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An adaptive numerical method for the wave

equation with a nonlinear boundary condition ∗

Azmy S. Ackleh, Keng Deng, & Joel Derouen

Abstract

We develop an efficient numerical method for studying the existence
and non-existence of global solutions to the initial-boundary value problem

utt = uxx 0 < x <∞, t > 0,

−ux(0, t) = h(u(0, t)) t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x) 0 < x <∞.

The results by this numerical method corroborate the theory presented in
[1]. Furthermore, they suggest that blow-up can occur for more general
nonlinearities h(u) with weaker conditions on the initial data f and g.

1 Introduction

In this paper, we consider the initial-boundary value problem

utt = uxx 0 < x < ∞, t > 0,

−ux(0, t) = h(u(0, t)) t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x) 0 < x < ∞.

(1.1)

Here we assume that h(u) is continuous with limu→∞ h(u) = ∞, g is continuous,
and f is continuously differentiable. To motivate our work for problem (1.1), we
point out that this problem has been recently studied by the authors in [1]. For
completeness, the main results obtained in that paper are presented as follows:

Theorem 1.1 There exists at least one mild solution of (1.1) on [0,∞)×[0, T0)
for some T0 > 0. Moreover, if h(u) is Lipschitz continuous, then the solution is
unique.

Theorem 1.2 Suppose that |h(u)| ≤ ρ(|u|) with ρ(r) > 0 continuous, nonde-
creasing on [0,∞), and such that∫ ∞ dr

ρ(r)
= ∞,

then all mild solutions of (1.1) are global.
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Theorem 1.3 Suppose that f(t) +
∫ t

0
g(s)ds ≥ 0 ( 6≡ 0) on [0,∞) and that

h(u) ≥ σ(|u|) with σ(r) > 0 continuous, nondecreasing on [0,∞), and such that∫ ∞ dr

σ(r)
< ∞,

then every mild solution of (1.1) blows up in finite time.

Theorem 1.4 Suppose that
∫∞
0

f(t)dt +
∫∞
0

∫ t

0
g(s)dsdt > 0 and h(u) ≥ c|u|p

(p > 1, c > 0), then the mild solution of (1.1) blows up in finite time.

In [1], we point out that the blow-up occurs on the boundary x = 0 only.
Moreover, using asymptotic techniques for integral equations [4] we establish
the following blow-up rates: Letting Tb be the blow-up time,

• If h(u) ∼ up, then u(0, t) ∼
(

1
p−1

) 1
p−1 (Tb − t)−

1
p−1 as t → Tb;

• If h(u) ∼ eu, then u(0, t) ∼ log
(

1
Tb−t

)
as t → Tb.

The goal of this paper is to develop a numerical method for solving (1.1). In
Section 2 we discuss the numerical approximation while in Section 3, we present
numerical examples. In Section 4, we conclude with some remarks.

2 Time-Adaptive Method

We begin this section by integrating (1.1) along characteristics to obtain the
following integral representation of solutions: For t ≤ x,

u(x, t) =
1
2
[f(x + t) + f(x− t)] +

1
2

∫ x+t

x−t

g(s)ds, (2.1)

and for t > x,

u(x, t) =
1
2
[f(t + x) + f(t− x)] +

1
2

[ ∫ t+x

0

g(s)ds +
∫ t−x

0

g(s)ds
]

+
∫ t−x

0

h(u(0, τ))dτ.

(2.2)

A solution to the integral equations (2.1)-(2.2) defines a mild solution to the
problem (1.1). Furthermore, if the initial data f and g are smooth and satisfy
some compatibility conditions, then one can argue that a solution of (2.1)-
(2.2) is also a strong solution of (1.1). Our numerical method will focus on the
approximation of (2.1)-(2.2) rather than (1.1). This provides an efficient scheme
which does not require a rather strong regularity assumption on the initial data.

Substituting x = 0 in (2.2), we get the Volterra integral equation

u(0, t) = f(t) +
∫ t

0

g(s)ds +
∫ t

0

h(u(0, τ))dτ. (2.3)
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Since blow-up occurs only on the boundary x = 0, a special attention will be
devoted to the development of an approximation of u(0, t) particularly near the
blow-up time Tb. Once this is achieved, the approximations of the blow-up time
Tb and u(0, t) are used to compute u(x, t) from the equations (2.1)-(2.2). To this
end, differentiating (2.3) we get the following differential equation for u(0, t):

du(0, t)
dt

=
df(t)
dt

+ g(t) + h(u(0, t)).

