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Properties of the solution map for a first order

linear problem ∗

James L. Moseley

Abstract

We are interested in establishing properties of the general mathemat-
ical model

d~u

dt
= T (t, ~u) +~b+ ~g(t), ~u(t0) = ~u0

for the dynamical system defined by the (possibly nonlinear) operator
T (t, ·) : V → V with state space V . For one state variable where V = R

this may be written as dy/dx = f(x, y), y(x0) = y0. This paper estab-
lishes some mapping properties for the operator L[y] = dy/dx + p(x)y
with y(x0) = y0 where f(x, y) = −p(x)y + g(x) and T (x, y) = −p(x)y
is linear. The conditions for the one-to-one property of the solution map
as a function of p(x) appear to be new or at least undocumented. This
property is needed in the development of a solution technique for a non-
linear model for the agglomeration of point particles in a confined space
(reactor).

1 Introduction

We begin with a family of initial value problems (IVP’s) each consisting of a
(possibly nonlinear) first order ordinary differential equation (ODE)

dy

dx
= f(x, y), (1)

and an arbitrary initial condition (IC) at an arbitrary point:

y(x0) = y0 . (2)

To specify a problem in this family, we must give the point (x0, y0) in the plane
R

2 = {(x, y) : x, y ∈ R} where R is the set of real numbers and the function
f : Ω → R where Ω is an open connected region in R2 containing (x0, y0).
Constraints on f are needed to make the problem reasonable and more likely
to have a physical application. We assume immediately that Ω ⊇ R. where R
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90 Properties of the solution map

is a closed rectangle containing (x0, y0) in its interior and that f is continuous
on R. Thus to specify a problem, we choose, in order, (x0, y0) ∈ R2, R ⊆ Ω
(the exact definition of Ω really does not matter) as a closed rectangle in R2

containing (x0, y0) in its interior, and f ∈ C(R), the set of functions f : R→ R

that are continuous. We let ΩCR(x0, y0) be the set of all closed rectangles in
R

2 that contain (x0, y0) in their interior, and C(ΩCR(x0, y0)) = {f ∈ C(R) :
R ∈ ΩCR(x0, y0)}. Then R2 × ΩCR(x0, y0)× C(ΩCR(x0, y0)) is in a one-to-one
correspondence with the set of problems of interest.

If (1) is nonlinear, the interval of validity (i.e, the open interval I con-
taining x0 where (1) and (2) are satisfied) is part of the problem which is
therefore impredicative. However, we state the problem predicatively by as-
suming that I is given and look for solutions to (1) on I. That is, we look
for solutions to (1) in a set Σ(I) of functions whose common domain is I
(i.e., a subset of F (I) = {f : I → R}). Let IIV (x0, y0, R) be the set of in-
tervals I containing x0 where I × {y0} ⊆ R ⊆ R

2 and Prob((x0, y0), R, f, I)
denote the initial value problem (1) and (2) associated with (x0, y0) ∈ R2,
R ∈ ΩCR(x0, y0), f ∈ C(R), and I ∈ IIV (x0, y0, R). A minimum requirement
for this IVP to be well-posed is that there is exactly one solution in Σ(I) that
satisfies both (1) and (2). Since we elect to specify the interval I, we denote by
Prob(R2 × ΩCR(x0, y0) × C(ΩCR(x0, y0)) × IIV (x0, y0, R)) the set of all initial
value problems of interest.

There are at least four problem solving contexts for (1)–(2).

Traditional: If f(x, y) is given as an elementary function and has one of sev-
eral specific forms, the solution process starts with the ODE and uses calculus
to obtain the “general” solution (i.e., a formula for all or at least almost all
solutions) to the ODE as a parameterized family of functions (or curves). The
IC is then applied to obtain the parameter and hence the (name of the) unique
solution function. The interval of validity is then obtained as the largest (open)
interval where the solution is valid. The solution algorithm (usually) estab-
lishes uniqueness and, if all steps are reversible, existence. If all steps are not
reversible, existence can be established by substituting the proposed solution
back into the ODE and the IC. (Or this can be used simply as a check.) Often
a formula can be found for the (name of the) solution function for a whole class
of problems by allowing parameters such as x0 and y0 to be arbitrary.

