
Fifth Mississippi State Conference on Differential Equations and Computational Simulations,
Electronic Journal of Differential Equations, Conference 10, 2003, pp 251–256.
http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp ejde.math.swt.edu (login: ftp)

On the average value for nonconstant

eigenfunctions of the p-Laplacian assuming

Neumann boundary data ∗

Stephen B. Robinson

Abstract

We show that nonconstant eigenfunctions of the p-Laplacian do not
necessarily have an average value of 0, as they must when p = 2. This
fact has implications for deriving a sharp variational characterization of
the second eigenvalue for a general class of nonlinear eigenvalue problems.

1 Introduction

In this paper we show that the nonconstant solutions of

−∆pu− λ|u|p−2u = 0 a.e. in Ω,

∂u

∂ν
= 0 on ∂Ω,

(1.1)

do not necessarily satisfy
∫
Ω

u = 0. This fact has implications for deriving a
sharp variational characterization of the second eigenvalue for a broad class of
nonlinear eigenvalue problems including (1.1). We assume that Ω ⊂ RN is a
smooth bounded domain, λ is a real number, and ∆p is the p-Laplacian, i.e.
∆pu := ∇ · (|∇u|p−2∇u), for some p ∈ (1,∞).

In some respects (1.1) is already well understood. Since Neumann boundary
conditions are assumed, it is straightforward to see that the principle eigenvalue
is λ1 = 0 with simple eigenspace W := span{1}. Recent work in [2], [3], [4],
and [6] has provided a detailed description of the second eigenvalue, λ2, which
is defined as the smallest real number greater than λ1 such that (1.1) has a
nontrivial solution. In particular, it is known that λ2 > 0, and that eigen-
functions associated with λ2 are sign-changing with exactly two nodal domains
and are in the set Vp := {v ∈ W 1,p(Ω) :

∫
Ω
|v|p−2v = 0}. Also, λ2 satisfies

variational characterizations that generalize from the linear case in a natural
way. We should point out that the references above impose Dirichlet boundary
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conditions, but provide a framework that works just as well for (1.1). In section
2 we will provide a sketch of how some of these facts can be proved.

There are several situations where it is straightforward to see that second
eigenfunctions have an average value of 0. Of course, if p = 2, then (1.1) reduces
to the standard eigenvalue problem for the Laplace operator with Neumann
boundary data, and it is clear that every nonconstant eigenfunction lies in V2 =
W⊥ = {u ∈ W 1,2(Ω) :

∫
Ω

u = 0}. For arbitrary p, if we examine the ODE
case, then it is possible to exploit the symmetry of Ω = (a, b) to prove that
nonconstant eigenfunctions once again satisfy

∫ b

a
u = 0. This ODE argument

can be extended to eigenfunctions on “boxes” in RN with N > 1, i.e. Ω =
(a1, b1)×· · ·×(aN , bN ). But what of the average value for second eigenfunctions
over more general domains?

This question arose while studying eigenvalue problems for a class of quasi-
linear operators that generalize the p-Laplacian, i.e.

Q(u) :=
∑

1≤|α|≤m

(−1)|α|DαAα(x, ξ′m(u)),

where Q is a 2m-th order quasilinear operator satisfying general growth, ellip-
ticity and monotonicity conditions. For boundary value problems associated
with such operators some interesting existence theorems have been proved by
Shapiro, et.al., where a second eigenvalue is defined and used as an upper bound
in certain key growth estimates. This second eigenvalue is obtained via the min-
imization of an appropriate functional, essentially a Raleigh quotient, over the
space V2 = {u ∈ W 1,p(Ω) :

∫
Ω

u = 0}. (More details are provided in section
2 and in the references [7] and [9].) This allows something like an orthogonal
splitting of the Banach Space W 1,p(Ω) so that saddle point theorems can be ap-
plied in a standard way. An open question that arose as a result of these papers
was whether or not this orthogonal splitting leads to a sharp characterization of
the second eigenvalue. Our main result in this paper shows that it does not. It
follows that an improved characterization should lead to an improvement of the
existence results in the papers listed above. These improved existence theorems
are described in subsequent work.

2 Preliminaries

We begin with a standard variational formulation of the problem, and briefly
present some straightforward properties and definitions. Details can be checked
in the references. Let W 1,p(Ω) be defined in the usual way, as in [1]. Let

E(u) :=
∫

Ω

|∇u|p, for u ∈ W 1,p(Ω).

