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DETERMINATION OF THE NUMBER OF TEXTURE
SEGMENTS USING WAVELETS

JOSEPH P. HAVLICEK & PETER C. TAY

Abstract. This paper presents a robust method of determining the number

of texture segments in an image. We take an N ×N image and decompose it

into n × n blocks. A three-scale two-dimensional discrete wavelet transform
is performed on each n × n block. For each n × n block, this transformation

produces coefficients for 25 wavelet channels. The energy of each channel is
used as a tuple for a vector in the feature space. Nearest neighbor clustering
is used to segment the feature space. A measure is defined to determine the

“goodness” of the clustering. The optimal number of segments is taken to be
the clustering which maximizes our measure.

1. Introduction

Given a digital image, the segmentation problem is concerned with partitioning
the image into several disjoint regions or segments. Each region should be homo-
geneous with respect to some particular properties of interest in the application at
hand. Moreover, the segmentation should be such that merging any two segments
results in a region that is not homogeneous. By homogeneous we mean that, within
any segment, pixels should be similar with respect to one or more features includ-
ing, e.g., brightness, color, texture, motion, etc. [1]. Ideally, segmentation should
yield a partition of the image into regions that correspond to meaningful image ob-
jects. One classic example arises in robot or autonomous vehicle navigation, where
the goal of segmentation is to identify objects and boundaries that are useful for
constructing a computer model of the vehicle’s immediate surroundings. Another
example occurs in automated manufacturing, where the goal may be to identify
defective components in a product as it progresses along an assembly line.

Image segmentation is generally classified as a low-level or early task because it
usually precedes and is critical to the success of later high-level image processing and
machine vision techniques. Normally, these high-level techniques are concerned with
representing, interpreting, and perhaps enhancing the visual information present in
an image. Despite its importance, the problem of segmenting a general image in
the absence of a priori information remains unsolved today. Consequently, segmen-
tation has become one of the most intensely studied problems in image processing
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and machine vision. Surveys of many of the sophisticated techniques that have
been proposed may be found in [1, 2, 3, 4, 5].

Among classes of segmentation problems, the segmentation of textured images
is one of the most difficult [7]. Textured images are those containing objects and
regions covered by quasi-periodic or random patterns of surface markings. Wood
grains, a leopard’s spots, and weave patterns in a fabric are but a few examples of
naturally occurring image textures. While the notion of texture is easy to grasp
intuitively, it is extremely difficult to quantify. To understand one aspect of why
texture segmentation is so difficult, consider that, in the absence of textured re-
gions, one approach to the image segmentation problem that is often effective is
to first apply an edge detection technique and then to segment the image along
the detected edges. Textured regions typically contain large numbers of edges at
a multiplicity of scales, however. This generally causes edge-based segmentation
techniques to fail miserably. For textured regions, the notion of homogeneity must
be formulated in terms of the local coarseness, granularity, and spatial statistics
of the texture patterns. This is a difficult problem in view of the fact that no
satisfactory quantitative definition of texture exists at this time.

Numerous texture segmentation techniques have appeared in the recent litera-
ture, including, e.g., approaches based on wavelet analysis [7, 20], filter banks [10,
14, 15], deterministic annealing [16], and stochastic models [17, 21, 22, 12, 13].
Recently, we also introduced a technique based on the idea of describing texture
in terms of joint nonstationary amplitude and frequency modulations [6, 8]. The
techniques we have just mentioned can be divided into three categories: unsuper-
vised, partially unsupervised, and supervised. Unsupervised techniques are those
that segment an image without making use of a priori information about the num-
ber of textures or their properties. Partially unsupervised techniques require some
a priori information, typically either the number of regions or the region proper-
ties. Supervised techniques generally must be given both the number of regions
and their properties and may also require guidance from a human operator at var-
ious stages in the segmentation procedure. For the general texture segmentation
problem, unsupervised algorithms are clearly the most desirable.

When developing an unsupervised texture segmentation algorithm, there is no
question that determining the number of texture regions present in an image with-
out a priori information is one of the most challenging problems that must be
addressed. In this paper we present a new technique for determining the number of
texture regions present in an image without a priori information. This technique
can be combined with existing supervised or partially unsupervised texture seg-
mentation algorithms to create robust, fully unsupervised algorithms. It may also
be combined with unsupervised techniques to improve the estimate of the number
of regions that are present.

