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An estimate on the relative Morse index for

strongly indefinite functionals ∗

A. Abbondandolo, P. Felmer, & J. Molina

Abstract

We extend the Benci and Rabinowitz linking theorem to strongly in-
definite functionals satisfying the Palais-Smale condition. More precisely,
we show an upper estimate for a relative Morse index of critical points.

1 Introduction

Let E be a real Hilbert space, with scalar product (·, ·). On this space. we
consider the functional

f(u) =
1

2
(Lu, u) + h(u) , (1)

where L is an invertible self-adjoint operator and h ∈ C2(E) with h′ is compact.
In particular, we are interested in the strongly indefinite case, that is when both
the positive and the negative eigenspaces of L are infinite dimensional. It is well
known that critical points of such functionals always have infinite Morse index.
For a closed subspace of V ⊂ E, we denote by PV the orthogonal projection

onto V and by V ⊥ the orthogonal complement of V . Following [1] and [2],
we say that the closed subspaces V,W of E are commensurable if PV ⊥PW and
PW⊥PV are compact operators.
If V and W are commensurable, the relative dimension of W with respect to

V is defined as

dimV W = dimW ∩ V
⊥ − dimW⊥ ∩ V.

Commensurability guarantees that both terms in the above formula are finite.
It can be proved that if two self-adjoint Fredholm operators differ by a compact
operator, then their negative (resp. positive) eigenspaces are commensurable.
Denote by E+ and E− the positive and the negative eigenspaces of L. Since

f ′′(x) = L+ h′′(x) and h′′(x) is compact, the relative Morse index of a critical
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J.M. was also supported by FONDECYT grant 1990349 .

1
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point x of functional f with respect to the splitting E = E+⊕E− can be defined
as the integer

m(E+,E−)(x) = dimE− [negative eigenspace of f
′′(x) ].

For degenerate critical points, a relative large Morse index can be defined as
well:

m∗(E+,E−)(x) = m(E+,E−)(x) + dimker f
′′(x).

In [3] it is shown that this definition of the Morse index coincides with a
definition given by Chang, Liu and Liu [7] which uses finite dimensional projec-
tions. Chang’s definition fits very well in the framework of Galerkin reductions.
Assuming the (PS∗) condition, Galerkin reductions and the equivalence of the
two indices are used in [3] to prove Morse index estimates for critical points
coming from Benci and Rabinowitz’s generalized Mountain Pass theorem.
Here we give another proof of the upper index estimate without using finite

dimensional reductions. The advantage of this approach is that we have only to
assume the usual (PS) condition, and not the stronger (PS∗) condition. Here
is our result.

Theorem 1.1 Let E =W+⊕W− be an orthogonal decomposition of E, where
W+ is commensurable with E+ and W− is commensurable with E−. Let e ∈
∂B1 ∩W+ and set

S = ∂Bρ ∩W
+, Q = Bs ∩W

− ⊕ [0, r]e,

where r > ρ > 0 and s > 0. Denote by ∂Q the boundary of Q in W− ⊕ Re.
Assume that there exist numbers α < β such that

sup
∂Q
f < α < inf

S
f, sup

Q
f < β,

and that f satisfies the (PS)c condition for every c ∈ [α, β].
Then f has a critical point x such that α ≤ f(x) ≤ β. Moreover, if f ∈

C2(E), the following index estimate hold

m(E+,E−)(x) ≤ dimE−W
− + 1.

This estimate generalizes the usual index estimate of finite dimensional min-
max critical points, proved by Lazer and Solimini [9], Solimini [13] and Benci
[5].

2 The relative dimension

Let E be a real Hilbert space, with scalar product (·, ·). We deal with functionals
of the form

f(u) =
1

2
(Lu, u) + h(u),
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where L is an invertible self-adjoint operator, h ∈ C2(E) and h′ is compact.
Moreover, denote by E+ and E− the positive and the negative eigenspaces of
L. For a closed subspace V ⊂ E, denote by PV the orthogonal projection onto
V and by V ⊥ the orthogonal complement of V .

