UNIFORMLY ERGODIC THEOREM FOR COMMUTING
MULTIOPERATORS

SAMIR LAHRECH, ABDERRAHIM MBARKI, ABDELMALEK OUAHAB, SAID RAIS

Abstract. In this paper, we established some uniformly Ergodic theorems by using multioperators satisfying the E-k condition introduce in [3]. One consequence, is that if \(I - T \) is quasi-Fredholm and satisfies E-k condition then T is uniformly ergodic. Also we give some conditions for uniform ergodicity of a commuting multioperators satisfies condition E-k. These results are of interest in view of analogous results for unvalued operators (see, for example [2]) also in view of the recent developments in the ergodic theory and its applications.

1. Introduction and main results

Throughout this paper, \(X \) is a complex Banach space, and \(L(X) \) is the algebra of linear continuous operators acting in \(X \). If there is an integer \(n \) for which \(T^{n+1}X = T^nX \), then we say that \(T \) has finite descent and the smallest integer \(d(T) \) for which equality occurs is called the descent of \(T \). If there is exists an integer \(m \) for which \(\ker T^{m+1} = \ker T^m \), then \(T \) is said to have finite ascent and the smallest integer \(a(T) \) for this equality occurs is called ascent of \(T \). If both \(a(T) \) and \(d(T) \) are finite, then they are equal [1, 38.3]. We say that \(T \) is chain-finite and that its chain length is this common minimal value. Moreover [1, 38.4], in this case there is a decomposition of the vector space

\[
X = T^{d(T)}X \oplus \ker T^{d(T)}.
\]

We now focus on the topological situation: For every \(T \in L(X) \) we set

\[
M_i(T) = i^{-1}(I + T + T^2 + \cdots + T^{i-1}), \quad i = 1, 2, 3, \ldots,
\]

i.e. the averages associated with \(T \), where \(I = id_X \) is the identity of \(X \). If \(T = (T_1, T_2, \ldots, T_n) \in L(X)^n \) is commuting multioperator (briefly, c.m.), we also set

\[
M_v(T) = M_{v_1}(T_1)M_{v_2}(T_2)\cdots M_{v_n}(T_n), \quad v \in Z^n_+, \quad v \geq e,
\]

where \(Z^n_+ \) is the family of multi-indices of length \(n \) (i.e. \(n \)-tuples of nonnegative integers) and \(e := (1, 1, \ldots, 1) \in Z^n_+ \). In other words, (1.2) defines the averages associated with \(T \).

2000 Mathematics Subject Classification. 47A35, 47A13.

Key words and phrases. Average; E-k condition; finite descent; uniform ergodicity.

©2006 Texas State University - San Marcos.
Published September 20, 2006.

227
Definition 1.1. A commuting multioperator \(T \in L(X)^n \) is said to be uniformly ergodic if the limit
\[
\lim_v M_v(T)
\]
exists in the uniform topology of \(L(X) \).

Remark 1.2. (a) If \(n = 1 \), then (1.3) is automatically fulfilled, and therefore the above definition extends the usual concept of uniformly ergodic operator (see, for example [2]).

(b) If \(T = (I, \ldots , T_j, I, \ldots , I) \in L(X)^n \), then \(T \) is uniformly ergodic if and only the \(\lim_v M_v(T) \) exists in the uniform topology of \(L(X) \).

Definition 1.3. Let \(k = (k_1, \ldots , k_n) \in \mathbb{Z}_+^n \) and \(T \in L(X)^n \) be a c.m. We say that \(T \) satisfies condition E-k if \(\lim_v (I - T_j)^{k_j} M_v(T) = 0 \) for each \(j \in \{1, \ldots , n\} \).

It is clear that condition E-k implies condition E-n for any \(n \geq k \). Thus we see that the example \(T = (T_1, I, \ldots , I) \in \mathbb{Z}_+^n \) with
\[
T_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
\]
This shows that E-2e is strictly weaker than E-e.