Let ∆t > 0 be sufficiently small. Using Taylor approximation (formally) we
observe that

u(0, t + ∆t)− u(0, t) = ∆t
du(0, t)

dt
+

d2u(0, ξ)
dt2

∆t2, ξ ∈ (t, t + ∆t).

A key idea in our scheme is to adapt the time step in order to keep the quantity
|u(0, t+∆t)−u(0, t)| ∼ |∆tdu(0,t)

dt | bounded by a fixed constant. Since h(u) →∞
as u → ∞ and blow-up occurs at Tb we see that du(0,t)

dt → ∞, as t → Tb.
In particular, as t → Tb the size of the time step must approach zero if the
magnitude of ∆tdu(0,t)

dt is to remain bounded by a fixed constant. This forces
the numerical approximation not to go beyond the blow-up time. Making use
of this fact we now present a time-adaptive algorithm for computing u(0, t) and
the blow-up time Tb.

Let ∆tmin and ∆tmax be fixed numbers with 0 < ∆tmin < ∆tmax < ∞.
Let ui

0 be the approximation of u(0, ti) with t0 = 0 and ∆ti = ti − ti−1 ∈
[∆tmin,∆tmax]. Denote by

(ut)i
0 =

ui
0 − ui−1

0

∆ti

the difference approximations of ut(0, ti). Guess an initial time step ∆t1 and
fix a scaling factor α > 1. Choose constants dl and du such that dl < du.
The following is a pseudo code for the time-adaptive algorithm that we have
developed:
for i = 1, 2, . . .
if ∆ti|(ut)i

0| ≤ du

then
if i ≥ 2
then
if ∆ti < ∆tmax

then
if ∆ti|(ut)i

0| and ∆ti−1|(ut)i−1
0 | ≤ dl

then
∆ti+1 = min(α ∆ti,∆tmax)

else
∆ti+1 = ∆ti

end
else
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∆ti+1 = ∆ti
end

else
∆ti+1 = ∆ti

end
i = i + 1

else

∆ti =
∆ti
α

end
done

Our adaptive method changes the current time step if one of the following
two cases arises. The first case is that if ∆ti

∣∣(ut)i
0

∣∣ > du then the approximated
quantity |ui+1

0 − ui
0| > du. In this case the time step is decreased by a factor

of 1/α and the solution is recomputed at the new time step (1/α)∆ti. The
second case is that if the current time step ∆ti < ∆tmax, |ui+1

0 − ui
0| ≤ dl and

|ui
0 − ui−1

0 | ≤ dl, then this indicates that the time steps used for the last two
iterations are very conservative. Hence, the scheme increases this time step to
min(α∆ti,∆tmax) in order to save computation time. It is easy to see that near
the blow-up time, the time step ∆ti will decrease until it reaches ∆tmin. When
this happens the computation stops, and the current time is an approximation
of the blow-up time Tb. We remark that the accuracy of the approximations of
Tb depends on the choice of ∆tmin.

To compute ui
0 we combine the Runge-Kutta numerical method (see for

example, [5]) with the above time-adaptive algorithm: Let u0
0 = f (0) and

k1 = ∆ti+1y
(
ti, u

i
0

)
k2 = ∆ti+1y

(
ti +

∆ti+1

2
, ui

0 +
1
2
k1

)
k3 = ∆ti+1y

(
ti +

∆ti+1

2
, ui

0 +
1
2
k2

)
k4 = ∆ti+1y

(
ti+1, u

i
0 + k3

)
,

where i = 0, 1, 2, . . . , and ∆ti+1 is determined by the time-adaptive method
developed above. Compute ui+1

0 as follows:

ui+1
0 = ui

0 +
1
6

(k1 + 2k2 + 2k3 + k4) .

Now, to approximate the solution of (2.1)-(2.2) we choose xmax > 0 and
divide the interval [0, xmax] into uniform mesh xj with ∆x = xj − xj−1, j =
0, 1, . . . ,m. Denote by Sn(a, b, I) the Simpson’s numerical method for integrat-
ing a function I(t) on the interval (a, b) with n subdivisions, and let Ph(t) be
the cubic interpolant of the function h(u(0, t)) at the mesh points ti. Then we
let ui

j be the approximation of u(xj , ti) and compute ui
j as follows: For ti ≤ xj ,

ui
j =

1
2
[f(xj + ti) + f(xj − ti)] +

1
2
Sn(xj − ti, xj + ti, g),
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Figure 1: The relative error between the computed function u(0, t) and the exact
solution tan t.

and for ti > xj ,

ui
j =

1
2
[f(ti + xj) + f(ti − xj)]

+
1
2

[Sn(0, ti + xj , g) + Sn(0, ti − xj , g)] + Sn(0, ti − xj , P
h).

