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OSCILLATION CRITERIA FOR FUNCTIONAL DIFFERENTIAL
EQUATIONS

IOANNIS P. STAVROULAKIS

Abstract. Consider the first-order linear delay differential equation

x′(t) + p(t)x(τ(t)) = 0, t ≥ t0,

and the second-order linear delay equation

x′′(t) + p(t)x(τ(t)) = 0, t ≥ t0,

where p and τ are continuous functions on [t0,∞), p(t) > 0, τ(t) is non-
decreasing, τ(t) ≤ t for t ≥ t0 and limt→∞ τ(t) = ∞. Several oscillation

criteria are presented for the first-order equation when

0 < lim inf
t→∞

∫ t

τ(t)
p(s)ds ≤

1

e
and lim sup

t→∞

∫ t

τ(t)
p(s)ds < 1,

and for the second-order equation when

lim inf
t→∞

∫ t

τ(t)
τ(s)p(s)ds ≤

1

e
and lim sup

t→∞

∫ t

τ(t)
τ(s)p(s)ds < 1 .

1. Introduction

The problem of establishing sufficient conditions for the oscillation of all solutions
to the first-order differential equation

x′(t) + p(t)x(τ(t)) = 0, t ≥ t0, (1.1)

and to the second-order equation

x′′(t) + p(t)x(τ(t)) = 0, t ≥ t0, (1.2)

where p ∈ C([t0,∞), R+) (here R+ = [0,∞)), τ ∈ C([t0,∞), R), τ(t) is non-
decreasing, τ(t) ≤ t for t ≥ t0 and limt→∞ τ(t) = ∞, has been the subject of many
investigations. See, for example the references in this article and the references
cited therein.

By a solution of (1.1) (resp. (1.2)) we understand a continuously differentiable
function defined on [τ(T0),∞) for some T0 ≥ t0 and such that (1.1) (resp. (1.2)) is
satisfied for t ≥ T0. Such a solution is called oscillatory if it has arbitrarily large
zeros, and otherwise it is called nonoscillatory.
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In this paper our main purpose is to present the state of the art on the oscillation
of all solutions to (1.1) especially in the case where

0 < lim inf
t→∞

∫ t

τ(t)

p(s)ds ≤ 1
e

and lim sup
t→∞

∫ t

τ(t)

p(s)ds < 1,

and for (1.2) when

lim inf
t→∞

∫ t

τ(t)

τ(s)p(s)ds ≤ 1
e

and lim sup
t→∞

∫ t

τ(t)

τ(s)p(s)ds < 1.

2. Oscillation criteria for the first-order equation

In this section we study the delay equation (1.1). The first systematic study for
the oscillation of all solutions to (1.1) was made by Myshkis. In 1950 [42] he proved
that every solution of (1.1) oscillates if

lim sup
t→∞

[t− τ(t)] < ∞ and lim inf
t→∞

[t− τ(t)] lim inf
t→∞

p(t) >
1
e
. (2.1)

In 1972, Ladas, Lakshmikantham and Papadakis [33] proved that the same conclu-
sion holds if

A := lim sup
t→∞

∫ t

τ(t)

p(s)ds > 1. (2.2)

In 1979, Ladas [32] established integral conditions for the oscillation of (1.1) with
constant delay. Tomaras [54-56] extended this result to (1.1) with variable delay.
For related results see Ladde [36-38]. The following most general result is due to
Koplatadze and Canturija [25]. If

α := lim inf
t→∞

∫ t

τ(t)

p(s)ds >
1
e
, (2.3)

then all solutions of (1.1) oscillate; If

lim sup
t→∞

∫ t

τ(t)

p(s)ds <
1
e
, (2.4)

then (1.1) has a nonoscillatory solution.
In 1982 Ladas, Sficas and Stavroulakis [35] and in 1984 Fukagai and Kusano [13]

established oscillation criteria (of the type of conditions (2.2) and (2.3)) for (1.1)
with oscillating coefficient p(t).