Definition 2.1 Two closed subspaces V and W of E are called commensurable
if the operator PV − PW is compact. In this case the relative dimension of W
with respect to V is the integer

dimV W := dimW ∩ V
⊥ − dimW⊥ ∩ V.

The identities

PV − PW = PV PW⊥ + PV PW − PW = (PW⊥PV )
∗ − PV ⊥PW ,

PV ⊥PW = (PW − PV )PW , PW⊥PV = (PV − PW )PV ,

show that V andW are commensurable if and only if both PW⊥PV and PV ⊥PW
are compact. Hence the spacesW ∩V ⊥ and W⊥∩V in the above definition are
finite dimensional because they are the spaces of fixed points of the compact
operators PV ⊥PW and PW⊥PV , respectively.
Easy examples of pairs of commensurable subspaces are built by adding or

removing a finite number of dimensions: V ⊕Wr is commensurable with V ifWr
has dimension r, and dimV (V ⊕Wr) = r. IfW s is a s-codimensional subspace of
V , then it is commensurable with V and dimV W

s = −s. Clearly the definition
of commensurability is more general than this: for example the intersection of
two commensurable spaces could be {0}. Here are some useful facts which follow
directly from the definitions. For V,W,Z commensurable subspaces,

(i) dimW V = − dimV W ;

(ii) dimZ V = dimW V + dimZW ;

(iii) V ⊥ and W⊥ are commensurable and dimV ⊥W
⊥ = − dimV W .

Formula (ii) with Z = {0} implies that dimW V = dimV − dimW when V and
W are finite dimensional.

Remark 2.1 Commensurability is an equivalence relation. The notion of com-
mensurability is stable with respect to operators of the form identity + compact

The proof of the following result it is found in [3] [Theorem 2.6]

Proposition 2.1 Let T be a self-adjoint Fredholm operator. If K is a self-
adjoint compact operator, the positive (negative) eigenspaces of T and T + K
are commensurable.
Vice versa, if T is an invertible self-adjoint operator with positive (negative)

eigenspace E+ (E−) and E = W+ ⊕W−, where W+ (W−) is commensurable
with E+ (E−), then there exists an invertible self-adjoint operator M whose
positive (negative) eigenspace is W+ (W−) and such that M − T is compact.



4 An estimate on the relative Morse index

From the above proposition we get the following

Remark 2.2 Let X, Y two closed commensurables subspaces of the Hilbert
space H. If dimY X > 0 then there exists T : H → H with T = I+K invertible
such that T (X) = Y ⊕ Yr with Yr 6= 0 and dim Yr <∞.

Definition 2.2 Let x be a critical point of the functional f . Assume that f is
twice differentiable in x. Let E = V +⊕V −⊕V 0 be the decomposition of E into
the positive, the negative and the null eigenspaces of f ′′(x) = L +K, where K
is a compact self-adjoint operator. The relative Morse index of x with respect
to the splitting E+ ⊕ E− of H is the integer

m(E+,E−)(x) = m(E+,E−)(x; f) = dimE− V
−.

The following results are from [3], Theorem 1.5 and Proposition 1.3 respec-
tively.

Proposition 2.2 Let (Kn) be a sequence of self-adjoint compact operators which
converges to K in the operators’ norm. Moreover, let (fn) be a C

2 sequence in
x and suppose that f ′′n (x) = L+Kn and f

′′ = L+K. Then

m(E+,E−)(x; f) ≤ lim inf
n→∞

m(E+,E−)(x; fn). (2)

3 The non degenerate case

In this section we will see that in order to prove Theorem 1.1, is suffices to show
only the case of non degenerate critical points.

Theorem 3.1 Under the hypothesis of Theorem 1.1 and assuming that all crit-
ical points at level c are non degenerate there exits a critical point u0 such that
f(u0) = c and m(W+,W−)(u0) ≤ 1.

