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ON A PROBLEM OF SHALLOW WATER TYPE

MOHAMED ELALAOUI TALIBI, MOULAY HICHAM TBER

Abstract. In this paper we present an existence theorem for a problem of
shallow water kind. We take into account a general friction term depending on
water depth and the norm of velocity, which is the main difficulty. We present
also a numerical study in the case which we consider the above problem as
a perturbation of shallow water equations in the non conservative dept-mean
velocity form.

1. Introduction and setting of the problem

The two-dimensional shallow water equations (briefly SWE) are deduced by inte-
grating, with respect to depth, the continuity and the momentum equations of the
three-dimensional incompressible Navier-Stokes system, neglecting the influence of
the vertical component of acceleration, the pressure is then supposed hydrostatic
[1]. They provide a model allowing to describe the flows of water in domains char-
acterized by small ratio between vertical and horizontal length scales, therefore
typical physical situations modelled are: tidal waves, currents in portual basins,
lagoon, ..etc. But their use is surprisingly extended to very different phenomena
even with discontinuous behavior, like the ”dam break” problem [11].

The shallow-water system we are studying in this work reads
∂u
∂t

+ (u · ∇)u−ν1∆u+C(h) |u|u + l× u + g∇h = f on Ω, (1.1)

∂h

∂t
− ν24h +∇ · (hu) = f on Ω, (1.2)

where u = (u1, u2)⊥ is the velocity vector and h is the depth of studied layer,
it can be considered as sum of the bottom topography which is given and the
topography of the free surface. Ω ∈ R2 is the projection of the domain of the study
on the horizontal plane. Γ denotes its boundary. l is the Coriolis force defined
by (0, 0, 2ωsin(φ)), where ω is the rotation rate of the earth and φ the latitude.
g denotes the acceleration of the gravity. The bottom friction effect is presented
by the term C(h) |u|u where C(.) is a continuous function satisfying the condition
0 ≤ C(.) < ε which physically justified by the Manning-Strickler’s formula and by
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the Chezy’s one if the free surface elevation remain larger than minimal level. ν1,
ν2 are respectively the eddy viscosity and diffusivity coefficients which we consider
as an artificial viscosity taken, numerically, equal to zero to have the shallow-water
equations in the nonconservative depth-mean velocity form. The right-hand side
terms f and f represent, respectively, the outside stress and the fluid exchanges
(rain, evaporation, etc.).

To solve these equations we take homogeneous boundary conditions and we set
the initial data as

(u, h) = (0, 0) on Γ,

(u, h)(t = 0) = (u0, h0) in Ω

Remark 1.1. To be compatible with the physical situation for which the friction
formulation is justified, we assume that h = hB ≥ hmin > 0 on Γ and h(0) ≥
hmin > 0 in Ω. However by setting h := h + hL where hL is the solution of the
problem

∂hL

∂t
− ν24hL = 0 in Ω

hL(0) = 0 in Ω
hL = hB on Γ .

(As shown in [8], this problem has a solution in L2(0, T, H1(Ω))∩L∞(0, T, L∞(Ω))
for hB ∈ L2(0, T, H

1
2 (Γ))∩L∞(0, T, L∞(Γ))) we find again the homogeneous bound-

ary conditions modulo a constant in the momentum equation and a linear term in
the continuity one changing quit the reasoning done below. Therefore we will con-
sider, for convenience, only the homogeneous case.