It is obvious that there is a gap between the conditions (2.2) and (2.3) when
the limit limt→∞

∫ t

τ(t)
p(s)ds does not exist. How to fill this gap is an interesting

problem which has been recently investigated by several authors.
In 1988, Erbe and Zhang [12] developed new oscillation criteria by employing

the upper bound of the ratio x(τ(t))/x(t) for possible nonoscillatory solutions x(t)
of (1.1). Their result says that all the solutions of (1.1) are oscillatory, if 0 < α ≤ 1

e
and

A > 1− α2

4
. (2.5)

Since then, several authors tried to obtain better results by improving the upper
bound for x(τ(t))/x(t). In 1991, Jian [20] derived the condition

A > 1− α2

2(1− α)
, (2.6)
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while in 1992, Yu and Wang [63] and Yu, Wang, Zhang and Qian [64] obtained the
condition

A > 1− 1− α−
√

1− 2α− α2

2
. (2.7)

In 1990, Elbert and Stavroulakis [8] and in 1991 Kwong [30], using different tech-
niques, improved (2.5), in the case where 0 < α ≤ 1

e , to the conditions

A > 1− (1− 1√
λ1

)2 (2.8)

and

A >
lnλ1 + 1

λ1
, (2.9)

respectively, where λ1 is the smaller real root of the equation λ = eαλ.
In 1994, Koplatadze and Kvinikadze [26] improved (2.7), while in 1998, Philos

and Sficas [45] and in 1999, Zhou and Yu [65] and Jaroš and Stavroulakis [19]
derived the conditions

A > 1− α2

2(1− α)
− α2

2
λ1, (2.10)

A > 1− 1− α−
√

1− 2α− α2

2
− (1− 1√

λ1

)2, (2.11)

A >
lnλ1 + 1

λ1
− 1− α−

√
1− 2α− α2

2
, (2.12)

respectively.
Consider (1.1) and assume that τ(t) is continuously differentiable and that there

exists θ > 0 such that p(τ(t))τ ′(t) ≥ θp(t) eventually for all t. Under this addi-
tional condition, in 2000, Kon, Sficas and Stavroulakis [22] and in 2003, Sficas and
Stavroulakis [46] established the conditions

A >
lnλ1 + 1

λ1
−

1− α−
√

(1− α)2 − 4Θ
2

(2.13)

and

A >
lnλ1

λ1
− 1 +

√
1 + 2θ − 2θλ1M

θλ1
(2.14)

respectively, where

Θ =
eλ1θα − λ1θα− 1

(λ1θ)2

and

M =
1− α−

√
(1− α)2 − 4Θ
2

.

Remark 2.1 ([22, 46]). Observe that when θ = 1, then Θ = λ1−λ1α−1
λ12 , and (2.13)

reduces to

A > 2α +
2
λ1
− 1, (2.15)

while in this case it follows that M = 1− α− 1
λ1

and (2.14) reduces to

A >
lnλ1 − 1 +

√
5− 2λ1 + 2αλ1

λ1
. (2.16)
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In the case where α = 1
e , then λ1 = e, and (2.16) leads to

A >

√
7− 2e

e
≈ 0.459987065.

It is to be noted that as α → 0, then all the previous conditions (2.5)-(2.15) reduce
to the condition (2.2), i.e. A > 1. However, the condition (2.16) leads to

A >
√

3− 1 ≈ 0.732,

which is an essential improvement. Moreover (2.16) improves all the above condi-
tions when 0 < α ≤ 1/e as well. Note that the value of the lower bound on A can
not be less than

1
e
≈ 0.367879441.

Thus the aim is to establish a condition which leads to a value as close as possible
to 1/e. For illustrative purpose, we give the values of the lower bound on A under
these conditions when α = 1/e.

Condition Lower bound
(2.5) 0.966166179
(2.6) 0.892951367
(2.7) 0.863457014
(2.8) 0.845181878
(2.9) 0.735758882
(2.10) 0.709011646
(2.11) 0.708638892
(2.12) 0.599215896
(2.15) 0.471517764
(2.16) 0.459987065

We see that the condition (2.16) essentially improves all the known results in the
literature.

Example 2.2 ([46]). Consider the delay differential equation

x′(t) + px
(
t− q sin2

√
t− 1

pe

)
= 0,

where p > 0, q > 0 and pq = 0.46− 1
e . Then

α = lim inf
t→∞

∫ t

τ(t)

pds = lim inf
t→∞

p(q sin2
√

t +
1
pe

) =
1
e

and

A = lim sup
t→∞

∫ t

τ(t)

pds = lim sup
t→∞

p(q sin2
√

t +
1
pe

) = pq +
1
e

= 0.46 .