Definition 3.1 Let U(x) be an open neighborhood of x ∈ E. We say that
f ∈ C2(U(x)) is a Morse function on U(x), if the following condition holds.

(i) f(x) satisfies (PS) on U(x).

(ii) f has only non degenerate critical points on U(x).

Remark 3.1 Let x be a degenerate critical point of f ∈ C2(U(x)). Assume
that, f satisfies the (PS) condition on U(x) and f ′′(x) = T +K where T is an
invertible self-adjoint operator and K is self-adjoint compact operator.
Then from the celebrated Marino-Prodi’s Theorem, there exists a Morse se-

quence (fn) on U(x) such that

fn = f on X −B(x,
1
n
) for all n

fn → f in C2(U(x)) .
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Remark 3.2 Observe that assuming Theorem 3.1, the prove of the Theorem
1.1 is easy.

In fact, let u0 be a degenerate critical point of f . So, there exists a sequence
{un} such that un → u0 and f ′(un) = 0. On the other hand, it is easy to see
that f satisfies all assumptions of Remark 3.1. So, let (fn) be a strong Morse
sequence such that

fn = f on X −B(u0,
1
n2
) for all n

fn → f in C2(U(u0)).

and hence we can assume f ′n(un) = 0. Moreover note that for all n big, fn
satisfies the hypothesis of Theorem 1.1, and therefore we can assume that un is
a min-max for fn with fn(un) =: cn. Observe that the un are non degenerate
critical points of fn, so from Theorem 3.1 we obtain that

m(W+,W−)(un, fn) ≤ 1

for all n big. Now, by Proposition 2.2 it is follows that

m(W+,W−)(u0, fn) ≤ 1

and hence, finally, we obtain that m(W+,W−)(u0, f) ≤ 1.

4 Proof of the Theorem 1.1

From Proposition 2.1 changing L by another invertible self-adjoint operator,
and hence changing h by another map with compact gradient, we can assume
in Theorem 1.1 that W+ = E+ and W− = E−.
Let Γ = {g ∈ C([0, 1]× E,E) : g satisfies Γ1,Γ2} where

(Γ1) g(u) = u, for u ∈ ∂Q;

(Γ2) γ(u) = s(u)
exp{θ(u)L}u+K(u) where θ : E → R is a Lipschitz function,K : E → E is
a compact and Lipschitz function and s : E →]0, 1] is a Lipschitz function
with s(E) > s0 > 0;

As in Theorem 5.3 of [11], is easy to prove that

c = inf
g∈Γ
sup
u∈Q
f(g(u))

is a critical value of f .
Because of the term of s(u) in (Γ2) we have to prove that c ≥ α. To do that,

is suffices to show that for all g ∈ Γ, g(Q) ∩ Sρ 6= ∅.
For λ ∈ R and u ∈ E−, we define:

Ψ(u) = Ψ(λe+ u−) = ‖PE+γ(u)‖e+
1

s(u)
e−θ(u)LPE−γ(u).
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From the fact that eθL commutes with PE− , we get that

Ψ(u) = ‖PE+γ(λe+ u
−)‖e+ u− +

1

s(λe+ u−)
e−θ(λe+u

−)LPE−K(λe+ u
−).

On the other hand, using the fact that 1|s| ≤
1
s0
< +∞, θ is bounded and K is

a compact map, we obtain that Ψ is a compact perturbation of the identity.
Moreover, if u ∈ ∂Q, by (Γ1) and (Γ2) we get that Ψ(u) = u. Hence,

Ψ(u) 6= ρe if u ∈ ∂Q and

deg(Ψ, Q, ρe) = deg(id,Q, ρe) = 1.

Therefore there exists ū ∈ Q such that Ψ(ū) = ρe, that is, γ(ū) ∈ Sρ. The
remaining part of the proof it follows from Theorem 3.1 and Remark 3.2.

