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O(`) SHIFT IN HOPF BIFURCATIONS FOR A CLASS OF
NON-STANDARD NUMERICAL SCHEMES

MURRAY E. ALEXANDER, SEYED M. MOGHADAS

Abstract. Quantitative aspects of models describing the dynamics of biologi-
cal phenomena have been mostly restricted to results of numerical simulations,
often by employing standard numerical methods. However, several studies have
shown that these methods may fail to reproduce the actual dynamical behavior
of the underlying continuous model when the integration time-step, model pa-
rameters, or initial conditions vary in their respective ranges. In this paper, a
non-standard numerical scheme is constructed for a general class of positivity-
preserving system of ordinary differential equations. A connection between
the dynamics of the system and that of the scheme is established in terms of
codimension-zero bifurcations. It is shown that when the continuous model un-
dergoes a bifurcation with a simple eigenvalue passing through zero (pitchfork,

transcritical or saddle-node bifurcation), the scheme exhibits a corresponding
bifurcation at the same bifurcation parameter value. On the other hand, for

a Hopf bifurcation there is in general an O(`) shift in the bifurcation param-
eter value for the numerical scheme, where ` is the time-step. Partial results

for the bifurcations of codimension-1 and higher are also discussed. Finally,

the results are detailed for two examples: predator-prey system of Gause-type
and the Brusselator system representing an autocatalytic oscillating chemical

reaction.

1. Introduction

Dynamical systems theory provides powerful techniques to qualitatively and
quantitatively analyze models describing the dynamics of biological phenomena.
During the last three decades, much focus has been on the qualitative aspects of
these models, such as the stability of the associated equilibria and their bifurca-
tion behaviors. However, the analysis of the quantitative aspects of these models
has received less attention. Most studies emphasize the illustrations of the quali-
tative behaviors, frequently through numerical simulations, rather than analyzing
the actual dynamics of quantitative features.

The study of the quantitative behavior of dynamical systems requires some fun-
damental elements, such as methods which discretize the underlying continuous
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models. There are several standard discrete methods which have been widely used
in the literature for the purpose of numerical simulations [6]. However, a num-
ber of studies have shown that these methods may fail to reproduce the actual
dynamical behavior of the underlying continuous models, as the time-step, model
parameters, or initial conditions vary in their respective ranges. The failure to cap-
ture the real dynamics of the continuous models by standard methods, which we
will call ‘scheme-failures’, has motivated the introduction of non-standard methods
[7, 8, 10, 11].

One of the most common scheme-failures by standard methods occurs when the
continuous model undergoes a Hopf bifurcation leading to its oscillatory behavior
[10, 11]. In this case, the numerical method may diverge, or converge to a solu-
tion that does not correspond to any possible solutions of the model. This type
of scheme-failure has been explored as a common characteristic of standard meth-
ods, as they are generally affected by the length of time-step (step-size), model
parameters and initial values of the model variables. The most probable cause of
scheme-failure has been the use of insufficiently small step-sizes. However, we have
shown in a recent study [11] that even with adaptive step-size, the method may
still fail to illustrate the qualitative behavior of the model.

In this paper, we shall concentrate on the quantitative behavior of a positivity-
preserving system of ordinary differential equations, by constructing a non-standard
numerical scheme. The goal is to establish a connection between the dynamics of
the continuous system (CS) and the numerical scheme (NS), in particular in terms
of their bifurcation behavior. The system is given by

ẋ = gi(x1, . . . , xm)− xihi(x1, . . . , xm) ≡ fi, i = 1, . . . ,m (1.1)

where gi, hi : Rm → R+ are non-negative real valued functions. Many models of
biological phenomena can be represented in the form of (1.1); for example, predator
prey systems in ecological modelling [2], and the Brusselator system representing
an autocatalytic oscillating chemical reaction [17].

This paper is organized as follows. In Section 2, a non-standard finite-difference
scheme is constructed to approximate (1.1). The scheme is analyzed for its bifurca-
tions in Section 3. To illustrate the results, two examples are given in Section 4: a
predator-prey system of Gause-type, and the Brusselator system. The paper ends
with a brief discussion of the results.