Our approach performs statistical clustering in a feature space of discrete wavelet
transform coefficients computed over small disjoint blocks in the image. Each fea-
ture vector contains the wavelet coefficients from a single image block. Nearest
neighbor clustering is then applied to group the feature vectors into clusters, where
each cluster represents a texture segment in the image. A full dendrogram is con-
structed giving configurations with a number of clusters ranging from just one
supercluster all the way up to a number of clusters equal to the number of im-
age blocks over which wavelet coefficients were computed. Given a collection of
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Figure 1. Depiction of the 25 channels in the three-level wavelet decomposition.

clustering configurations, the task of choosing which configuration (i.e., how many
clusters) is best is known as the cluster validation problem [18, 19]; it is a difficult
problem that remains unsolved in general [17]. We use a novel validation criterion
to select the optimal configuration and then take the number of clusters in this
configuration as our estimate for the number of texture segments in the image.

The feature space in which clustering is performed is described in Section 2,
while the details of the clustering algorithm and validation criterion are given in
Section 3. In Section 4 we present a number of examples where the technique is
applied to juxtapositions of textures from the well known Brodatz album [25].

2. Feature Space

Multiresolution image analysis as described in [9] has been a useful tool in image
processing. Since low frequencies dominate virtually all real images, the 2-D wavelet
transform’s ability to decompose an image in the low-frequency channel makes it
ideal for image analysis [7]. Also for this reason we choose our decomposition to be
more dense in the lower spatial frequencies than in the higher frequencies.

For simplicity in exposition, we consider only grayscale images of size 256× 256
pixels. The image is partitioned into disjoint 32 × 32 pixel blocks. Let M be the
number of such blocks in the image; for a 256 × 256 image, M = 64. Index the
blocks in row major order so that B1 and B2 are the first and second leftmost
blocks on the first block row, whereas BM is the rightmost block on the last block
row of the image. A three-scale 2-D discrete wavelet transform is applied to each
block independently to produce a 25 channel subband decomposition of the block.
The block diagram shown in Fig. 1 depicts this decomposition pictorially.

To perform the discrete wavelet decomposition, we use the Daubechies D4 order-
eight wavelet. The coefficients of the low-pass quadrature mirror filter are [24]

[−0.0106, 0.0329, 0.0308, −0.1870, −0.0280, 0.6309, 0.7148, 0.2304],

while high-pass filter coefficients are given by [24]

[−0.2304, 0.7148, −0.6309, −0.0280, 0.1870, 0.0308, −0.0329, −0.0106].

We use a separable 2-D discrete wavelet transform implemented by sequentially
performing 1-D convolution along each row of a block with the appropriate filter,
discarding every other column from the resulting filtered rows (down sampling),
and then convolving each of the remaining columns with the appropriate 1-D filter.
Finally, every other row is discarded from the resulting filtered columns. The 1-D
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convolution operation is defined by

y[n] =
32∑
k=1

x[n− k]h[k], (2.1)

where y[n] is the filtered result, x[n] is the row or column of a 32 × 32 block that
is being filtered, and h[n] is the vector of filter coefficients. Edge effects (indices in
(2.1) that fall outside the domain of definition of x[n]) are handled by reflecting the
vector x[n] about it’s endpoints. We elected to handle edge effects in this way in
order to minimize the introduction of frequencies not present in the image during
the finite-length convolution operations.

For each i ∈ [1,M ] and each k ∈ [1, 25], let ei,k denote the average absolute
value of the wavelet coefficients in the kth subband of image block Bi. We describe
block Bi by constructing a wavelet domain feature vector ei according to

ei = [ei,1 ei,2 . . . ei,25]T .

Let F = {ei : i ∈ [1,M ]}. Thus, F is a 25-D feature space that contains M vectors,
each describing one block from the original image.

If clustering were performed on F alone, there is no guarantee that the resulting
clusters would correspond to spatially connected regions in the image. Since such
regions are almost always desirable, we augment the feature space by adding two
additional dimensions to describe spatial position. This has the effect of enforcing
a spatial correspondence constraint on the clusters delivered by the algorithm de-
scribed in Section 3. Let ri and ci denote, respectively, the average row coordinate
and average column coordinate for pixels in block Bi. Let C = {[ri ci]T : i ∈ [1,M ]}.
Then C contains vectors that describe the spatial centroids of the M image blocks
Bi. The augmented feature space is given by F × C. In this feature space, image
block Bi is described by the vector wi = [eTi ri ci]

T .
For each k ∈ [1, 27], the collection of the kth entries from all M vectors wi ∈ F×C

is called a feature. To minimize the possibility that one or a few features with
relatively large numerical values might dominate the segmentation procedure, we
normalize each feature independently. For feature k, the normalization consists of
first computing the sample standard deviation of the feature and then dividing the
kth entry of each vector wi by this value. We use the notation F ′ × C′ to denote
the normalized feature space.