It is well known that E is a C1 functional with

E′(u) · v = p

∫
Ω

|∇u|p−2∇u · ∇v.
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Moreover, if we consider E constrained to the surface S := {u ∈ W 1,p(Ω) :∫
Ω
|u|p = 1}, then any critical point, φ, satisfies∫

Ω

|∇φ|p−2∇φ · ∇v = λ

∫
Ω

|φ|p−2φv (2.1)

for some λ ∈ R and all v ∈ W 1,p(Ω). Hence, the critical points of the constrained
functional correspond to eigenfunctions, and the associated Lagrange multipliers
correspond to eigenvalues. (Substitute v = φ into (2.1) to see that λ = E(φ).)
Notice that by constraining the functional to the Lp unit sphere we are simply
recognizing that all nontrivial eigenfunctions can be rescaled so that they are
elements of S.

E clearly attains a global minimum of 0 at ±φ1 = ±( 1
|Ω| )

1
p . Also, it is clear

that E(u) > 0 for any nonconstant u. Thus λ1 = 0 is a simple eigenvalue with
eigenspace W := span{1}.

If λ > 0 is an eigenvalue with associated eigenfunction φ, then we can substi-
tute v = 1 into (2.1) to see that φ ∈ Vp. Hence our search for critical points can
be restricted to the set Vp

⋂
S. Members of this set are clearly sign-changing.

Using the fact that Vp

⋂
S is weakly closed, and that E is bounded below and

weakly lower semicontinuous, we see that E attains its positive infimum on S.
Hence, one variational characterization of λ2 is

λ2 := inf
S∩Vp

E. (2.2)

Let φ2 represent an associated eigenfunction and consider the curve

h : R → S : h(t) =
φ2 + t

||φ2 + t||Lp

.

Then

E(h(t)) =

∫
Ω
|∇φ2|p∫

Ω
|φ2 + t|p

, and
d

dt
E(h(t)) =

−p
∫
Ω
|∇φ2|p

∫
Ω
|φ2 + t|p−2(φ2 + t)(∫

Ω
|φ2 + t|p

)2 .

Thus E(h(t)) reaches a global maximum of λ2 only at t = 0. Moreover,
limt→±∞ h(t) = ±φ1 and limt→±∞E(h(t)) = 0. Thus h(t) can be modified
to create a continuous curve γ : [−1, 1] → S such that γ(±1) = ±φ1, γ(0) = φ2,
and such that E(γ(t)) achieves a maximum value of λ2 precisely when t = 0.
Conversely, any continuous curve on S connecting ±φ1 must cross Vp and hence
must contain a point, γ(t), where E(γ(t)) ≥ λ2. Thus we deduce a second,
equivalent, variational characterization of λ2 which is

λ2 := inf
γ∈Γ

sup
−1≤t≤1

E(γ(t)), (2.3)

where Γ := {γ : [−1, 1] → S : γ is continuous, γ(±1) = ±φ1}. The proof that
φ2 has exactly 2 nodal domains relies on the fact that if φ2 has more than 2
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nodal domains then a curve can be constructed that contradicts (2.3) . Details
can be found in [4] or [6].

Let µ2 represent the parameter characterized in [9] and [7]. For homogeneous
problems, such as (1.1), this reduces to

µ2 := inf
S∩V2

E. (2.4)

If we compare the characterization (2.3) with (2.4), we observe that every curve
in Γ must cross at least one point in V2, and thus the maximum value of E over
any such curve is at least as large as µ2. It follows that µ2 ≤ λ2. Now suppose
that we can show that φ2 6∈ V2. If we examine the special curve γ, constructed
above, we see that γ crosses V2 at a point γ(t) 6= φ2, so E(γ(t)) < λ2, and
thus µ2 < λ2. This would show that (2.4) is not a sharp characterization of λ2.
In section 3 we will prove that φ2 6∈ V2 for certain asymmetric domains. An
interesting open question might be to classify the domains where µ2 = λ2, and
it is reasonable to conjecture that this depends upon a symmetry condition.

It is important to note that the quasilinear operators in [7] and [9] are not
assumed to be homogeneous, so the associated eigenvalue problems could not
be restricted to S. Hence, the more general characterization had to consider
the infimum of E(u)∫

Ω |u|p
over V2

⋂
rS and then compute a lim inf as r →∞.

3 Comparing λ2 and µ2

Theorem 3.1 There is at least one domain Ω ⊂ RN such that the associated
second eigenvalue, λ2, has an associated eigenfunction, φ2, that does not lie in
V2.

Proof Consider the problem

−∆pu− λε
2|u|p−2u = 0 in Ωε,

∂u

∂ν
= 0 on ∂Ωε,

(3.1)

where Ωε := ((0, 2)× (0, 2))
⋃

((2, 3)× (0, ε))
⋃

((3, 4)× (0, 1)) for 0 ≤ ε ≤ 1,
and where λε

2 is characterized by (2.2) and (2.3). Ω0 will refer to the limiting
case which is simply the union of the two disjoint rectangles. Let φ2,ε ∈ Vp

⋂
S

represent an associated second eigenfunction. When ε = 0 this will simply
indicate a function that is a positive constant over one rectangle and a negative
constant over the other, where the constants are balanced to fit the constraints.