2. Non-standard numerical scheme

The construction of the numerical scheme is based on the positivity invariance
of the CS. Note that on the hyperplane xi = 0, we have

f · ei = (f1, . . . , fm) · (0, . . . , 1
↓

ith

, . . . , 0) = gi ≥ 0, i = 1, . . . ,m

which implies that the region Rm
+ = {x = (x1, . . . , xm) : xi ≥ 0} is positively

invariant for system (1.1). To preserve this qualitative property of the CS in the NS,
the right hand side of (1.1) is approximated by the advanced stage xn+1

1 , . . . , xn+1
i

for the function gi and hi, and the Gauss-Seidel method [18] is used to compute
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xn+1
i for i = 2, . . . ,m. The approximations are given by

xn+1
1 − xn

1

`
= g1(xn

1 , . . . , x
n
m)− xn+1

1 h1(xn
1 , . . . , x

n
m),

xn+1
i − xn

i

`
= gi(xn+1

1 , . . . , xn+1
i−1 , x

n
i , . . . , x

n
m)− xn+1

i h1(xn+1
1 , . . . , xn+1

i−1 , x
n
i , . . . , x

n
m),

which leads to the NS

xn+1
1 =

xn
1 + `g1(xn

1 , . . . , x
n
m)

1 + `h1(xn
1 , . . . , x

n
m)

≡ F1(xn
1 , . . . , x

n
m), (2.1)

xn+1
i =

xn
i + `gi(xn+1

1 , . . . , xn+1
i−1 , x

n
i , . . . , x

n
m)

1 + `hi(xn+1
1 , . . . , xn+1

i−1 , x
n
i , . . . , x

n
m)

≡ Fi(xn+1
i , . . . , xn+1

i−1 , x
n
i , . . . , x

n
m), (2.2)

for i = 2, . . . ,m, where ` > 0 is the step-size. It can be easily shown (by induction)
that the scheme remains in Rm

+ as long as the initial value x0 = (x0
1, . . . , x

0
m) is

chosen in Rm
+ . Thus, the scheme preserves the positivity property of (1.1).

Here, we provide some preliminarily results which are needed to analyze the
scheme for its bifurcation behavior in the next section. Let xn+1 = F(xn,xn+1)
denote the scheme (2.1)-(2.2), where

F = (F1, . . . , Fm) : Rm
+ × Rm

+ → Rm
+ .

It is easy to check that if x∗ ∈ Rm
+ is a critical point of system (1.1), then x∗ is a

fixed point of the scheme, that is, x∗ = F(x∗,x∗). The stability of the fixed point
x∗ is determined by the absolute values of the eigenvalues z of JF, where z is a
solution of the equation

det
[
J(F,n) − z(I− J(F,n+1))

]
= 0, (2.3)

where I is the identity matrix and(
J(F,n)

)
ij
≡ ∂Fi

∂xn
j

∣∣∣
x∗
,

(
J(F,n+1)

)
ij
≡ ∂Fi

∂xn+1
j

∣∣∣
x∗
, for i, j = 1, . . . ,m.

According to the Fixed-Point theorem [14], the fixed point x∗ of the NS is stable if
|z| < 1, and unstable if |z| > 1. For more detailed analysis and derivation of (2.3),
the reader may consult [10].

3. Bifurcations in numerical scheme

To establish a connection between bifurcation behaviors of the NS (2.1)-(2.2)
and those of the CS (1.1), we define λ by

z =
1 + `λ/2
1− `λ/2

,

which maps the left-half of the λ-plane to the interior of the unit circle in z-plane.
Let Jf = JU

f + JL
f , where

JU
f =


J11 J12 . . . J1m

0 J22 . . . J2m

...
...

. . .
...

0 0 . . . Jmm

 , JL
f =


0 0 . . . 0
J21 0 . . . 0
...

...
. . .

...
Jm1 . . . Jm m−1 0

 .
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and
Jij ≡

∂fi

∂xj

∣∣∣
x∗
,

for i, j = 1, . . . ,m. Then, by defining

D = diag
(
h1, . . . , hm

)∣∣
x∗
,

and noting that

J(F,n)

∣∣
x∗

= I + `(I + `D)−1JU
f ,

J(F,n+1)

∣∣
x∗

= `(I + `D)−1JL
f ,

it follows that
J(F,n)

∣∣
x∗

+ J(F,n+1)

∣∣
x∗

= I + `(I + `D)−1Jf .