2. Notation and variational formulation

We introduce the following functional spaces: V1 = (H1
0 (Ω))2 ,H1 = (L2(Ω))2,

V2 = H1
0 (Ω), H2 = L2(Ω), V = V1 × V2, H = H1 ×H2. The norm and semi-norm

defined on H1(Ω) are equivalent in V1, V2, and V .
Then we set ‖u‖ = ‖u‖V1 , ‖h‖ = ‖h‖V2 and ‖X‖ = ‖X‖V for u ∈ V1, h ∈ V2, and
X ∈ V . | · | denotes the norm in L2(Ω), | · |2 denotes the Euclidean norm in R2,
(·, ·) is the scalar product in H1, H2 or H and (·, ·)2 the scalar product in R2. We
define

a1(u,v) = ν1(∇u,∇v),

a2(h, β) = ν2(∇h,∇β),

a(X, Y ) = a1(u,v) + a2(h, β)

with X = (u, h) and Y = (v, β). Note that a1, a2 and a are bilinear continuous
coercive forms, respectively, on V1, V2 and V .

We denote by ε, ν, A, B, C, λ and θ constants such that:

0 ≤ C(.) ≤ ε

a(X, Y ) ≥ ν‖X‖‖Y ‖ for (X, Y ) ∈ V × V

λ > 0, Cg = constant · g, B = 2ν − Cg − λ,
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and C = constant · CG where CG is the best constant of the Gagliardo-Nirenberg
inequality [2]:

‖u‖2L4(Ω)2 ≤ CG‖u‖|u|. (2.1)

In what follows we take homogeneous boundary conditions and we write

(u.∇)u =
1
2

grad(|u|22) + curl(u)α(u)

where curl(u) = ∂u2
∂x1

− ∂u1
∂x2

and α(u) = (−u2, u1). Now we can set the weak
formulation of the problem:

(V) Find (u, h) ∈ L2(0, T, V ) ∩ L∞(0, T,H) such that(∂u
∂t

,v
)

+ a1(u,v) + (curl(u)α(u),v) +
1
2
(grad |u|22,v)

+(C(h)|u|2u,v) + (l ∧ u,v)− g(div(v), h) = (f ,v)
(2.2)

(∂h

∂t
, β
)

+ a2(h, β) + (div(hu), β) = (f, β) ∀(v, β) ∈ V , (2.3)

(u, h)(t = 0) = (u0, h0). (2.4)

3. Existence theorem

Theorem 3.1. Assume that F = (f , f) ∈ L2(0, T, H), X0 = (u0, h0) ∈ V ∩L∞(Ω)3.
Also assume the following conditions are satisfied,

(1) B = 2ν − Cg − λ > 0
(2) |X0| < B/C
(3) (B/C)2 > |X0|2 + 1

λ |F|
where constants are defined above. Then the variational problem (V) admits at last
one solution (u, h) in L2(0, T, V ) ∩ L∞(0, T, H).

The proof of the theorem is based on the three next lemmas.

Lemma 3.2. Let X = (u, h) be a classic solution of the problem (V ), on [0, T ].
Under the same hypothesis in the theorem, we have

‖X‖L∞(0,T,H) + (B − C‖X‖L∞(0,T,H))‖X‖L2(0,T,V ) ≤
1
λ
‖F‖L2(0,T,H) + |X0|

(B − C‖X‖L∞(0,T,H)) > 0.

‖X‖L∞(0,T,H) + ‖X‖L2(0,T,V ) ≤ constant

Proof. By writing the energy inequality and using the hypothesis above, we find
the result via Green’s formula and Gagliardo-Neirenberg inequality. �

Lemma 3.3. Let (Xn) be a sequence of classic solution of (V ) on [0, T ] satisfying

‖Xn‖L∞(0,T,H) + ‖Xn‖L2(0,T,V ) ≤ C ′. (3.1)

where C ′ is a constant independent of n. Then there exist a subsequence also
denoted by Xn and X = (u, h) ∈ L∞(0, T, H) ∩ L2(0, T, V ) such that

Xn −→ X weakly in L∞(0, T, H), (3.2)

Xn −→ X weakly in L2(0, T, V ), (3.3)

Xn −→ X strongly in L2(0, T, H). (3.4)
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Proof. Statements (3.2) and (3.3) are immediate consequences of (3.1). On the
other hand we can show that the sequence Xn is uniformly bounded in the set

Y =
{
v ∈ L2(0, t, V ),

∂v
∂t

∈ L1(0, T, V ′)
}
.