Classical: For a class of problems, existence and uniqueness of a solution in
Σ(I) is established using properties of f(x, y), without necessarily obtaining a
solution algorithm to obtain the (name of the) solution function.
Classical I: Σ(I) = A(I) = {y : I → R : y is analytic on I} (e.g., if f is
analytic).
Classical II: Σ(I) = C1(I) = {y : I → R : y′ exists and is continuous on I}.

Modern: A weak form of the problem is developed which allows weak so-
lutions; that is, things that need not be functions (e.g., equivalence classes of
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functions and distributions).
In the Classical II context, the standard condition that f , ∂f/∂y ∈ C(R)

assures local uniqueness (i.e., that for any I ∈ IIV (x0, y0, R),Σ(I) = C1(I)
contains at most one solution), but only local (and not global) existence (i.e.,
there exists an I ∈ IIV (x0, y0, R) such that Σ(I) = C1(I) contains a solution).
Thus, in this context, the problem then focuses on finding the extent of the
interval of validity for a class of problems rather than on finding the (name of
the) solution function for a specific problem.

2 The linear solution map

Even though different contexts may define the problem differently, Traditional,
Classical, and Modern all come together with the assumption of linearity, that
is, when f(x, y) = −p(x)y + g(x). In this case we have the ordinary differential
equation (ODE)

dy

dx
+ p(x)y = g(x) (3)

with the initial condition (IC)

y(x0) = y0 . (4)

We switch from viewing (1) as an equation to viewing (3) and (4) as a mapping
problem. Thus we keep x0, y0, I, and p fixed and only vary g. To keep solutions
as functions, we continue with the Classical II context, let Σ(I) = C1(I), and
assume p, g ∈ C(I) = {f : I → R that are continuous} where x0 ∈ I so that
f, ∂f/y ∈ C(R) where R is the strip R = I×R = {(x, y) : x ∈ I}. Now let Lp[y] :
C1(I) → C(I) be defined by Lp[y] = dy/dx + p(x)y and Np,y0 ;Dy0(I) → C(I)
be the restriction of Lp to the hyper-plane Dy0(I) = {y ∈ C1(I) : y(x0) = y0}.
Not only are we assured that for any g ∈ C(I), a unique (global) solution to
the IVP (3) and (4) exists in Σ(I) = C1(I) so that inverse mapping exists,
but, using the integrating factor µp(x) = exp{

∫ t=x
t=x0

p(t)dt}, we have a calculus
formula for y(x) = N−1

p,y0
[g](x):

y(x) =
(
y0 +

∫ t=x

t=x0

g(t) exp{
∫ s=t

s=x0

p(s)ds}dt
)

exp{−
∫ t=x

t=x0

p(t)dt}

= y0 exp{−
∫ t=x

t=x0

p(t)dt}+
∫ t=x

t=x0

g(t) exp{
∫ s=t

s=x

p(s)ds}dt (5)

If y0 6= 0, Dy0(I) will not pass through the origin and not be a subspace of
C1(I) so that Np,y0 and N−1

p,y0
will not be linear operators. However,

y(x) = N−1
p,y0

[g](x) = y0µ−p(x) + L−1
p,0[g](x) (6)

where the (linear) Voltera operator L−1
p,0[g](x) =

∫ t=x
t=x0

G(x, t)g(t)dt with kernel

(Green’s function) G(x, t) = exp{
∫ s=t
s=x

p(s)ds} is the inverse of Np,0 which we
might also call Lp,0 since when y0 = 0, Np,y0 is linear.
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In a traditional context, p and g are given elementary functions in C(I). If
possible, the Riemann integrals in (5) are computed explicitly. In a classical
context, the interval of validity I = (a, b) can be extended to closed (and half-
open) intervals by requiring p and g to be analytic (in a neighborhood of) or
continuous at the end points. In one modern context, the Riemann integrals be-
come Lebesgue integrals and act on equivalence classes of functions, for example,
piecewise continuous functions which need not be defined at the points of discon-
tinuity (as these points form a set of measure zero). We continue to keep x0 and
I fixed, but now allow y0 and p as well as g to vary. To simplify our notation, we
write y(x) = y(x; y0, p, g) instead of y(x) = N−1

p,y0
[g](x) = y0µ−p(x) +L−1

p,0[g](x).