Therefore, from (2.3), we have

0 = det
[
J(F,n) − z(I− J(F,n+1))

]
= det

[
J(F,n) −

1 + `λ/2
1− `λ/2

(I− J(F,n+1))
]

=
1

(1− `λ/2)m
det

[
(1− `λ/2)J(F,n) − (1 + `λ/2)(I− J(F,n+1))

]
=

1
(1− `λ/2)m

det
[
`(I + `D)−1Jf −

`λI
2
−
`λ

{
I + `(I + `D)−1(JU

f − JL
f )

}
2

]
=

`m

(1− `λ/2)m det (I + `D)
det

[
Jf − λ

{
I + `D + `(JU

f − JL
f )/2

}]
Thus, equation (2.3) can be written in terms of the Jacobian of (1.1), Jf , at the
critical point x∗ as

det
[
Jf − λ(I + `V )

]
= 0, (3.1)

where
V ≡ D +

1
2
(
JU
f − JL

f

)
.

is independent of the step-size `. As an immediate consequence of equation (3.1),
it can be seen that as ` → 0, λ approaches the eigenvalues of Jf . Therefore, the
eigenvalues and eigenvectors of the scheme (2.1)-(2.2) are O(`) perturbations of
those of the continuous system (1.1). Suppose that (1.1) undergoes a bifurcation
at x∗ for which α0 = 0 is a simple eigenvalue, such as transcritical, pitchfork, or
saddle-node bifurcation. Then, at the bifurcation point, the terms including the
step-size, `, disappear from the characteristic equation (3.1). Thus, the bifurcation
of the NS is consistent with that of the CS (1.1), and we have the following theorem.

Theorem 3.1. If the CS (1.1) undergoes a bifurcation at x∗ for which α0 = 0 is a
simple eigenvalue, then the bifurcation of the NS (2.1)-(2.2) occurs at x∗ with the
same bifurcation parameter value.

Now suppose that system (1.1) undergoes a Hopf bifurcation at x∗. Let us first
consider this case for a two-dimensional system (i.e., m = 2). In this case, the
equation (3.1) reduces to{

1 +
1
2
`
[
trJf + 2(h1 + h2)

]
+

1
4
`2

[
J11J22 + J12J21 + 2(h1J22 + h2J11)

+ 4h1h2

]}
λ2 −

{
trJf + `(J11J22 + h1J22 + h2J11)

}
λ+ det Jf = 0.

(3.2)
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Taking into account that det Jf = J11J22 − J12J21 > 0 and trJf = J11 + J22 = 0, it
can be seen that the coefficient of λ in (3.2) is of O(`). Thus, we have established
the following theorem.

Theorem 3.2. If the CS (1.1) with m = 2 undergoes a Hopf bifurcation at x∗,
then

HopfNS

∣∣
x∗

= HopfCS

∣∣
x∗

+O(`). (3.3)

Remark 3.3. The equation (3.3) is interpreted to mean that the bifurcation pa-
rameter of the NS and the corresponding eigenvalues and eigenvectors are each
subjected to an O(`) shift with respect to those of the CS.

Noting that trJf = 0 for the Hopf bifurcation of the CS (1.1) with m = 2, it
follows from equation (3.2) that no O(`) shift occurs for Hopf (Neimark-Sacker)
bifurcation of the scheme (2.1)-(2.2) if one of the following holds:

(i) J11 = 0 or J22 = 0;
(ii) J11J22 + h1J22 + h2J11 = 0.

Thus, in these cases the Hopf bifurcation of the NS is consistent with that of the
CS.

In the following, we consider the problem for a general m-dimensional system by
applying first-order perturbation theory [19] with step-size ` as the small param-
eter and Jf defining the zeroth-order problem. Let {α1, . . . , αm} be the discrete
spectrum of Jf at x∗ with {u1, . . . ,um} and {w1, . . . ,wm} as the corresponding
right and left eigenvectors, respectively, normalized such that

wT
i uj = δij =

{
1 if i = j,

0 if i 6= j
(3.4)

Let {λ1, . . . , λm} denote the spectrum of Jf −λ(I+ `V ) at x∗ with {ũ1, . . . , ũm}
and {w̃1, . . . , w̃m} as the corresponding right and left eigenvectors, respectively,
such that w̃T

i ũj = δij . Then, expanding λi, ũi, and w̃i, in terms of αi, ui, and wi,
respectively, gives

λi = αi + `α
(1)
i + `2α

(2)
i + . . . , (3.5)