In the next section we present numerical results which indicate the accuracy of
such an adaptive numerical scheme in computing both u(x, t) and the blow-up
time Tb.

3 Numerical Results

The numerical method developed in the previous section is now used to cor-
roborate and complement theoretical results in our earlier paper [1]. For the
rest of this section let ∆tmax = 10−3, ∆tmin = 10−7, α = 2, du = 1, dl = 0.1,
n = 10, xmax = 5, and m = 200. In the first example we present the accuracy
of our method. To this end, we choose f = 0, g = 1 and h(u) = u2. It is not
difficult to show that u(0, t) = tan t, and hence blow-up occurs at t = π/2. In

Figure 1 we show the relative error
|ui

0 − tan ti|
∆ti

. The computed blow-up time

Tb = 1.5704.
In the second example we let f(x) = −(x − 2)2 + 4, g(x) = 0 and h(u) =

u3. Notice that this choice of initial data does not satisfy the assumptions of
Theorems 1.3-1.4 in Section 1. However, the numerical results presented in
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Figure 2: The computed function u(0, t) for the data f(x) = −(x − 2)2 + 4,
g(x) = 0 and h(u) = u3.

Figures 2-3 indicate that blow-up occurs for this choice of functions with an
approximated blow-up time Tb = 0.5118.

In our third numerical experiment we examine whether blow-up occurs for
nonlinearities such as h(u) = (1 + u)[log(1 + u)]p with initial data that do not
satisfy the assumptions of Theorem 1.4. In Figure 4 we present the numerical
results of u(0, t) for the case p = 6, f(x) = 3e−x cos(20x) − 0.1 and g(x) = 0,
and in Figure 5 we display the 3-D graph of the function u(x, t). We remark
that the blow-up time is Tb = 0.22296.

Using our numerical scheme, we have successfully verified the blow-up rates
given in Section 1 for the functions eu and up (p > 1). We now use this method
to examine the blow-up rate for the function h(u) = (1+u)[log(1+u)]p. Before
presenting the numerical results we formally derive such a rate. Near the blow-
up time the values df(t)

dt and g(t) are negligible when compared to u(0, t), and
hence

du(0, t)
dt

∼ (1 + u(0, t)) [log(1 + u(0, t))]p .

Integrating the above we find∫ ∞
u(0,t)

du

(1 + u) [log(1 + u)]p
∼

∫ Tb

t

dt.

Solving for u we get

u(0, t) ∼ e
( 1
(p−1)(Tb−t) )

1
p−1

− 1. (3.1)
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Figure 3: The solution u(x, t) for the data f(x) = −(x− 2)2 + 4, g(x) = 0 and
h(u) = u3.
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Figure 4: The computed function u(0, t) for the data f(x) = 3e−x cos(20x)−0.1
and g(x) = 0 and h(u) = (1 + u)[log(1 + u)]6.
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Figure 5: The computed solution u(x, t) for the data f(x) = 3e−x cos(20x)−0.1
and g(x) = 0 and h(u) = (1 + u)[log(1 + u)]6.

In Table 1 we give numerical results that verify such a blow-up rate. For this
computational purpose we use the following equivalent form of (3.1)

1
p− 1

= (Tb − t)[log(1 + u(0, t))]p−1.

Table 1: The blow-up rate for the function h(u) = (1 + u)(log(1 + u))p.

p 4 6 8 10
Conjectured: 1

p−1 0.3333 0.2 0.1429 0.1111
Approximation 0.3205 0.1973 0.1411 0.1106

4 Concluding Remarks

The objective of this paper is to develop a numerical approximation for study-
ing the existence and non-existence of global solutions to the wave equation
with a nonlinear boundary condition. Our numerical results indicate that such
a scheme is very accurate and efficient for computing the blow-up time, the
blow-up rate, and the solution. These results also open up several theoretical
questions: 1) How much can the conditions on the initial data f and g be relaxed
for blow-up to occur? 2) Can one improve Theorem 1.4 for weaker nonlinearties
such as h(u) = (1 + u)[log(1 + u)]p (p > 1)? 3) Can one prove the blow-up rate
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given by (3.1) for such nonlinearities? Our future research efforts will focus on
such questions as well as the application of time-adaptive methods to a system
of wave equations coupled in the boundary conditions discussed in [2].

Finally, it is worth mentioning that one can also devise a numerical method
by directly approximating the Volterra integral equation (2.3) using a combi-
nation of the time-adaptive method presented here and numerical quadrature
methods for Volterra integral equations [3].
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