3 One-to-one properties

To understand how y(x; y0, p, g) given by (5) depends on each of the parameters
y0, p, and g, we need several relations. For i=1,2, let yi be the solution to the
IVP (3) and (4) (on I where I may be open or closed) when p = pi, g = gi, and
y0 = y0

i . If p1 = p2 = p, g1 = g2 = g and p, g ∈ C(I), then for all x in I using
(5) we obtain

|y1(x)− y2(x)| =
∣∣y0

1
− y0

2

∣∣ exp{−
∫ t=x

t=x0

p(t)dt}

≤
∣∣y0

1
− y0

2

∣∣ exp{
∫ t=x

t=x0

|p(t)| dt}
(7)

If y0
1 = y0

2 = y0, p1 = p2 = p and p, g1, g2 ∈ C(I), then for all x in I using (3)
we obtain

d(y1 − y2)/dx+ p(x)(y1(x)− y2(x)) = g1(x)− g2(x) (8)

and using (5)

|y1(x)− y2(x)| =
∣∣∣∣∫ t=x

t=x0

[g1(t)− g2(t)] exp{
∫ s=t

s=x

p(s)ds}dt
∣∣∣∣ (9)

≤
∫ t−x

t=x0

|g1(t)− g2(t)| exp{
∫ s=t

s=x

|p(s)| ds}dt (10)

If y0
1 = y0

2 = y0, g2 = g1 = g and p1, p2, g ∈ C(I), then for all x in I from (3)
we obtain

d(y1 − y2)/dx+ p1(x)y1(x)− p2(x)y2(x) = 0 (11)
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and using (5)

|y1(x)− y2(x)|

=
∣∣∣y0 exp{−

∫ t=x

t=x0

p1(t)dt} − y0 exp{−
∫ t=x

t=x0

p2(t)dt}

+
∫ t=x

t=x0

g(t) exp{
∫ s=t

s=x

p1(s)ds}dt−
∫ t=x

t=x0

g(t) exp{
∫ s=t

s=x

p2(s)ds}dt
∣∣∣ (12)

=
∣∣∣y0 exp{−

∫ t=x

t=x0

p1(t)dt}
[
1− exp{

∫ t=x

t=x0

[−p2(t) + p1(t)]dt}
]

+
∫ t=x

t=x0

g(t)
[

exp{
∫ s=t

s=x

p1(s)ds}
][

1− exp{
∫ s=t

s=x

[p2(s)− p1(s)]ds}
]
dt
∣∣∣

≤|y0| exp{
∫ t=x

t=x0

|p1(t)| dt}
[

exp{
∫ t=x

t=x0

|p2(t)− p1(t)|dt} − 1
]

+
∫ t=x

t=x0

|g(t)|
[

exp{
∫ s=t

s=x

|p1(s)| ds}
][

exp{
∫ s=t

s=x

|p2(s)− p1(s)|ds} − 1
]
dt

(13)

where we have used the inequality
∣∣1− eb∣∣ =

∣∣eb − 1
∣∣ ≤ ∣∣e|b| − 1

∣∣ = e|b| − 1.
Standard theory [1] implies that for each y0 ∈ R and p ∈ C(I), N−1

p,y0
[g](x)

provides a one-to-one correspondence between g ∈ C(I) and y ∈ Dy0(I) as well
as establishing that for fixed p and g, the solutions to (3) (parameterized by y0)
do not cross each other. Interestingly, with some restrictions, the solution map
from (y0, p, g) ∈ R×C(I)× C(I) to y ∈ C1(I) is one-to-one if any two of these
three variables are held constant.

Theorem 1 If p, g ∈ C(I), then the solution map defined by (5) from y0 ∈ R
to y ∈ C1(I) is one-to-one. Also, the solutions to (3) in C1(I) do not cross
each other.