ũi = ui + `u(1)
i + `2u(2)

i + . . . , (3.6)

w̃i = wi + `w(1)
i + `2w(2)

i + . . . , (3.7)

where α(j)
i , u(j)

i and w(j)
i are yet to be determined. Using (3.5) and (3.6), it can

be seen that for ` > 0

0 =
[
Jf − λi(I + `V )

]
ũi = Jf (ui + `u(1)

i + `2u(2)
i + . . . )

− (αi + `α
(1)
i + `2α

(2)
i + . . . )(I + `V )(ui + `u(1)

i + `2u(2)
i + . . . )

(3.8)

Grouping terms according to powers of ` in (3.8) gives:

`0 − order : Jfui − αiui = 0, (3.9)

`1 − order : Jfu
(1)
i − αi(V ui + u(1)

i )− α
(1)
i ui = 0. (3.10)

Let u(1)
i =

∑
k a

(1)
ik uk, and substitute into (3.10) to obtain∑

k

a
(1)
ik (αk − αi)uk − αiV ui − α

(1)
i ui = 0. (3.11)
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Multiplying (3.11) by wT
j , and using (3.4), leads to

a
(1)
ik (αk − αi)− αi(wT

j V ui)− α
(1)
i δij = 0

Therefore,
a
(1)
ik =

αi

αk − αi
wT

k V ui, i 6= k (3.12)

and
α

(1)
i = −αi(wT

i V ui), i = k. (3.13)

It should be noted that a(1)
ii can be computed by normalizing of ũi and w̃i, for

example, |ũi|2 = 1, and using w̃T
j ũi = δij . Similar results can be obtained for the

left eigenvector w̃i. Thus, if the CS undergoes a Hopf bifurcation at x∗ (αi 6= 0,
i = 1, . . . ,m), then u(1)

i and w(1)
i are non-zero vectors, and consequently, the Hopf

bifurcation in the NS will be shifted by O(`), unless wT
i V ui = 0. Therefore, we

have established the following theorem.

Theorem 3.4. If the CS (1.1) undergoes a Hopf bifurcation at x∗ with the eigen-
values αi = iω (ω 6= 0), and wT

i V ui 6= 0 where ui and wi are the corresponding
right and left eigenvectors, respectively, then

Hopf NS

∣∣
x∗

= Hopf CS

∣∣
x∗

+O(`). (3.14)

Remark 3.5. It is worth noting from equations (3.12) and (3.13), that the eigen-
values and eigenvectors at the center eigenspace of the NS remain unshifted to O(`)
for codimension-zero bifurcations with simple zero eigenvalue, with respect to those
of the CS. This is consistent with the conclusion of Theorem 3.1 for transcritical,
pitchfork, and saddle-node bifurcations.

4. Examples

In this section, we shall detail our results for two examples of biological phenom-
ena in ecological modelling and an oscillation chemical reaction.

4.1. Predator-prey system of Gause-type. A well-known model of species in-
teraction in an ecosystem is the predator-prey model of Gause-type given by [2]:

ẋ = rx(1− x/k)− yφ(x), (4.1)

ẏ = y(µψ(x)−D). (4.2)

where x and y are the prey and the predator population size, respectively, and the
dot “ ˙ ” represents the operator d/dt. The parameters r, µ, D, and k are positive
and denote, respectively, the prey intrinsic growth rate, conversion rate of prey to
predator, the predator death rate, and carrying capacity of the prey. The function
φ(x) is called the functional response of predator to prey, and satisfies the following
assumptions:

(A1) φ(0) = 0;
(A2) φ′(x) > 0 for x ≥ 0;
(A3) φ′′(x) < 0, for x ≥ 0;
(A4) limx→∞ φ(x) <∞.

The predator growth depends on the presence of prey and is proportional to the
number of prey. Thus, ψ(x) may be interpreted as the proportion of prey which is
eaten by the predators, and satisfies the following assumptions
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(A5) ψ(0) = 0;
(A6) ψ′(x) ≥ 0 for x ≥ 0.

There are a number of functional responses satisfying (A1)-(A6), such as Ivlev-
type [5, 15], Rosenzweig [12], sigmoid [3], and Holling-types II and III [4, 16] func-
tional responses. The literature on the dynamics of (4.1)-(4.2) is vast and we refer
the reader to [2, 4, 9] for general references citing related studies.

