conjugate problem (LTE)* in which the
boundary conditions u = 0 are placed on BC ∪ σ instead. Here T ≡ −y∂2x − ∂

2
y

is the Tricomi operator on R2 and Ω is a bounded region in R2 with piecewise
smooth boundary ∂Ω of the classical Tricomi form. That is, ∂Ω consists of
a smooth arc σ in the elliptic region y > 0, with endpoints on the x-axis at
A = (−x0, 0) and B = (x0, 0), and two characteristic arcs AC and BC for the
Tricomi operator in the hyperbolic region y < 0 issuing from A and B and
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174 Existence of a principal eigenvalue

meeting at the point C on the y-axis (we assume without loss of generality that
A and B are symmetric with respect to the y-axis). One knows that

AC : (x+ x0)−
2

3
(−y)3/2 = 0 and BC : (x− x0) +

2

3
(−y)3/2 = 0 .

We will call such a domain a Tricomi domain. Moreover, we will assume that
the domain is normal in the sense that σ is perpendicular to the x-axis in the
points A and B.
The underlying Tricomi problem

Tu = f in Ω (LT)

u = 0 on AC ∪ σ

has a notable physical importance. It describes, in the hodograph plane, the
problem of transonic flow through a nozzle; a connection first established by
Frankl’ [6]. The placement of the boundary condition on only a portion AC ∪σ
of the boundary can yield a well posed problem for classical solutions as first
established by Tricomi himself [19] in special cases, whereas placement of data
on larger portions of the boundary will overdetermine the problem for classical
solutions due to the presence of hyperbolicity; energy integral methods based
on the work of Friedrichs [7] yield suitable uniqueness theorems. In addition,
there are a wealth of results on existence and uniqueness of strong solutions in
Hilbert spaces well adapted to the boundary condition. However, despite its
physical importance and despite some 70 years of study, results on the linear
Tricomi problems (LT) and (LT)* are not complete. In particular, there is an
almost complete absence of spectral theory which is glaring in its own right and
impedes substantially progress on associated nonlinear problems. Recent works
such as [16] and [15] have attempted to make progress in this direction. One
major difficulty lies in the fact that the problem (LT) is not self-adjoint.
In part as preparation for the current study, we have established results on

the generalized solvability of (LT) in weighted Sobolev spaces and associated
maximum/minimum principles for normal domains [17] (which will be recalled
in section 2). It is well known that the presence of extremum principles if
interpretable as the invariance of a positive cone in a suitable Banach space
can be a first step in developing a spectral theory even in cases where the
operator is not self adjoint. Such ideas were pioneered by Krein and Rutman
[12] and have played an important role in nonlinear analysis (cf. Krasnoselskii

[11]). As noted in [17], the solution operators T̃−1AC and T̃
−1
BC to the Tricomi

problems (LT) and (LT)* are compact as operators on L2(Ω) and thanks to the
maximum/minimum principles preserve the positive cone in L2(Ω). Combining
these facts with an argument of Krein-Rutman type using the Hopf maximum
principle in the elliptic part of the domain, we establish the following result on
the existence of a principal eigenvalue. The relevant definitions and notations
will be recalled in section 2.

Theorem 1.1 Let Ω be a normal admissible Tricomi domain. Then there exists
a positive eigenvalue λ0 of minimum modulus in the sense that |λ0| ≤ |λ| for
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every λ ∈ σ(T̃AC). Moreover, associated to λ0 there are corresponding eigen-

functions u0 ∈ W̃ 1
AC∪σ ⊂ L2(Ω) and v0 ∈ W̃ 1

BC∪σ ⊂ L2(Ω) for the problems
(LTE) and (LTE)∗ which are positive; that is, u0, v0 ≥ 0 a.e. in Ω.

We point out that λ0 is called a principal eigenvalue due to the positivity
of the associated eigenfunction and its being of minimum modulus, as done
by Lazer in [14, 4]. However, we cannot say at present that the associated
eigenspace is simple, nor that other eigenspaces do not contain eigenfunctions
that are non-negative almost everywhere, as happens in the purely elliptic case
(cf. Manes - Micheletti [18] as well as Hess - Kato [10]).

2 Generalized solvability and maximum/minimum
principles

In this section, we will recall the main definitions, notation, and results on
generalized solutions that will be used in the proof of the main theorem. We
begin by recalling the spaces of functions in which we will work. In all that
follows, Γ will be a connected subset of ∂Ω which is assumed to be piecewise C1

(in order to apply the divergence theorem). We consider the following spaces of
smooth functions

C∞0,Γ(Ω) =
{
ψ ∈ C∞(Ω) : ψ ≡ 0 on NεΓ for some ε > 0

}
, (2.1)

where NεΓ is an ε neighborhood of Γ. We denote by W̃
1
Γ(Ω) the Sobolev space

obtained as closure of the spaces in (2.1) with respect to the norm

||ψ||2
W̃ 1
Γ(Ω)

= ||ψ||2
W̃ 1,2(Ω)