An example of one of the input images we consider appears in Fig. 2(a). This
image is a juxtaposition of two textures from the Brodatz album [25]: the texture
in the center is called burlap and the one in the surround is called mica. Hence we
refer to this image as micaburlap.

For four blocks Bi taken from this image, Fig. 2(b) illustrates the projection of
the vector wi onto the wavelet subspace F ′. Each graph in Fig. 2(b) depicts the
normalized entries ei,k, where k is the abscissa. Specifically, the top two graphs
show the projections of w1 and w8, corresponding to blocks B1 and B8 which are
located, respectively, in the upper left and right corners of the image. Note that
both of these blocks belong to the surrounding mica texture. The bottom two
graphs in Fig. 2(b) correspond to blocks B28 and B29, both of which lie within the
center burlap texture. In Fig. 2, it is evident that the blocks corresponding to the
two different texture regions have noticeably distinct feature vectors, particularly
in the fifth through fifteenth coordinates.
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Figure 2. (a) Two-texture image micaburlap. (b) Plot of 25 en-
tries of normalized feature vectors computed from four blocks of
the micaburlap image. The top two graphs show feature vectors
computed from the upper leftmost and upper rightmost blocks of
the surround texture (mica), while the bottom two graphs show
feature vectors computed from two blocks of the center texture
(burlap).

3. Nearest Neighbor Clustering

The well known nearest neighbor clustering (NNC) algorithm is described in [18].
Initially, each of the M feature vectors in F ′×C′ is considered to be a cluster. The
algorithm iterates through M − 1 passes. At each pass, the two clusters that are
closest to one another are merged together into a single cluster. Thus there are M
clusters prior to the first pass and only one cluster remains after pass M − 1.

To make the notion of the closeness of two clusters precise, we impose the fol-
lowing metric on F ′ × C′:

δ
(
wi,wj

)
= λd

(
ei, ej

)
+ (1− λ)d

(
[ri, ci]T , [rj , cj ]T

)
, (3.1)

where 0 ≤ λ ≤ 1 and d(·, ·) is the usual Euclidean metric. The term λ appearing
in (3.1) weights the relative contributions to the metric δ of the wavelet coefficient
energies in F ′ and the spatial position information in C′.

In a given pass of the NNC algorithm, let Lj denote the number of feature vectors
contained in cluster Cj and induce an arbitrary ordering on these feature vectors
so that Cj = {wj,1 wj,2 . . . wj,Lj}. We define the distance between clusters Cj
and Ck by

∆(Cj , Ck) = min
p∈[1,Lj ], q∈[1,Lk]

δ(wj,pwk,q) (3.2)

The intuitive meaning of (3.2) is that the closeness of clusters Cj and Ck is defined
by the distance between their two nearest elements with respect to the metric δ.
In each pass of the NNC algorithm, we merge the two clusters that minimize ∆.

When it terminates after M−1 iterations, the NNC algorithm delivers M cluster
configurations ΓM . . .Γ1, where k clusters are present in configuration Γk. We
choose one of these as the final clustering result by applying a validation criterion to
quantify the “goodness” of each configuration. Typically, for some K considered to
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Figure 3. Ratio Rk for micaburlap image. The ratio is maximized
by the correct choice N = 2 for the number of texture segments
present in the image.

be the maximum number of segments that might be present in the image, validation
is applied only to configurations Γk for k ∈ [1,K].

The validation criterion is applied to configuration Γk as follows. Using the
distance metric (3.1), we first compute the centroid of each of the clusters in the
configuration. Then we compute Ck, the average distance between any two distinct
centroids. The average within cluster distance W k is the average distance of all the
feature vectors in F ′×C′ to the centroid of their respective clusters. The goodness
of Γk is then defined by the ratio Rk = Ck/W k. Ideally, we would like for the
average between cluster distance Ck to be large and the average within cluster
distance W k to be small. Hence our validation criterion selects the configuration
Γk that maximizes Rk to be the final clustering result. For our estimate N of the
number of texture segments that are present in the image, we use the number of
clusters in the final clustering result, which is given by

N = arg max
k∈[1,K]

Rk. (3.3)

4. Results

In this section, we present several examples where the algorithm described in
Sections 2 and 3 was applied to textured images. Each image was a 256 × 256
grayscale composition of textures from the Brodatz album [25]. Each image was
partitioned into 32× 32 blocks Bi, giving M = 64. In every case, we took K = 10
as an upper bound on the number of texture segments that might be present. The
experimentally determined value λ = 0.8 for the weight in (3.1) was used through-
out. The algorithm was implemented using the software environment Matlab with
the Signal Processing and Wavelet toolboxes.