Using the assumptions (A1)-(A6), the model (4.1)-(4.2) can be written in the
form of (1.1), where

g1(x, y) = 2rx, h1(x, y) = r(1 + x/k) + yφ̃(x),

g2(x, y) = 2µyψ(x), h2(x, y) = µψ(x) +D,

with φ(x) ≡ xφ̃(x). In order to illustrate the predictions by Theorems 3.1 and
3.2, we use the results derived in our previous work [9, 10]. It is easy to see that
E0 = (0, 0) and Ek = (k, 0) are two equilibria on the boundary of the positively
invariant region of the model. From the linearized system, it can be seen that
E0 is a saddle point with the stable manifold on the y-axis and unstable manifold
on the x-axis. It is also easy to check that Ek is locally asymptotically stable if
µψ(k) < D; and unstable (saddle point) if µψ(k) > D. In fact, the model undergoes
a transcritical bifurcation at Ek when the bifurcation parameter k passes through
the critical value k0 for which µψ(k0) = D (see [9]). Using the center manifold
theorem, it can be seen [9] that the equation for ξ ≡ −y/r on the center manifold
is

ξ̇ = µψ′(k0)
[
φ(k0)ξ + 2(k − k0)

]
ξ +O(3). (4.3)

It is important to note that the associated numerical scheme also undergoes a
transcritical bifurcation at the fixed point Ek when k passes through k0, and the
equation for θn ≡ −ξn/r on the center manifold is given by

θn+1 = θn +
`µψ′(k0)
1 + 2`D

[
φ(k0)θn + 2(k − k0)

]
θn +O(3). (4.4)

Equations (4.3) and (4.4) together imply that the transcritical bifurcation of the
numerical scheme at Ek is consistent with that of the continuous model (4.1)-(4.2),
as predicted by Theorem 3.1. For more details about the derivation of equations
(4.3) and (4.4), the reader may consult [9].

In previous work [10], we have shown that the model (4.1)-(4.2) undergoes a
Hopf bifurcation at the positive critical point E∗ = (x∗, y∗) in the first quadrant
when k passes through a critical value kc, where

ψ(x∗) =
D

µ
, y∗ =

rx∗(1− x∗/k)
φ(x∗)

.

Evaluating the Jacobian of (4.1)-(4.2) at E∗ gives J11 = r(1− 2x∗/k)− y∗φ′(x∗)
and J22 = 0. Thus, trJf = J11, and

J11J22 + h1J22 + h2J11 = h2J11,

which is proportional to trJf . From the discussion following Theorem 3.2, it fol-
lows that the Hopf bifurcation of the NS at E∗ is consistent with that of the system
(4.1)-(4.2). It can also be seen that (4.1)-(4.2) undergoes a Hopf bifurcation at E∗
if k = kc for which J11(kc) = 0 (see [10]). In summary, the scheme reproduces
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the qualitative behavior of the continuous system such as bifurcations (and conse-
quently the system’s asymptotic behavior as well), regardless of the value of the
step-size `.

4.2. Brusselator system. The Brusselator is a system of differential equations
which describes an autocatalytic oscillating chemical system in which a species
acts to increase the rate of producing reaction [1]. The reaction equations for the
Brusselator system are given by

A −→ X B +X −→ Y + C 2X + Y −→ 3X X −→ D

where A and B are input chemical species, C and D are reaction products, and
X and Y are two autocatalytic species. This mechanism can be mathematically
expressed by the following system of differential equations [13, 17]:

Ẋ = B +X2Y − (1 +A)X, (4.5)

Ẏ = AX −X2Y, (4.6)

where A,B > 0. More details about this system can be found in [17].
The system (4.5)-(4.6) can be expressed as the form (1.1), where

g1(X,Y ) = B + 2X2Y h1(X,Y ) = XY + (1 +A)

g2(X,Y ) = AX h2(X,Y ) = X2

Since (4.5)-(4.6) are of the form given in (1.1), it follows that the first quadrant
is a positively invariant region. Also, Ec = (B,A/B) is the unique equilibrium
point of the system in R2

+. In order to analyze the bifurcation of the numerical
scheme, we evaluate the Jacobian (Jc) of the system at Ec. A simple calculation
yields that detJc = B2 > 0 and trJc = A− 1−B2. Thus, the system undergoes a
Hopf bifurcation at Ec if trJc = 0. Evaluating the characteristic equation (3.2) for
the NS gives {