According to [15], the injection of Y into L2(0, T, H) is compact. Then we can
extract from Xn a subsequence also denoted by Xn such that we have (3.4) �

Lemma 3.4. let (un, hn) be a sequence converging toward (u, h) in L2(0, T, H)
strongly and L2(0, T, V ) weakly. Then for any ϕ(t) ∈ C1(0, T ) and (v, β) ∈ V ∩
L∞(Ω)3 we have∫ T

0

(C(hn)|un|un, ϕ(t)v)dt −→
∫ T

0

(C(h)|u|u, ϕ(t)v)dt ,∫ T

0

(div(hmun), ϕ(t)β)dt −→
∫ T

0

(div(hu), ϕ(t)β)dt ,∫ T

0

(curl(un)α(un), ϕ(t)v)dt −→
∫ T

0

(curl(u)α(u), ϕ(t)v)dt ,

1
2

∫ T

0

(grad |u|22, ϕ(t)v)dt −→ 1
2

∫ T

0

(grad |u|22, ϕ(t)v)dt .

We can proof this lemma using Shwartz inequality and appropriated Sobolev
injections.

Proof of the Theorem 3.1. The proof is based on the construction of sequence of
finite dimensional Problems (Vn) of which the solutions (Xn) (by using lemmas 3.2
and 3.3) converge strongly in H and weakly in V to X ∈ (u, h) ∈ L2(0, T, V ) ∩
L∞(0, T, H). Then by third Lemma we can show that X is a solution of the
problem. �

4. Numerical studies

The goal of this numerical studies is to know how the solution of the problem
varies when the included artificial diffusivity coefficients ν2 tend to zero. The
approach we are using here is based on the finite elements for the space discretization
and on the discretization of the Lagrangian derivative along the characteristics.
This method provides a centred scheme which have the advantage of stabilizing
the convection and allow large time steps to be taken when compared to standard
time-stepping methods [4].

Similar numerical schemes were considered in [13] for the incompressible Navier-
Stokes problem. Within the framework of the shallow water problems, this approach
combined with the method of the fractional steps, is adopted in [10] to simulate
transcritical flows, and applied later in TELEMAC project [9].

Temporal discretization. The characteristic methods consists in approaching
the lagrangian derivative of a function S in time step tn+1 by:

dS

dt
(x, tn+1) ' S(x, tn+1)− S(X(x, tn+1; tn), tn)

∆t
(4.1)

where Xn = X(x, tn+1; tn) is the position in the time step tn of the particle po-
sitioning at the geometrical point x in time step tn+1 and Xn(x, tn+1; τ) is the
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solution of

dXn

dτ
(x, tn+1; τ) = un(Xn(x, tn+1; τ)), for tn ≤ τ ≤ tn+1,

Xn(x, tn+1; tn+1) = x.

Using (4.1), the semi-implicit time discretization of (1.1), (1.2) is

un+1 − un ◦Xn

∆t
− ν1∆un+1,

C(hn) |un|un+1 + l× un + g∇hn+1 ,= fn
(4.2)

hn+1 − hn ◦Xn

∆t
− ν2∆un+1 + hn∇ · un+1 = fn, (4.3)

where hn and un are the approximations of h and u respectively in time step tn.

Variational formulation. let us introduce the spaces

V 1
φ =

{
v ∈ H1(Ω)×H1(Ω);v = φ on Γ

}
V 2

η =
{
h ∈ H1(Ω);h = η on Γ

}
.