Thus, according to Remark 2.1, all solutions of this equation oscillate. Observe
that none of the conditions (2.5)-(2.15) apply to this equation.

Following this historical (and chronological) review we also mention that in the
case where ∫ t

τ(t)

p(s)ds ≥ 1
e

and lim
t→∞

∫ t

τ(t)

p(s)ds =
1
e

this problem has been studied in 1995, by Elbert and Stavroulakis [9], by Koza-
kiewicz [28], Li [40, 41], and in 1996, by Domshlak and Stavroulakis [6].
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3. Oscillation criteria for the second-order equation

In this section we study the second-order delay equation (1.2):

x′′(t) + p(t)x(τ(t)) = 0, t ≥ t0,

For the case of ordinary differential equations, i.e. when τ(t) ≡ t, the history of the
problem began as early as in 1836 by the work of Sturm [47] and was continued
in 1893 by Kneser [21]. Essential contribution to the subject was made by Hille,
Wintner, Hartman, Leighton, Nehari, and others (see the monograph by C. Swanson
[48] and the references cited therein). In particular, in 1948 Hille [17] obtained the
following well-known oscillation criteria. Let

lim sup
t→∞

t

∫ +∞

t

p(s)ds > 1 (3.1)

or

lim inf
t→∞

t

∫ +∞

t

p(s)ds >
1
4
, (3.2)

the conditions being assumed to be satisfied if the integral diverges. Then (1.2)
with τ(t) ≡ t is oscillatory.

For the delay differential equation (1.2) earlier oscillation results can be found
in the monographs by Myshkis [43] and Norkin [44]. In 1968 Waltman [57] and in
1970 Bradley [1] proved that (1.2) is oscillatory if∫ +∞

p(t)dt = +∞.

Proceeding in the direction of generalization of Hille’s criteria, in 1971 Wong [60]
showed that if τ(t) ≥ αt for t ≥ 0 with 0 < α ≤ 1, then the condition

lim inf
t→∞

t

∫ +∞

t

p(s)ds >
1
4α

(3.3)

is sufficient for the oscillation of (1.2). In 1973, Erbe [10] generalized this condition
to

lim inf
t→∞

t

∫ +∞

t

τ(s)
s

p(s)ds >
1
4

(3.4)

without any additional restriction on τ . In 1987, Yan [61] obtained some general
criteria improving the previous ones.

An oscillation criterion of different type is given in 1986 by Koplatadze [23] and
in 1988 by Wei [59], where it is proved that (1.2) is oscillatory if

lim sup
t→∞

∫ t

τ(t)

τ(s)p(s)ds > 1 (3.5)

or

lim inf
t→∞

∫ t

τ(t)

τ(s)p(s)ds >
1
e
. (3.6)

The conditions (3.5) and (3.6) are analogous to the oscillation conditions (2.2) and
(2.3) respectively, for the first order delay equation (1.1). The essential difference
between (3.3), (3.4) and (3.5), (3.6) is that the first two can guarantee oscillation
for ordinary differential equations as well, while the last two work only for delay
equations. Unlike first-order differential equations, where the oscillatory character
is due to the delay only, equation (1.2) can be oscillatory without any delay at
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all, i.e., in the case τ(t) ≡ t. Figuratively speaking, two factors contribute to the
oscillatory character of (1.2): the presence of the delay and the second order nature
of the equation. The conditions (3.3), (3.4) and (3.5), (3.6) illustrate the role of
these factors taken separately.

In what follows it will be assumed that the condition∫ +∞
τ(s)p(s)ds = +∞ (3.7)

is fulfilled. As it follows from [24, Lemma 4.1], this condition is necessary for (1.2)
to be oscillatory. The study being devoted to the problem of oscillation of (1.2),
the condition (3.7) does not affect the generality.

In this section oscillation results are obtained for (1.2) by reducing it to a first
order equation. Since for the latter the oscillation is due solely to the delay, the
criteria hold for delay equations only and do not work in the ordinary case.