1 +
1
2
`
[
1 + 5A+B2{1 + `(1/2 + 2A)}

]}
λ2

+
{
`(1 + 2A)B2 − trJc

}
λ+B2 = 0

(4.7)

It is clear that the term (1 + 2A)B2 in the coefficient of λ is not proportional to
trJc, and does not vanish as long as B > 0. Thus, the numerical scheme undergoes
a Hopf bifurcation at Ec if ` = `c in the equation

B2 =
A− 1

1 + `c(1 + 2A)
= A− 1 +O(`c). (4.8)

This equation implies that there is an O(`) shift in Hopf bifurcation of the
numerical scheme as predicted by Theorem 3.2. Thus, the scheme can reproduce
the bifurcation (and consequently asymptotic) behaviors of the Brusselator system
whenever ` < `c.

To illustrate the results for this system, numerical simulations were performed
using parameter values A = 2.5 and B = 1. Figure 1 illustrates the profiles of
some solutions for ` = 0.08 < `c. Note that, in this case, `c = 0.0833333, and
the Brusselator system has a stable limit cycle surrounding Ec. By increasing
the step-size to ` = 0.9 > `c, the scheme fails to reproduce the Hopf bifurcation
of the system, and therefore it converges to Ec which, in the CS, is an unstable
equilibrium. Hence, the scheme-failures occur for capturing the actual dynamics of
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the continuous system including bifurcation and asymptotic behaviors. This case
is illustrated in Figure 2.

It is important to note that, although the NS reproduces the Hopf bifurcation
in the CS for ` < `c, the actual limit cycle arising from the Hopf bifurcation in the
CS will be captured only as `→ 0 (See Figure 3).

0.5 1 1.5 2 2.5 3 3.5
0.5

1

1.5

2

2.5

3

3.5

X

Y

E
c
 

Figure 1. Profiles of some solutions of the Brusselator system for
` = 0.08 < `c approaching the stable limit cycle created by the
Hopf bifurcation.

5. Discussion

In this paper, we considered the quantitative dynamics of the m-dimensional
continuous system (1.1), by constructing the non-standard finite-difference scheme
(2.1)-(2.2). The scheme was analyzed in order to establish a connection between the
bifurcation behaviors of the CS and the NS. We showed that, if the CS undergoes
a transcritical, pitchfork, or saddle-node bifurcation, then the NS reproduces the
bifurcations with the same parameter values, regardless of the value of the step-size.
On the other hand, except for well-defined special cases, the bifurcation parameter
value for the NS is in general subject to O(`) shift, if the CS undergoes a Hopf
bifurcation.

The analysis of the NS reflects the bifurcation behavior of the CS for which
the corresponding Jacobian has simple eigenvalues. The results can be extended
to examine the bifurcations of the NS with repeated eigenvalues. For example, if
the CS undergoes a Bogdanov-Takens bifurcation (as a result of merging a saddle-
node and a Hopf bifurcation), then equation (3.14) shows that the corresponding
bifurcation in the NS occurs in general with an O(`) shift in the bifurcation param-
eter. Bogdanov-Takens is a codimension-1 bifurcation with double zero eigenvalue.
However, if m > 2, for bifurcations with repeated eigenvalues, such as degenerate
Hopf and others of codimension-1 and higher, it is necessary first to identify the
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Figure 2. Profiles of some solutions of the Brusselator system for
` = 0.09 > `c approaching the unstable equilibrium point Ec of
the CS.
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Figure 3. Phase portraits showing the limit cycles for different
values of ` < `c and A = 1.5, B = 1. The sequence of limit cycles
approach the actual limit cycle created by the Hopf bifurcation in
the CS as `→ 0.

two-dimensional center eigenspace and center manifold in which the bifurcation oc-
curs. On the center manifold, the normal form of the NS can be explicitly derived
from (2.1)-(2.2) and compared with the corresponding normal form of the CS [9].
This comparison allows us to determine the relationship between the bifurcation



EJDE/CONF/12 HOPF BIFURCATIONS FOR NON-STANDARD NUMERICAL SCHEMES 19

behavior of the CS and that of the NS, in terms of the step-size `. This can be
achieved by an extension of the perturbation techniques employed in bifurcation
analysis of the NS in Section 3, and is currently under investigation.
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