Multiplying (4.2) and (4.3) by v ∈ V1 and q ∈ V2 respectively, and integrating by
part on Ω we obtain(un+1

∆t
,v
)

+ ν1

(
∇un+1,∇v

)
+
(
C(hn) |un|un+1,v

)
− g

(
hn+1,∇ · v

)
=
(un ◦Xn

∆t
+ fn − l× un,v

)
,

(4.4)

(hn+1

∆t
, q
)

+ ν1

(
∇un+1,∇v

)
+
(
hn∇ · un+1, q

)
=
(
fn +

hn ◦Xn

∆t
, q
)
. (4.5)

Then we write the time-discretized variational formulation as follows:

(V)n Find (un+1, hn+1) in V 1
φ × V 2

η such that

e(un+1,v) + b(v, hn+1) = (fn,v) , ∀v ∈ V1 ,

−b(un+1, hnq) + e′(hn+1, q)+ = (fn, q) ,∀q ∈ V2 .

where

e(u,v) =
1

g4t
(u,v) +

ν1

g
(∇u,∇v) +

1
g

(C(hn) |un|u,v) ,

e′(h, q) =
1
4t

(h, q) + ν2(∇h,∇q) ,

b(v, q) = − (q,∇ · v) , fn :=
1
g

(
fn +

un ◦Xn

∆t
− l× un

)
,

fn := fn +
hn ◦Xn

∆t
.

Finite element discretization. Let V 1
φh and V 2

ηh (resp V1h and V2h) two finite
elements spaces approaching V 1

φ and V 2
η (resp V1 and V2) such that the LBB con-

dition is satisfied [3]. Then the discrete problem is written as
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(V)n
h Find (un+1

h , hn+1
h ) in V 1

φh × V 2
ηh such that

e(un+1
h ,vh) + b(v, hn+1

h ) = (fn
h ,vh) , ∀vh ∈ V1h,

−b(un+1
h , hn

hqh) + e′(hn+1
h , qh)+ = (fn

h , qh), ∀qh ∈ V2h.

The value Xm
h (x) is approximated by X((n + 1)4t, x), the solution of the problem

dX

dτ
= un

h(X(τ), τ), X((n + 1)4τ) = x,

therefore, at each time step we have to solve the linear system(
A B

−B
> −D

)(
U
H

)
=
(
FU

FH

)
where A and D are two definite positive matrices, and B, −B

>
are two matrices

approaching operator of divergence type.
We can show easily (see for example [14] [7]) that the problem (V)n (resp (V)n

h

) is well posed if hn (resp hn
h) remain larger than one level ξ > 0. Moreover in [6]

and [10], a preconditionner of Cahouet-Chabard kind [5] are proposed for the linear
system.

Numerical results. The studied domain is a square with 1km in length with
mean water elevation of 1m. We suppose there is no exchange with the external
medium and the surface stress is reduced to the wind stress tensor defined by

fwind =
1
h

ρwater

ρair
awind|uwind|2uwind,

where ρwater, ρair are the density of the water and the air respectively, and awind is
an adimensional empiric coefficient. On the other hand, if we choose the Manning-
Strickler’s formula for the bottom friction we obtain

C(h) =
gn2

h
4
3

(4.6)

where n is the Manning coefficient.

Table 1. Physical parameters

g(m/s−2) ρwater(kg/m3) ρair(kg/m3) n ν2(m2/s)
1 999.00 1.225 0.03 0.1

w (rad/s) φ () ν1(m2/s) ∆t(s) awind

0-100 0.1 0.56510−3 7.29210−10 45

Conclusions. Although the continuous problem (2.2) requires a condition on it,
we can take the diffusion coefficient of continuity equation ν2 numerically as small
as we want, without any explosion of the solution (see figure 1). Then for ν2 = 0
and f = 0 we find the shallow water equations established in [1]. Moreover for this
case we can prove formally by characteristics that the free surface elevation remain
larger than minimal level if the initial one it is. Therefore the choice of Manning-
Strickler’s formula (4.6) is justified and the numerical results are satisfactory.
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Figure 1. The section h(x,250m) for different values of ν2
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Figure 2. Water elevation for ν2 = 0 in t = 10s
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