Theorem 3.1 ([27]). Let (3.7) be fulfilled and the differential inequality

x′(t) +
(
τ(t) +

∫ τ(t)

T

ξτ(ξ)p(ξ)dξ
)
p(t)x(τ(t)) ≤ 0

have no eventually positive solution. Then (1.2) is oscillatory.

Note that Theorem 3.1 reduces the question of oscillation of (1.2) to that of the
absence of eventually positive solutions of the differential inequality

x′(t) +
(
τ(t) +

∫ τ(t)

T

ξτ(ξ)p(ξ)dξ
)
p(t)x(τ(t)) ≤ 0. (3.8)

So oscillation results for first order delay differential equations can be applied since
the oscillation of the equation

u′(t) + g(t)u(δ(t)) = 0 (3.9)

is equivalent to the absence of eventually positive solutions of the inequality

u′(t) + g(t)u(δ(t)) ≤ 0. (3.10)

This fact is a simple consequence of the following comparison theorem deriving the
oscillation of (3.9) from the oscillation of the equation

v′(t) + h(t)v(σ(t)) = 0. (3.11)

We assume that g, h : R+ → R+ are locally integrable, δ, σ : R+ → R are
continuous, δ(t) ≤ t, σ(t) ≤ t for t ∈ R+, and δ(t) → +∞, σ(t) → +∞ as t → +∞.

Theorem 3.2. Let g(t) ≥ h(t) and δ(t) ≤ σ(t) for t ∈ R+ and let (3.11) be
oscillatory. Then (3.9) is also oscillatory.

Corollary 3.3. Let (3.9) be oscillatory. Then the inequality (3.10) has no even-
tually positive solution.

Turning to applications of Theorem 3.1, we will use it together with the criteria
(2.2) and (2.3) to get the following result.

Theorem 3.4 ([27]). Let

K := lim sup
t→∞

∫ t

τ(t)

(
τ(s) +

∫ τ(s)

0

ξτ(ξ)p(ξ)dξ
)
p(s)ds > 1, (3.12)
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or

k := lim inf
t→∞

∫ t

τ(t)

(
τ(s) +

∫ τ(s)

0

ξτ(ξ)p(ξ)dξ
)
p(s)ds >

1
e
. (3.13)

Then (1.2) is oscillatory.

To apply Theorem 3.1 it suffices to note that: (i) (3.7) is fulfilled since otherwise
k = K = 0; (ii) since τ(t) → +∞ as t → +∞, the relations (3.12), (3.13) imply the
same relations with 0 changed by any T ≥ 0.

Remark 3.5 ([27]). Theorem 3.4 improves the criteria (3.5), (3.6) by Koplatadze
[23] and Wei [59] mentioned above. This is directly seen from (3.12), (3.13) and
can be easily checked if we take τ(t) ≡ t − τ0 and p(t) ≡ p0/(t − τ0) for t ≥ 2τ0,
where the constants τ0 > 0 and p0 > 0 satisfy

τ0p0 < 1/e.

In this case neither of (3.5), (3.6) is applicable for (1.2) while both (3.12), (3.13)
give the positive conclusion about its oscillation. Note also that this is exactly
the case where the oscillation is due to the delay since the corresponding equation
without delay is non-oscillatory.

Remark 3.6 ([27]). Criteria (3.12), (3.13) look like (2.2), (2.3) but there is an
essential difference between them as pointed out in the introduction. The condition
(2.3) is close to be the necessary one, since according to [25] if A ≤ 1/e, then (3.9)
is nonoscillatory. On the other hand, for an oscillatory equation (1.2) without delay
we have k = K = 0. Nevertheless, the constant 1/e in Theorem 3.4 is also the best
possible in the sense that for any ε ∈ (0, 1/e] it can not be replaced by 1/e − ε
without affecting the validity of the theorem. This is illustrated as follows.

Example 3.7 ([27]). Let ε ∈ (0, 1/e], 1 − eε < β < 1, τ(t) ≡ αt and p(t) ≡
β(1−β)α−βt−2, where α = exp( 1

β−1 ). Then (3.13) is fulfilled with 1/e replaced by
1/e− ε. Nevertheless (1.2) has a nonoscillatory solution, namely u(t) ≡ tβ . Indeed,
denoting c = β(1−β)α−β , we see that the expression under the limit sign in (3.13)
is constant and equals

αc| lnα|(1 + αc) = (β/e)(1 + (β(1− β))/e) > β/e > 1/e− ε.

