2003 Colloquium on Differential Equations and Applications, Maracaibo, Venezuela.
Electron. J. Diff. Eqns., Conference 13, 2005, pp. 29-34.

Critical points of the steady state of a Fokker-Planck equation

Jorge Guinez, Robert Quintero, Angel D. Rueda

Abstract:
In this paper we consider a set of vector fields over the torus for which we can associate a positive function $v_{\epsilon }$ which define for some of them in a solution of the Fokker-Planck equation with $\epsilon $ diffusion:
$$
 \epsilon \Delta v_{\epsilon }-\mathop{\rm div}(v_{\epsilon }X)=0\,.
 $$
Within this class of vector fields we prove that $X$ is a gradient vector field if and only if at least one of the critical points of $v_{\epsilon }$ is a stationary point of $X$, for an $\epsilon >0$. In particular we show a vector field which is stable in the sense of Zeeman but structurally unstable in the Andronov-Pontriaguin sense. A generalization of some results to other kind of compact manifolds is made.

Published May 30, 2005.
Math Subject Classifications: 58J60, 37C20.
Key Words: Almost gradient vector fields.

Show me the PDF file (193K), TEX file, and other files for this article.

Jorge Guíñez
Centro de Investigación de Matemática Aplicada (C.I.M.A.)
Facultad de Ingeniería, Universidad del Zulia
Apartado 10482, Maracaibo, Venezuela
email: jguinez@luz.edu.ve
Robert Quintero
Centro de Investigación de Matemática Aplicada (C.I.M.A.)
Facultad de Ingeniería, Universidad del Zulia
Apartado 10482, Maracaibo, Venezuela
email: rquintero@luz.edu.ve
Angel D. Rueda
Centro de Investigación de Matemática Aplicada (C.I.M.A.)
Facultad de Ingeniería, Universidad del Zulia
Apartado 10482, Maracaibo, Venezuela
email: ad-rueda@cantv.net

Return to the EJDE web page