=

∫
Ω

(
|y|ψ2x + ψ

2
y + ψ

2
)
dx dy,

and denote by W̃−1
Γ the dual space to W̃ 1

Γ equipped with its negative norm in

the sense of Lax (cf. [13]). We note that using the definition of the W̃−1
Γ (Ω)

norm, one has the following estimates: for each Ω with ∂Ω piecewise C1, there
exist constants C1, C2 > 0 such that

||Tu||
W̃−1
BC∪σ(Ω)

≤ C1||u||W̃ 1
AC∪σ(Ω)

, u ∈ C∞0,AC∪σ(Ω) (2.2)

and
||Tv||

W̃−1
AC∪σ(Ω)

≤ C2||v||W̃ 1
BC∪σ(Ω)

, v ∈ C∞0,BC∪σ(Ω) (2.3)

which are just continuity estimates. They give rise to continuous extensions of
the Tricomi operator T (defined on dense subspaces of smooth functions) such
as

T̃AC : W̃
1
AC∪σ(Ω)→ W̃−1

BC∪σ(Ω) and T̃BC : W̃
1
BC∪σ(Ω)→ W̃−1

AC∪σ(Ω). (2.4)

We recall that the placement of the boundary conditions on only a portion of
the boundary implies that the problems (LT) and (LT)* are not self adjoint. In

fact, one has that the operators in (2.4) satisfy T̃BC = T̃
∗
AC .
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As shown by Didenko, a necessary and sufficient condition to have the gen-
eralized solvability for the problem (LT) and (LT)* for each f ∈ L2(Ω) is to
have the continuity estimates (2.2) and (2.3) as well as the a priori estimates of
admissibility as encoded in the following definition.

Definition 2.1. A Tricomi domain Ω will be said to be admissible if there exist
positive constants C3 and C4 such that

‖u‖L2(Ω) ≤ C3‖Tu‖W̃−1
BC∪σ

, u ∈ C∞0,AC∪σ(Ω) (2.5)

and
‖v‖L2(Ω) ≤ C4‖Tv‖W̃−1

AC∪σ(Ω)
, v ∈ C∞0,BC∪σ(Ω). (2.6)

The class of admissible normal domains includes convex domains as well as those
that contain a convex subdomain; we record the following result of [17] as an
example.

Example 2.2. Let Ω be a normal Tricomi domain, with boundary AC∪BC∪σ
such that

i) Ω contains Ω0 as a subdomain where Ω0 has boundary AC∪BC∪σ0 such that
the elliptic boundary arc σ0 is given as a graph {(x, y) : y = g(x), −x0 ≤
x ≤ x0} which satisfies the following hypotheses: g ∈ C2((−x0, x0)),
g(±x0) = 0, g′(∓x

±
0 ) = ±∞ and, for every x ∈ (−x0, x0), g(x) > 0

and g′′(x) ≤ −k < 0.

ii) There exists an ε > 0 such that the elliptic boundaries σ and σ0 of Ω and
Ω0 coincide in a strip {(x, y) : 0 ≤ y ≤ ε}.

Then Ω is admissible in the sense of Definition 2.1.

As noted above, the a priori estimates of admissibility together with some
functional analysis yield the following kind of solvability result (cf. section 2 of
[17]).

Theorem 2.3. Let Ω be normal admissible Tricomi domain in the sense of
Definition 2.1. Then for every f ∈ L2(Ω) there exists a unique generalized

solution u ∈ W̃ 1
AC∪σ(Ω) to the Tricomi problem (LT) in the sense that there

exists a sequence {uj} ⊂ C∞0,AC∪σ(Ω) such that

lim
j→∞

‖uj − u‖W̃ 1
AC∪σ(Ω)

= 0 and lim
j→∞

‖Tuj − f‖W̃−1
BC∪σ(Ω)

= 0.

As a final preliminary, we recall the following maximum/minimum principle
for generalized solutions which is proven by regularizing the problem, applying
a variant of the maximum principle of Agmon-Nirenberg-Protter for regular
solutions [2], and using the continuity of the solution operator (T̃AC)

−1 (cf.
Theorem 3.1 of [17]).
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Theorem 2.4. Let Ω be an admissible normal Tricomi domain, f ∈ L2(Ω)

and u ∈ W̃ 1
AC∪σ(Ω) the unique generalized solution to the problem (LT). Then

f ≥ 0(≤ 0) a.e. in Ω implies u ≥ 0(≤ 0) a.e. in Ω. A similar statement holds
for the conjugate problem (LT )∗

3 Proof of Theorem 1.1

Having recalled the machinery of generalized solvability and extremum princi-
ples, we will show how they give rise to the existence of a principal eigenvalue.
The proof proceeds in three steps. The first makes use of the solvability theory.

