Jorge Guinez, Robert Quintero, Angel D. Rueda
Abstract:
In this paper we consider a set of vector fields over the
torus for which we can associate a positive function
which define for some of them in a solution
of the Fokker-Planck equation with
diffusion:
Within this class of vector fields we prove that
is a gradient vector field if and only if at least one of the
critical points of
is a stationary point of
,
for an
.
In particular we show a vector
field which is stable in the sense of Zeeman but structurally
unstable in the Andronov-Pontriaguin sense. A generalization
of some results to other kind of compact manifolds is made.
Published May 30, 2005.
Math Subject Classifications: 58J60, 37C20.
Key Words: Almost gradient vector fields.
Show me the PDF file (193K), TEX file, and other files for this article.
![]() |
Jorge Guíñez Centro de Investigación de Matemática Aplicada (C.I.M.A.) Facultad de Ingeniería, Universidad del Zulia Apartado 10482, Maracaibo, Venezuela email: jguinez@luz.edu.ve |
---|---|
![]() |
Robert Quintero Centro de Investigación de Matemática Aplicada (C.I.M.A.) Facultad de Ingeniería, Universidad del Zulia Apartado 10482, Maracaibo, Venezuela email: rquintero@luz.edu.ve |
![]() |
Angel D. Rueda Centro de Investigación de Matemática Aplicada (C.I.M.A.) Facultad de Ingeniería, Universidad del Zulia Apartado 10482, Maracaibo, Venezuela email: ad-rueda@cantv.net |
Return to the EJDE web page