Proof. If y0
1 and y0

2 are different initial conditions and p, g ∈ C(I), then for
all x in I we have from (7) that |y1(x)− y2(x)| = |y0

1 − y0
2 |{exp−

∫ t=x
t=x0

p(t)dt}.
Hence if y1(x) = y2(x) for any x ∈ I, then we must have y0

1 = y0
2 . That is, if

we change the initial condition, the solution changes everywhere. If p and g are
fixed, not only is the the mapping from y0 ∈ R to y ∈ C1(I) one-to-one, but the
family of solutions to (3) parameterized by y0 do not cross each other.

Theorem 2 If y0 ∈ I, p ∈ C(I), then the solution map y(x) = N−1
p,y0

[g](x)
defined by (5) from g ∈ C(I) to y ∈ C1(I) is one-to-one. Also N−1

p,y0
[g](x)

provides a one-to-one correspondence between C(I) and Dy0(I).

Clearly Lp maps C1(I) into C(I). N−1
p,y0

given by (6) shows Np,y0 is one-
to-one and that the domain of N−1

p,y0
is all of C(I). Hence N−1

p,y0
is one-to-

one. Alternately, this follows directly from (8) and is just the statement that
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Np,y0=
(
N−1
p,y0

)−1is a well defined operator. Hence N−1
p,y0

provides a one-to-one
correspondence between C(I) and Dy0(I). (And Np,y0 provides a one-to-one
correspondence between Dy0(I) and C(I).)

Restrictions on y0 and g are needed for the mapping from p ∈ C(I) to
y ∈ C1(I) to be one-to-one. To see why, note from (5) that if y0 = 0 and g is
the zero function, then for any p in C(I), y is identically zero.

Definition f ∈ C(I) is said to have only dispersed zeros on an interval I
(either open, closed, or half-opened), if there exists no open interval J ⊆ I
where f is identically zero; that is, if for any open interval J ⊆ I there exists
x ∈ J such that f(x) 6= 0 (i.e., Zf = {x ∈ I : f(x) = 0} has no interior points).

We show that for any y0 and p, if g has only dispersed zeros, then the solution
y also has only dispersed zeros. On the other hand, if g is identically zero, then
y is either never zero or always zero, depending on y0.

Theorem 3 If g ∈ C(I) and has only dispersed zeros on an interval I, then
the solution y has only dispersed zeros on I.

Proof. We prove the contrapositive. Assume y does not have only dispersed
zeros on I. By definition there exists an open interval J ⊆ I such that y(x) = 0
for all x in J . Then dy/dx = 0 on J and by (3), g(x) = 0 on J . Hence g does
not have only dispersed zeros on I.

Theorem 4 Let I be an interval. If g(x) = 0 on an interval J ⊆ I, then either
y is identically zero on J or is never zero on J . In particular, if g(x) = 0 on I,
then either y0 = 0 and y is identically zero or y0 6= 0 and y is never zero on I.

Proof. Suppose g(x) = 0 on an interval J ⊆ I. Choose x1 ∈ J . Applying (5)
at x1 with g(x) = 0 on J, we have that y(x) = y(x1)exp{−

∫ t=x
t=x0

p(t)dt} on J .
If y(x1) = 0, then y is identically zero on J . If y(x1) 6= 0, then y is never zero
on J . Similarly for I.

Corollary 1 If y has only dispersed zeros on an interval I, then on any interval
J ⊆ I where g(x) = 0, y is never zero.

Proof. Assume y has only dispersed zeros and that g(x) = 0 on an interval
J ⊆ I. But if y has only dispersed zeros, there exists x1 ∈ J such that y(x1) 6= 0.
Then by Theorem 4, we have that y(x) 6= 0 for all x in J.

Theorem 5 If g is identically zero on an interval I and y0 6= 0, then the
solution map defined by (5) from p ∈ C(I) to y ∈ C1(I) is one-to-one.
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Proof. Suppose y0 6= 0, g = 0 and p1, p2 ∈ C(I). If y1 = y2 = y, then for all
x ∈ I we have from (11) that (p1(x) − p2(x))y(x) = 0. From Theorem 4, y(x)
is never zero so that for all x ∈ I, p1(x) = p2(x). Hence p1 = p2 so that the
solution map is one-to-one.