Theorem 1.4. Let \(k \in \mathbb{Z}_+^n \). Suppose \(T \in L(X)^n \) satisfies condition E-k and \(\sum_{j=1}^n (I - T_j)^{k_j} X \), \(\sum_{j=1}^n (I^* - T_j)^{k_j} X^* \) are closed in \(X \) and \(X^* \) respectively. If \(\big[\sum_{j=1}^n (I - T_j)^{k_j} X \big] \cap \big[\cap_{j=1}^n \ker(I - T_j)^{k_j} \big] = \{0\} \). Then \(T \) is uniformly ergodic

Proof. Arguing exactly as in [5, Theorem 1], with \(\delta_T \) and \(\gamma_T \) given by
\[
\oplus_{j=1}^n x_j \rightarrow \delta_T(\oplus_{j=1}^n x_j) = \sum_{j=1}^n (I - T_j)^{k_j} x_j \text{ and } x \rightarrow \gamma_T(x) = \oplus_{j=1}^n (I - T_j)^{k_j} x.
\]

Theorem 1.5. Let \(T \in L(X) \) satisfy condition E-r, and one of the following nine conditions:

(a) \(I - T \) has chain length at most \(r \)
(b) 1 is a pole of the resolvent of order at most \(r \)
(c) \(I - T \) is quasi-Fredholm operator
(d) \((I - T)^r X \) is closed and \(\ker(I - T)^r \) has a closed \(T \)-invariant complement
(e) \((I - T)^r X \bigoplus \ker(I - T)^r = (I - T)^r X + \ker(I - T)^r \)
(f) \((I - T)^m X \) is closed for all \(m \geq r \)
(g) \((I - T)^r X \) is closed
(h) \((I - T)^m X \) is closed for some \(m \geq r \)
(i) \(I - T \) has finite descent.

Then \(T \) is uniformly ergodic.

Proof. Firstly, from [3, Theorem 6], the above statements (a)–(i) are equivalent. Then, take \(G = (T, I, \ldots , I) \in L(X)^n \) and \(k = (r, 1, \ldots , 1) \in \mathbb{Z}_+^n \); Therefore, we have \(\sum_{j=1}^n (I - G_j)^{k_j} X = (I - T)^r X \) is closed, it follows that \(\sum_{j=1}^n (I^* - G_j)^{k_j} X^* = (I^* - T^r)^r X^* \) is closed, which implies since \((I - T)^r X \cap \ker(I - T)^r = \{0\} \), that \(G \) is uniformly ergodic in \(L(X)^n \). From Theorem 1.4 this means that \(T \) is uniformly ergodic in \(L(X) \).
Theorem 1.6. Let $k \in \mathbb{Z}^n$. If $T \in L(X)^n$ A c.m. satisfies condition E-k, such that
$\sum_{j=1}^{n} (I-T_j)$ has chain length at most 1 and $\ker(\sum_{j=1}^{n}(I-T_j)) = \cap_{j=1}^{n} \ker(I-T_j)$.

Then T is uniformly ergodic.

Proof. There are two cases

Case 1: $d(\sum_{j=1}^{n}(I-T_j)) = 0$. Then $\sum_{j=1}^{n}(I-T_j)$ is bijective then $X = \sum_{j=1}^{n}(I-T_j)X \oplus \ker(\sum_{j=1}^{n}(I-T_j))$, which implies, since $\cap_{j=1}^{n} \ker(I-T_j) \subset \ker(\sum_{j=1}^{n}(I-T_j)) = \{0\}$ that $X = \sum_{j=1}^{n}(I-T_j)X \oplus \cap_{j=1}^{n} \ker(I-T_j)$, from the [3, Theorem 10] we obtain T is uniformly ergodic.

Case 2: $d(\sum_{j=1}^{n}(I-T_j)) = 1$. Then $\big((\sum_{j=1}^{n}(I-T_j))X = (\sum_{j=1}^{n}(I-T_j))^2X$, so $(\sum_{j=1}^{n}(I-T_j))X = (\sum_{j=1}^{n}(I-T_j))^r(\sum_{j=1}^{n}(I-T_j))X$, with $r = \max_{1 \leq j \leq n} k_j$, so $(\sum_{j=1}^{n}(I-T_j))^r$ is a bijection of $(\sum_{j=1}^{n}(I-T_j))X$ onto itself. Which implies, since T satisfies condition E-k, that $M_r(T)|\big((\sum_{j=1}^{n}(I-T_j))X \to 0$ and since $M_r(T)|\cap_{j=1}^{n} \ker(I-T_j)$, it follows that T is uniformly ergodic. \qed

References

Samir Lahrech
Département de Mathématiques, Université Oujda, 60000 Oujda, Morocco
E-mail address: lahrech@sciences.univ-oujda.ac.ma

Abderrahim Mbarki
Current address: National school of Applied Sciences, P.O. Box 669, Oujda University, Morocco
E-mail address: ambarki@enssa.univ-oujda.ac.ma

Abdelmalek Ouahab
Département de Mathématiques, Université Oujda, 60000 Oujda, Morocco
E-mail address: ouahab@sciences.univ-oujda.ac.ma

Said Rais
Département de Mathématiques, Université Oujda, 60000 Oujda, Morocco
E-mail address: saidrais@yahoo.fr