Note that there is a gap between conditions (3.12) and (3.13) when 0 ≤ k ≤ 1/e,
k < K. In the case of first order equations the conditions (2.5)–(2.16) attempt
to fill this gap. Using results in this direction, one can derive various sufficient
conditions for the oscillation of (1.2). According to Remark 2, neither of them
can be optimal in the above sense but, nevertheless, they are of interest since they
cannot be derived from other known results in the literature. We combine Theorem
3.1 and [19, Corollary 1] to obtain the following result.

Theorem 3.8 ([27]). Let K and k be defined by (3.12), (3.13), 0 ≤ k ≤ 1/e and

K > k +
1

λ(k)
− 1− k −

√
1− 2k − k2

2
(3.14)

where λ(k) is the smaller root of the equation λ = exp(kλ). Then (1.2) is oscilla-
tory.

Note that condition (3.14) is analogous to condition (2.12).



178 I. P. STAVROULAKIS EJDE/CONF/12

Acknowledgment. The author would like to thank the referee for some useful
remarks.

References

[1] J. S. Bradley; Oscillation theorems for a second order equation. J. Differential Equations, 8
(1970), 397-403.

[2] J. Diblik; Positive and oscillating solutions of differential equations with delay in critical case,

J. Comput. Appl. Math. 88 (1998), 185-2002.
[3] Y. Domshlak; Sturmian comparison method in oscillation study for discrete difference equa-

tions, I, J. Diff. Integr. Eqs, 7 (1994), 571-582.

[4] Y. Domshlak; Delay-difference equations with periodic coefficients: sharp results in oscillation
theory, Math. Inequal. Appl., 1 (1998), 403-422.

[5] Y. Domshlak and A. Aliev; On oscillatory properties of the first order differential equations

with one or two retarded arguments, Hiroshima Math. J. 18 (1998), 31-46.
[6] Y. Domshlak and I. P. Stavroulakis; Oscillations of first-order delay differential equations in

a critical state, Applicable Anal., 61 (1996), 359-377.
[7] R. Edwards; Functional analysis. Theory and applications. Holt, Rinehart and Winston,

Chicago - San Francisco - Toronto, 1965.
[8] A. Elbert and I. P. Stavroulakis; Oscillations of first order differential equations with deviating

arguments, Univ of Ioannina T.R. No 172 1990, Recent trends in differential equations, 163-
178, World Sci. Ser. Appl. Anal.,1, World Sci. Publishing Co. (1992).

[9] A. Elbert and I. P. Stavroulakis; Oscillation and non-oscillation criteria for delay differential
equations, Proc. Amer. Math. Soc., 123 (1995), 1503-1510.

[10] L. H. Erbe; Oscillation criteria for second order nonlinear delay equations, Canad. Math.

Bull. 16 (1973), 49-56.
[11] L. H. Erbe, Qingkai Kong and B. G. Zhang; Oscillation Theory for Functional Differential

Equations, Marcel Dekker, New York, 1995.

[12] L. H. Erbe and B. G. Zhang; Oscillation of first order linear differential equations with
deviating arguments, Differential Integral Equations, 1 (1988), 305-314.

[13] N. Fukagai and T. Kusano; Oscillation theory of first order functional differential equations
with deviating arguments, Ann. Mat. Pura Appl., 136 (1984), 95-117.

[14] K. Gopalsamy; Stability and Oscillations in Delay Differential Equations of Population Dy-

namics, Kluwer Academic Publishers, 1992.
[15] I. Gyori and G. Ladas; Oscillation Theory of Delay Differential Equatiosn with Applications,

Clarendon Press, Oxford, 1991.

[16] J. K. Hale; Theory of Functional Differential Equations, Springer-Verlag, New York, 1997.
[17] E. Hille; Nonoscillation theorems, Trans. Amer. Math. Soc. 64(1948), 234-252.

[18] A. F. Ivanov, and V. N. Shevelo; Oscillation and asymptotic behavior of solutions of first

order differential equations, Ukrain, Math. Zh., 33 (1981), 745-751, 859.
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