Theorem 6 If g has only dispersed zeros on I, then the solution map defined
by (5) from p ∈ C(I) to y ∈ C1(I) is one-to-one.

Proof. Suppose g has only dispersed zeros on I, and p1, p2, g ∈ C(I). If y1 =
y2 = y, then for all x in I we have from (11) that (p1(x)−p2(x))y(x) = 0. Hence
if y(x) 6= 0, then p1(x) = p2(x). Given x ∈ I, if there exists a sequence {xn}∞n=1

such that y(xn) 6= 0 and limn→∞ xn = x; then by continuity, p1(x) = p2(x).
Thus p1 = p2 everywhere if the zeros of y are dispersed. It remains to show
that if g has only dispersed zeros on I, then y has only dispersed zeros on I.
But this is just Theorem 3.

4 Continuity properties

Finally, for the IVP (3) and (4) to be a well-posed problem, the solution
map should be continuous with respect to y0, p,andg. From (7), we see that
y(x; y0

1 , p(x), g(x)) will be pointwise close to y(x; y0
2 , p(x), g(x)) if y1

0 is close
to y2

0 . From (10), we see that y(x; y0, p(x), g1(x)) will be pointwise close to
y(x; y0, p(x), g2(x)) if g1(x) is everywhere pointwise close to g2(x). Finally, from
(13), we see that y(x; y0, p1(x), g(x)) will be pointwise close to y(x; y0, p2(x), g(x))
if p1(x) is everywhere pointwise close to p2(x).

To obtain a global notion of closeness, we require the domain of y to be
the closed interval I = [a, b] where I = (a, b) and redefine C(I) and C1(I) as
C(I) = {f : I → R such that f is continuous on I = (a, b)} and C1(I) =
{f : I → R such that f ′ exists and is continuous on I = (a, b)} ⊆ C(I).
Then C(I) = {f : I → R such that f is continuous on I = [a, b]} ⊆ C(I), and
C1(I) = {f : I → R such that, using one-sided limits, f ′ exists and is continuous
on I = [a, b]} ⊆ C1(I). As we have said, if p, g ∈ C(I), then, using one-sided
limits, y given by (5) can be considered to solve (3) on I so that Σ(I) = C1(I).
Now let Dy0(I) = {y ∈ C1(I) : y(x0) = y0}. Then Np,y0 maps Dy0(I) to C(I),
the solution maps (y0, p, g) ∈ R×C(I)×C(I) to y ∈ C1(I) and Theorems 1, 2,
6, and 7 remain valid with C(I) replaced by C(I), C1(I) replaced by C1(I) and
Dy0(I) replaced by Dy0(I). We have Dy0(I) ⊆ C1(I) ⊆ C(I) ∩ C1(I) ⊆ C(I).

Now recall that L∞(I) is the set of equivalent classes of functions that are
equal except on a set of Lebesgue measure zero such that ess supx∈I |f(x)| <∞.
Since C(I) can be considered as a subset of L∞(I) we can use the L∞(I) norm,
‖f‖∞ = ess supx∈I |f(x)| for functions in C(I) where ‖f‖∞ = maxx∈I |f(x)|
as well as for those in all of its subsets: Dy0(I) ⊆ C1(I) ⊆ C(I) ∩ C1(I) ⊆
C(I) ⊆ L∞(I). In this restricted context, we can obtain the following global
inequalities. If p1 = p2 = p, g1 = g2 = g and p, g ∈ C(I), then for all x in
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I = [a, b] we have using (7) that

|y1(x)− y2(x)| ≤
∣∣y0

1 − y0
2

∣∣ exp{‖p‖∞ (b− a)}

so that
‖y1(x)− y2(x)‖∞ ≤

∣∣y0
1 − y0

2

∣∣ exp{‖p‖∞ (b− a)} (14)