5 Results used for proving Theorem 3.1

Let u0 be a non degenerate critical point of f with f(u0) = c and assume that
E = V − ⊕ V + where V − (respectively V +) is the negative eigenspace (positive
eigenspace) of f ′′(u0). Also we write P− (respectively P+) the projection of E
on V − (V +). Moreover, if u ∈ E, by u− we means P−(u) (respectively for u+).
Let B− = B(0, r1)∩V− and B+ = B(0, r2)∩V +. For r1 > 0 and r2 > 0 small

enough, by Morse Lemma, there exists a local C1-isomorphism Ψ : 2B−⊕B+ →
U where Ψ(0) = u0 and U = Ψ(2B− ⊕B+), such that

f(Ψ(z+ + z−)) = c+ ||z+||
2 − ||z−||

2 (3)

Now for r1 and r2 such that r
2
2 − 4r

2
1 > 0, we define Φ : E → E as follows

Φ(u) =

{
u if u 6∈ U

Ψ(ϕ( ||Ψ
−1(u)−||
r1

− 1)Ψ−1(u)+ +Ψ−1(u)−) if u ∈ U

where ϕ : R→ [0, 1] is a Lipschitz function defined by

ϕ(s) =

{
0 if s ≤ 0
1 if s ≥ 1

Note that Φ is continuous on H−Ψ(2B−⊕∂B+); and Φ is Lipschitz on f−1(]−
∞, c+ α1]) with α1 as in Lemma 5.1 below.
The following Lemma is similar to Lemma 3.1 in [9], except for (iv).

Lemma 5.1 Let g ∈ Γ, 0 < α1 < r22 − 4r
2
1, c = f(u0) and U1 = Ψ(B− ⊕B+)

(i) If u ∈ U − int(U1) then f(Φ(u)) ≤ f(u);

(ii) If u ∈ ∂U1 and f(u) ≤ c + α1 then Φ(u) = Ψ({Ψ−1(u)}−) and Φ(u) ∈
Ψ(∂B−);

(iii) Φ(H − int(U1)) ⊂ H − int(U1);

(iv) Suppose that f(g(Q)) < c + α1, and f(∂Q) ≤ α < c. Moreover assume
that A 6= ∅ where A = g−1(int(U1)) ∩Q.

Then Φ(g(∂A)) ∈ Ψ(∂B−(0, r1)) .
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Proof.

(i) It is follows easily from (3).

(ii) There result that Ψ−1(u) ∈ (∂B− ⊕ B+) ∪ (B− ⊕ ∂B+). But, Ψ−1(u) ∈
B− ⊕ ∂B+ it is not possible otherwise

f(u) = c+ ||Ψ−1(u)+||
2 − ||Ψ−1(u)−||

2 > c+ α

Thus, Ψ−1(u) ∈ ∂B− ⊕ B+ and therefore ϕ(
||Ψ−1(u)−||

r1
− 1) = 0 and

Φ(u) = Ψ[Ψ−1(u)−] ∈ Ψ(∂B−).

(iii) It is follows from definition.

(iv) It is easy to see that g(u) ∈ ∂U1 when u ∈ ∂A, and

f(g(∂A)) ≤ c+ α1

On the other hand, we can assume that g−1(int(U1)) ∩ ∂Q = ∅.

Otherwise, if z is such that Ψ(z) ∈ ∂Q ∩ (int(U1)), then f(Ψ(z)) ≤ α1.
But the last is not possible, if we take r1 in the definition of Ψ, such that
c− α1 > r21.

The two following Lemmas will be important in the next section; the first
one is known as Mac Shane Lemma and its proof can be found in [8]. The proof
of the second one can be found in [10].

Lemma 5.2 Let X be a metric space, Y ⊂ X and α > 0. If f : Y → R is a
Lipschitz function with constant α, then f can be extended to X as a Lipschitz
function with the same constant α.

Lemma 5.3 Let H be a Hilbert space and let f : H → R be a uniformly con-
tinuous function. Then f can be approximate uniformly by C1 functions.