For the two-texture image micaburlap shown in Fig. 2(a), the ratio Rk is graphed
as a function of k in Fig. 3. As demonstrated by the figure, Rk is maximized for
the correct choice.

Another two-texture example is given in Fig. 4. The image FlowersStraw appears
in Fig. 4(a). The ratio Rk is plotted in Fig. 4(b), where it is again seen that our
technique selects the correct value N = 2 for the number of texture segments that
are present.
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Figure 4. (a) Two-texture image FlowersStraw. (b) Ratio Rk
for the FlowersStraw image; the ratio is maximized for the choice
N = 2 textured regions.

Two three-texture examples are given in Fig. 5. The image CorkWoodBurlap
is shown in Fig. 5(a), while the image BurlapGrassReptile appears in Fig. 5(c).
Corresponding graphs of the ratio Rk produced by the algorithm are shown in
Fig. 5(b) and (d). In both cases, the ratio is maximized by the choice N = 3,
which agrees with the number of texture segments that are actually present in the
images.

Our final two examples are a pair of four-texture examples presented in Fig. 6.
The original images are shown in Fig. 6(a) and (c), while corresponding plots of the
ratio Rk delivered by our algorithm appear in Fig. 6(b) and (d). Once again, we
see that the proposed approach delivers the correct choice N = 4 in both of these
cases.

5. Summary

The problem of segmenting an image into several disjoint homogeneous regions
that correspond to meaningful objects is fundamental to a variety of applications in
image processing and machine vision. Among such problems, the segmentation of
textured images is particularly difficult. Of the highest practical interest are fully
unsupervised texture segmentation algorithms capable of performing the segmenta-
tion task in the absence of a priori information on the number of texture segments
or their properties. One of the most difficult aspects of developing such algorithms
is determining how many segments are actually present.

In this paper, we have presented a robust technique that determines the number
of texture segments by performing nearest neighbor clustering in a wavelet domain
feature space. The image is partitioned into small disjoint blocks and a three-
scale 2-D wavelet transform is applied to decompose each block into 25 wavelet
subbands. For each block, a feature vector is constructed by averaging the absolute
values of the wavelet coefficients in each of the 25 subbands. Two additional feature
space dimensions are added to incorporate spatial position information, effectively
enforcing a spatial correspondence constraint on the clustering results.
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Figure 5. Three-texture examples. (a) CorkWoodBurlap image.
(b) Ratio Rk for the CorkWoodBurlap image; the ratio is maxi-
mized for the choice N = 3 textured regions. (c) BurlapGrassRep-
tile image. (d) Ratio Rk for the BurlapGrassReptile image; the
ratio is maximized for the choice N = 3 textured regions.

The nearest neighbor algorithm is applied repeatedly to produce multiple clus-
tering configurations, where the number of clusters in each configuration ranges
from one up to the number of blocks into which the image was partitioned. By ap-
plying a validation criterion based on the ratio of the average between and within
cluster distances, one of the configurations is selected as the final clustering result.
The estimate for the number of texture regions present in the image is taken equal
to the number of clusters in this final result.

Using the Daubechies D4 wavelet, we demonstrated the technique on a number of
two-, three-, and four-texture images. In each case, correct estimates for the number
of textured regions present were obtained using an experimentally determined value
of λ = 0.8 for the weight parameter in (3.1). In total, we have applied the technique
to 15 images similar to the ones shown in Fig. 2 - Fig. 6. With λ = 0.8, the
algorithm delivered correct results in all but three cases. Of these three cases, one
was a four-texture image for which the algorithm estimated N = 3. The other two
were five-texture images for which the algorithm estimated N = 6. However, for
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Figure 6. Four-texture examples. (a) Original image. (b) Ratio
Rk for the image in (a). (c) Original image. (d) Ratio Rk for the
image in (c).

both of these five-texture images, the correct result N = 5 was obtained using a
value λ = 0.7 for the weight parameter.

Ideally, one would hope to find a single value for λ that works universally on large
classes of images. In our future work, we will continue to fine tune this parameter
and will also investigate methods for determining λ dynamically from the data. We
also plan to investigate the sensitivity of the algorithm to the particular choice of
wavelet. The Bath Visually Optimal Wavelet [23] merits significant future study in
this regard and may have the potential to lead to segmentations that agree more
closely with biological visual perception.
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