If y0
1 = y0

2 = y0 , p1 = p2 = p, and p, g1, g2 ∈ C(I), then for all x ∈ I = [a, b] we
have from (9) that

|y1(x)− y2(x)| ≤ ‖g1 − g2‖∞ (b− a) exp{‖p‖∞ (b− a)}

so that
‖y1 − y2‖∞ ≤ ‖g1 − g2‖∞ (b− a) exp{‖p‖∞ (b− a)} (15)

If y0
1 = y0

2 = y0, g1 = g2 = g, and p1, p2, g, p ∈ C(I), then for all x ∈ I = [a, b]
we have from (13) that

|y1(x)− y2(x)| ≤ |y0| exp{‖p1‖∞ (b− a)}[exp{‖p1 − p2‖ (b− a)} − 1]
+ ‖g‖∞ exp{‖p1‖∞ (b− a)}[exp{‖p‖∞ (b− a)} − 1](b− a)

so that

‖y1 − y2‖ ≤|y0| exp{‖p1‖∞ (b− a)}[exp{‖p1 − p2‖ (b− a)} − 1] (16)
+ ‖g‖∞ exp{‖p1‖∞(b− a)}[exp{‖p1 − p2‖∞(b− a)} − 1](b− a)

To show that y(x; y0, p, g) depends continuously on y0, p,and g when two are
fixed, we use the norm (and hence metric) topologies for R and that induced on
C(I) from L∞(I).

Theorem 7 If p, g ∈ C(I), then the solution map defined by (5) from y0 ∈ R
to y ∈ C1(I) is continuous.

Proof. Let p1 = p2 = p, g1 = g2 = g, p, g ∈ C(I), and ε > 0. Then from
(14), there exists δ > 0 such that |y0

1 − y0
2 | < δ implies ‖y1− y2‖ < ε. Hence the

mapping from y0 ∈ R to y ∈ C1(I) is continuous.

Theorem 8 If y0 ∈ I, p ∈ C(I), then the solution map defined by (5) from
g ∈ C(I) to y∈ C1(I) is continuous.

Proof. Let y0
1 = y0

2 = y0, p1 = p2 = p, p, g1, g2 ∈ C(I), and ε > 0. Then from
(15), there exists δ > 0 such that ‖g1 − g2‖ < δ implies ‖y1 − y2‖ < ε. Hence
the mapping is continuous.

Theorem 9 If y0 ∈ I, p ∈ C(I), then the solution map defined by (5) from
p ∈ C(I) to y ∈ C1(I) is continuous.
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Proof. Let y0
1 = y0

2 = y0, g1 = g2 = g, p1, p2, g ∈ C(I), and ε > 0. Then from
(16) there exists δ > 0 such that ‖p1 − p2‖ < δ implies ‖y1 − y2‖ < ε . Hence
the mapping is continuous.

Summary. Let y0 ∈ R and p, g ∈ C(I) where I is an interval and consider
the solution map for the IVP (3) and (4) given by (5) that maps (y0, p, g) ∈
R× C(I)× C(I) to y ∈ C1(I).

1. If p and g are fixed, the mapping is one-to-one and solutions do not cross.

2. If y0 and p are fixed, the mapping is one-to-one and has an inverse mapping
that is linear if and only if y0 = 0.

3. If y0 and g are fixed and either y0 6= 0 and g is identically zero or g has
only dispersed zeros, then the mapping is one-to-one.

4. If I is a closed interval, and two of y0, p and g are fixed, then the solution
map is continuous using the usual topology for R and the norm (metric)
topologies for C(I) and C1(I) as subspaces of L∞(I).

References

[1] Boyce, E. and R. C. DiPrima, Elementary Differential Equations and
Boundary Value Problems (sixth edition), John Wiley & Sons, Inc., New
York, 1997.

[2] Douglass, S. A., Introduction to Mathematical Analysis, Addition-Wesley
Publishing Company, New York, 1996.

[3] Moseley, J. L., Properties of the Solution Map for a First Order Linear
Problem with One State Variable. Applied Math Report #16, AMR#16,
West Virginia University, Morgatown, West Virginia, March, 2000.

James L. Moseley

West Virginia University
Morgantown, West Virginia 26506-6310 USA
e-mail: moseley@math.wvu.edu
Telephone: 304-293-2011