We also need the following result

Lemma 5.4 Let E and F two separable Banach spaces. Moreover let h be a
C1 Fredholm map of index 0 of E into F , such that w 6∈ h(E) for some w ∈ F .
Then h is not locally surjective.

Proof. Let us assume by contradiction that h is locally surjective. Then for
y1 = h(x1) we can take y near to y1 such that there exists x ∈ h−1(y). Hence,
from Sard-Smale Theorem, h′(x) is surjective and we get that h is locally invert-
ible in x. But this would imply that h is globally invertible, which contradicts
the fact that w 6∈ h(E).
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6 Proof of Theorem 3.1

We observe that there only finitely many critical points in Kc since f satisfies
(PS) and all critical points are non degenerate.
Remember that, cf [11], given ε > 0 and W any neighborhood of the set of

critical points at level c, there exist ε1 ∈]0, ε[ and η : [0, 1]×E → E continuous
such that

(i) η(0, u) = u for all u.

(ii) η(t, u) = u for all t ∈ [0, 1] if f(u) 6∈ [c− ε1, c+ ε1]).

(iii) η(1, f c+ε1 −W ) ⊂ f c−ε1

We first treat the case when Kc is the singleton {u0}. The general case is
obtained by induction.
Let us assume that dimW1 V

− > 0 (here W1 = W
− ⊕ {λe : λ ∈ R}). It

is enough to prove the existence of an open set Ũ containing u0 so that for all
ε > 0 small enough there exists γ ∈ Γ (see Section 4 for definition of Γ) such
that

(F ) sup
u∈Q
f(γ(u)) < c+ ε and γ(Q) ∩ Ũ = ∅

This together with a deformation argument lead to a contradiction:
In fact, because c ≥ α and sup∂Q f < α, there exists ε1, with 0 < ε1 < ε

such that
max
u∈∂Q

f(u) < c− 2ε1

Let g ∈ Γ such that g satisfies (F ). If we define g1(u) = η(1, g(u)), we have that
for u ∈ ∂Q, g1(u) = η(1, g(u)) = g(u) = u, so g1 ∈ Γ (see Theorem 5.29 of [11]).
Now, from (F ) we get that g1(Q) ⊂ f−1(]−∞, c− ε]) and hence

supu∈Q f(g1(u)) < c− ε < c which is a contradiction.
Construction of γ: Let g ∈ Γ such that supu∈Q f(g(u)) < c+ε1 where ε1 < α1
with α1 as in Lemma 5.1. If we write A = g

−1(int(U1))∩Q, we can assume that
A 6= ∅, since otherwise g(Q) ∩ U1 = ∅ and we get the condition (F ). Moreover,
as in the proof of Lemma 5.1 (iv), we can assume that g−1(int(U1)) ∩ ∂Q = ∅.
From Lemma 5.1, Φ(g(∂A)) ∈ Ψ(∂B−(0, r1)). Actually, for u ∈ ∂A there

result that Φ(g(u)) = Ψ[Ψ−1(g(u))−].
On the other hand, it is easy to see that (cf. [12])

Ψ = (I −K)|f ′′(u0)|
− 12 Ψ−1 = |f ′′(u0)|

1
2 (I +K1)

where K and K1 are compact.
From now on Ki always will denote a compact map. We claim that (Ψ

−1 ◦
g)|∂A has a smooth extension on cl(A). In fact for u ∈ ∂A

Ψ−1(g(u)) = |f ′′(u0)|
1
2 (I +K1)(g(u)) (4)

= |f ′′(u0)|
1
2 s(u) exp{Θ(u)L}u+K(u). (5)
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For all ε > 0 small enough there exists a compact map Kε with finite rank
defined on ∂A such that ||Kε(u) − K(u)|| < ε. By using Lemma 5.2 and 5.3
there exists an smooth extension K4 of Kε. In the same way, let θ1 be an
extension of class C1(cl(A)) of θ|∂A. Now, the extension to cl(A) of (Ψ

−1 ◦g)|∂A
is Ψ1(u) = |f ′′(u0)|

1
2 s(u) exp{Θ1(u)L}u+K4(u).