First, we find an upper bound for λε
2. Let

u2 :=


1 for (x, y) ∈ [0, 2]× [0, 2],
−2x + 5 for (x, y) ∈ [2, 3]× [0, ε],
−1 for (x, y) ∈ [3, 4]× [0, 1]



EJDE/Conf/10 Stephen B. Robinson 255

Also, let γ(α, β) = αu+
2 − βu−2 , where u+

2 := max{u2, 0}, u−2 := max{−u2, 0},
and α and β are nonnegative scalars such that αp||u+

2 ||
p
Lp + βp||u−2 ||

p
Lp = 1.

Notice that γ is a curve on S connecting the points u+
2

||u+
2 ||Lp

and − u−2
||u−2 ||Lp

. By
the Intermediate Value Theorem γ crosses the surface Vp. Hence the maximum
of E(γ(α, β)) must be greater than λε

2. However,

∇γ(α, β) =


(0, 0) for (x, y) ∈ [0, 2]× [0, 2],
(−2α, 0) for (x, y) ∈ [2, 5

2 ]× [0, ε],
(−2β, 0) for (x, y) ∈ ( 5

2 , 3]× [0, ε],
(0, 0) for (x, y) ∈ (3, 4]× [0, 1]

Thus
∫
Ωε
|∇γ(α, β)|p ≤ 2p max{αp, βp}ε. But ||u+

2 ||
p
Lp ≥ 4 and ||u−2 ||

p
Lp ≥ 1,

so αp ≤ 1
4 and βp ≤ 1. Therefore

∫
Ωε
|∇γ(α, β)|p ≤ 2pε. It follows that

λε
2 ≤ max(α,β) E(γ(α, β)) ≤ 2pε, so limε→0 λε

2 = 0.
We will now show that

∫
Ωε

φ2,ε 6= 0 for some ε. Since λε
2 → 0, straightfor-

ward estimates now show that φ2,ε → φ2,0 in W 1,p(Ω0), where ∇φ2,0 ≡ 0 and∫
Ω0
|φ2,0|p = 1. Moreover,

∫
Ω0
|φ2,0|p−2φ2,0 = limε→0

∫
Ωε
|φ2,ε|p−2φ2,ε = 0. It

must be that there are constants a, b ∈ R such that φ2,0 ≡ a in [0, 2] × [0, 2]
and φ2,0 ≡ b in [3, 4]× [0, 1]. Moreover, it follows that 4|a|p + |b|p = 1, a and b

have opposite signs, and 4|a|p−1 − |b|p−1 = 0. Thus |b| = 4
1

p−1 |a|. It can now
be checked that

∫
Ω0

φ2,0 = ±(4− 4
1

p−1 )|a| 6= 0 for p 6= 2. Hence
∫
Ωε

φ2,ε 6= 0 for
some ε > 0. �

As an immediate consequence we have the following statement.

Corollary 3.2 If Ω is the domain given in Theorem 3.1, then µ2 < λ2.

References

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

[2] A. Anane and N. Tsouli, On the second eigenvalue of the p-Laplacian, Non-
linear partial differential equations (Fés, 1994), 1-9, Pitman Res. Notes
Math. Ser., 343, Longman, Harlow, 1996.

[3] M. Cuesta, D.G. de Figueiredo and J.-P. Gossez, The beginning of the Fučik
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[6] P. Drábek and S. Robinson, On the generalization of the Courant Nodal
Domain Theorem, Journal of Differential Equations, vol. 181 (2002), pp.
58-71

[7] A.J. Rumbos and V.L. Shapiro, One-sided resonance for a quasilinear vari-
ational problem, Cont. Math., Vol. 208 (1997), pp. 277-299.

[8] V.L. Shapiro, Quasilinear ellipticity and the first eigenvalue, Comm in
PDEs, 16 (1991), 1819-1855.

[9] V.L. Shapiro, Superlinear quasilinearity and the second eigenvalue, Nonlin-
ear Anal., 44 (2001), no. 1, Ser. A: Theory Methods, 81-96.

[10] M. Struwe, Variational Methods; Applications to Nonlinear Partial Dif-
ferential Equations and Hamiltonian Systems, Springer-Verlag, New York,
1990.

Stephen B. Robinson
Department of Mathematics, Wake Forest University,
Winston-Salem, NC 27109, USA
e-mail: sbr@wfu.edu