Step 1. (Passage to the inverse operator)

An immediate consequence of the solvabilty result Theorem 2.3 is the ex-
istence of a continuous right inverse K defined on all of L2(Ω) whose image

W̃A is a dense proper subspace of W̃
1
AC∪σ(Ω). The operator K gives rise to a

compact operator K = T̃−1AC : L
2(Ω)→ L2(Ω). This follows from standard func-

tional analysis (cf. section 2 of [16]). It is therefore clear by a classical result (cf.
[3] or [5]) that this injective, non surjective compact operator K has spectrum
σ(K) = {µj}j∈Z consisting of eigenvalues of finite multiplicity with 0 as the only
possible accumulation point. Therefore it suffices to find an eigenvalue µ0 ∈ R+

and an associated eigenfunction v0 ∈ L2(Ω) for K satisfying v0 ≥ 0 a.e. in Ω,
as then

λ0 = 1/µ0 is an eigenvalue for T̃AC (3.1)

and
u0 = Kv0 is an eigenfunction for T̃AC . (3.2)

Indeed, if Kv0 = µ0v0 with v0 ∈ L2(Ω) then one has u0 = µ0(T̃ACu0) from

which it follows that T̃ACu0 = λ0u0. Moreover, since u0 = Kv0 is the unique
generalized solution to T̃ACu0 = v0, Theorem 2.4 shows that this solution must
obey u0 ≥ 0 a.e. in Ω if v ≥ 0 a.e. in Ω.

Step 2. (A result of Krein and Rutman)

By Step 1, it suffices to find a positive eigenvalue µ0 for K = T̃−1AC with an
associated positive eigenfunction v0 ∈ L2(Ω) satisfying v0 ≥ 0. If we denote by
L(Ω)+ = {f ∈ L2(Ω) : f ≥ 0 a.e. in Ω}, the positive cone in L2(Ω), Theorem
2.4 shows that the compact operator K leaves this cone invariant in the sense
that K

(
L2(Ω)+

)
⊂ L2(Ω)+. We recall the following special case of the result

of Krein and Rutman (cf. Theorem 6.2 of [12]) which suits our needs.

Lemma 3.1. Let K be a compact linear operator on L2(Ω) that leaves the
positive cone L2(Ω)+ invariant. If there exist an α > 0 and an f ∈ L2(Ω)+

with ||f ||L2(Ω) = 1 such that

Kf ≥ αf a.e. in Ω, (3.3)

then
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i) K has nonzero eigenvalues

ii) Among the eigenvalues of maximum modulus there is a positive one µ0 ≥ α
to which there correspond eigenvectors v0, w0 ∈ L2(Ω)+ of the operators
K and K∗ respectively.

The work that remains is to construct a suitable function f ∈ L2(Ω)+ and
parameter α so that (3.3) holds. We claim that it is enough to select any
nontrivial f such that

f ∈ C0(Ω) , (3.4)

f ≥ 0 in Ω , (3.5)

supp f ⊂ Br ⊂ Ω+ = Ω ∩ {y > 0} , (3.6)

where Br is any ball with center in the elliptic region Ω
+ and radius r small

enough so that Br ⊂ Ω+ holds and to pick

α = 1/n (3.7)

for n sufficiently large. Indeed, selecting f 6≡ 0 satisfying (3.4)− (3.6) and then
normalizing f to satisfy ||f ||L2(Ω) = 1, it remains to verify condition (3.3) by
choosing n large enough in (3.7).

Step 3. (Verification of condition (3.3))

Since f ∈ C0(Ω) ⊂ L2(Ω) with Ω normal and admissible, one can apply
both Theorem 2.3 as well as the classical solvability result of Agmon [1] to show

that there exists a unique generalized solution u ∈ W̃ 1
AC∪σ(Ω)

⋂
C0(Ω) to the

Tricomi problem (LT).
If one restricts the solution u to the set Ω+δ = Ω

+ ∩ {y > δ}, where
δ > 0 is chosen so that Br ⊂ Ω

+
δ , one has that this restriction belongs to

C2(Ω+δ )
⋂
C0(Ω+δ ) and satisfies

Tu = f in Ω+δ
u|σ∩{y≥δ} = 0 .

Moreover, the restriction of u to A′B′ is an element g(x) ∈ C0(A′B′) with
u(A′) = u(B′) = 0 where A′ and B′ are the unique points of intersection of σ
with the line y = δ. In light of the needed admissibility of Ω, one might as well
assume that Ω ∩ {y < δ} is a strip for δ small enough (cf. the hypotheses in
Example 2.2).
One now may apply the Hopf maximum principle (cf. Theorem 3.5 of [9]) to

the restriction of u to Ω+δ where we note that the Tricomi operator is uniformly
elliptic on the subdomain Ω+δ . This yields

u > 0 on Ω+δ ,
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where we note that u is not constant since u vanishes on the upper boundary
which is a subset of σ but u 6≡ 0 since f 6≡ 0 in Ω+δ .
We are now ready to show that

u(x, y) ≥ αf(x, y) for each (x, y) ∈ Ω (3.8)

by choosing α small enough. We have u ≥ 0 using (3.5) and the maximum
principle of Theorem 2.4 and hence outside the support of f = Br one has
(3.8) for each α > 0. Within the support of f , since u, f ∈ C0(Br), there exist
minimum and maximum values m,M such that

0 < m = min
Br

u and M = max
Br

f . (3.9)

Using the bounds (3.9) it suffices to pick α = 1/n with n large enough to give
n ≥M/m. This completes the proof.
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