Because,

exp{Θ1(u)L} − exp{Θ1(u)[L+ h
′′(u0)]}eqno(C)

is compact, we get that Ψ1(u) = |f ′′(u0)|
1
2 s(u) exp{Θ(u)[L+ h′′(u0)]}u+K5

On the other hand, from dimW1 V
− > 0 and using Remark 2.2, we get for

u ∈ cl(A), that P−(u) = u−KA(u) where KA is compact. Hence,

P−(Ψ1)(u) = s(u)|f
′′(u0)|

1
2 exp{Θ1(u)[L+ h

′′(u0)]}u+K6(u).

Moreover, using again (C), we get that Ψ2 = P−(Ψ1) is Fredholm map of
index 0 (Ψ2|cl(A) : cl(A)→ V

−).

In fact, dΨ2(u)(v) = s(u)|f ′′(u0)|
1
2 exp{Θ1(u)[L+ h′′(u0)]}{I +K}(v).

Now let T be as in Remark 2.2. It follows from Lemma 5.4 that T ◦ Ψ2 is
not locally surjective and hence Ψ2 it is not locally surjective either. That is,
there exists δ ∈] 12r1,

3
4r1[ and z ∈ B(0, δ) ∩ V

− such that z 6∈ Im(Ψ2). Now,
we can project Im(Ψ2) ∩ B(0, δ) on ∂B(0, δ) from z. Thus, we can think that
Ψ2 maps cl(A) into V

− − B(0, δ). Moreover, we note that Ψ2 is bounded on
bounded sets.
Now, we define Ψ3(u) =

δ
||Ψ2(u)||

Ψ2(u), that is,

Ψ3(u) =
δ

||Ψ2(u)||
|f ′′(u0)|

1
2 s(u) exp{Θ1(u)L}u+K6(u) .

Note that actually Ψ3(cl(A)) ⊂ ∂B(0, δ) ∩ V −.
Thus, we get that Ψ ◦Ψ3(u) = s1(u) exp{Θ1(u)L}u+K7(u) where s1(u) =
δ

||Ψ2(u)||
s(u) ∈]s0, 1[, with s0 > 0, and Ψ ◦Ψ3(cl(A)) ⊂ U −Ψ(B(0, δ)).

Finally, we define

γ(u) =

{
Φ(g(u)) if u 6∈ A
Ψ ◦Ψ3(u) if u ∈ cl(A)

Observe that actually our extension Ψ◦Ψ3 may differ from Φ◦g on some points
of the boundary ∂A, but since Ψ ◦ Ψ3(∂A) is outside Ψ(B(0, δ)), we can think
of Φ ◦ g and Ψ ◦Ψ3 as being the same on ∂A.
Note that the condition (F ) holds for γ and B(u0, δ). Suppose that u 6∈

A, so we can assume that g(u) 6∈ int(U1) (and u ∈ Q). From Lemma 5.1,
Φ(g(u)) ∈ H − int(U1). Therefore, if u 6∈ A, γ(u) 6∈ Ψ(B(0, δ)). Assume now
that u ∈ cl(A). By definition γ(u) = Ψ ◦ Ψ3(u) ∈ U −Ψ(B(0, δ)) and therefore
γ(Q) ∩Ψ(B(0, δ)) = ∅.
Now, we claim that supu∈Q f(γ(u)) < c + ε. If u 6∈ A, as before, we can

assume that g(u) 6∈ int(U1) (and u ∈ Q); so we have two possibilities: g(u) ∈
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U−U1 or g(u) 6∈ U . In the first case, from Lemma 5.1 f(γ(u)) ≤ f(g(u)) <
c+ ε; in the second case, by definition of Φ, γ(u) = g(u), and therefore we have
the claim. Finally, if u ∈ A, then f(γ(u)) = c− ||P−(Ψ3(u))]||2 < c+ ε.
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