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ON THE EXACT MULTIPLICITY OF SOLUTIONS FOR
BOUNDARY-VALUE PROBLEMS VIA COMPUTING THE

DIRECTION OF BIFURCATIONS

JOAQUIN RIVERA, YI LI

Dedicated to Louis Nirenberg on his 80-th birthday

Abstract. We consider positive solutions of the Dirichlet problem

u′′(x) + λf(u(x)) = 0 in (−1, 1),

u(−1) = u(1) = 0.

depending on a positive parameter λ. We use two formulas derived in [18] to

compute all solutions u where a turn may occur and to compute the direction

of the turn. As an application, we consider quintic a polynomial f(u) with
positive and distinct roots. For such quintic polynomials we conjecture the

exact mutiplicity structure of positive solutions and present computer assisted

proofs of such exact bifurcation diagrams for various distributions of the real
roots. The limiting behavior of the solutions on these bifurcation branches as

λ→∞ and their stabilities are also investigated.

1. Introduction

We study exact bifurcation diagrams and exact multiplicity of the positive solu-
tions to the Dirichlet problem

u′′(x) + λf(u(x)) = 0 on (−1, 1),

u(−1) = u(1) = 0,
(1.1)

depending on a positive parameter λ. We recall that solutions of (1.1) are even
functions, with u′(x) < 0 for x > 0, and hence any solution is uniquely identified
by α = u(0), see [15]. Actually, even more is true: the value of u(0) = α uniquely
identifies both λ and u(x), as follows easily by scaling λ out of (1.1), and using
uniqueness for initial value problems, see Dancer [7]. Hence the solution curves
of (1.1) can be faithfully depicted by two-dimensional curves on (λ, α) plane. It is
customary to refer to these curves as bifurcation diagrams. The Figure 1 below gives
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such a bifurcation diagram for a quintic polynomial with real roots at 0.1, 0.2, 0.4
and 0.5. The shape of any bifurcation diagram is determined by the turning points.
In [18] a necessary and sufficient condition on α for the solution to be singular and
thus a necessary condition for the turning point to occur is given as follows:

G(α) ≡ F (α)1/2

∫ α

0

f(α)− f(τ)

[F (α)− F (τ)]3/2
dτ − 2 = 0, (1.2)

with F (u) =
∫ u

0
f(t) dt. This formula can be used to compute numerically all

turning points. At the turning points we are interested in the turning direction. It
is shown in [18] that the curve tuns to the right in (λ, α) plane if

D(α) ≡
∫ α

0

f ′′(u)
( ∫ α

u

f(s) ds
)( ∫ u

0

ds( ∫ α

s
f(t) dt

)3/2

)3

du < 0, (1.3)

and the turn is to the left if the opposite inequality is true.
In this paper we investigate the open problem of exact multiplicity in case of

a quintic function f(u). See [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 19, 21, 20, 24]
for other multiplicity results. We consider positive solutions in case f(u) = −(u−
a)(u−b)(u−c)(u−d)(u−e), i.e. it is a quintic whose roots are five distinct positive
constants 0 < a < b < c < d < e < ∞

u′′ + λ(u− a)(u− b)(u− c)(u− d)(u− e) = 0 in (−1, 1),

u(−1) = u(1) = 0,
(1.4)

and λ is a positive parameter. We wish to understand exactly how many solutions
this problem has, and how these solutions are connected, if one varies λ.

This problem when f(u) = −(u − a)(u − b)(u − c), a cubic polynomial, was
studied by Smoller and Wasserman [22], who attempted to solve the problem in
general, and succeeded in solving it for a = 0. Later Wang [23] solved the problem
under some restriction on a. Both authors used the phase-plane analysis. And as
it is explained in [18] that the approach in [22] could not possibly cover the general
case for other cubics. Then Korman, Li and Ouyang [15], [17] used bifurcation
theory to attack the problem, but again some restrictions were necessary (all of the
above mentioned papers covered more general f(u), behaving like cubic). Finally
in [18] the problem is completely solved for all such cubic polynomials as follows:

Theorem 1.1. Under the condition∫ c

a

f(t) dt > 0. (1.5)

Then there exists a critical λ0, such that problem (1.1) with f(u) = −(u − a)(u −
b)(u − c), 0 < a < b < c < ∞, has exactly one positive solution for 0 < λ < λ0,
exactly two positive solutions at λ = λ0, and exactly three positive solutions for
λ0 < λ < ∞. Moreover, all solutions lie on two smooth solution curves. One of
the curves, referred to as the lower curve, starts at (λ = 0, u = 0), it is increasing
in λ, and limλ→∞ u(x, λ) = a for x ∈ (−1, 1). The upper curve is a parabola-like
curve with exactly one turn to the right.

For the quintic nonlinear problem (1.4) we conjecture the following result.

Conjecture 1.2. The quintic nonlinearity problem (1.4) under the condition that∫ c

a

f(t) dt > 0 and
∫ e

c

f(t) dt > 0, (1.6)
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has the following solution structure: There exist two critical 0 < λ1, λ2, such that
the problem (1.1) with f(u) = −(u−a)(u−b)(u−c)(u−d)(u−e), 0 < a < b < c < ∞,
has exactly one positive solution for 0 < λ < min(λ1, λ2), exactly three positive
solutions for min(λ1, λ2) < λ < max(λ1, λ2), exactly five positive solutions for
max(λ1, λ2) < λ < ∞. Moreover, all solutions lie on three smooth solution curves.
One of the curves, referred to as the first curve Γ0, starts at (λ = 0, u = 0), it is
increasing in λ, and limλ→∞ u(x, λ) = a for x ∈ (−1, 1). The two other curves are
parabola-like curves with exactly one turn to the right. The second curve Γ1 has
a turning point at λ1 with limλ→∞,Γ+

1
u(0, λ) = c while limλ→∞,Γ−1

u(0, λ) = γ1.
The third curve Γ2 has a turning point at λ2 with limλ→∞,Γ+

2
u(0, λ) = e while

limλ→∞,Γ−2
u(0, λ) = γ2. Where γ1 is the unique root of

∫ γ1

a
f(t) dt = 0 in (b, c) and

γ2 is the unique root of
∫ γ2

c
f(t) dt = 0 in (d, e).

Conditions (1.6) follow from [12], who showed first that (1.6) was a sufficient
condition for the existence of positive solutions for (1.1). In [8] it was showed that
(1.6) was also a necessary condition for the existence of positive solution for the
problem. We provide a computer assisted proof for several groups of parameters
(a, b, c, d, e), thus giving a complete solution to the problem (1.4) for these param-
eter groups. The following is our result on exact multiplicity where the parameter
groups are defined as follows.

P1 ≡ {(a, b, c, d, e) ∈ R5 : (a, b, c, d, e) = (0.1t, 0.2t, 0.4t, 0.5t, t), t > 0};
P2 ≡ {(a, b, c, d, e) ∈ R5 : (a, b, c, d, e) = (0.1t, 0.2t, 0.4t, 0.6t, t), t > 0};
P3 ≡ {(a, b, c, d, e) ∈ R5 : (a, b, c, d, e) = (0.1t, 0.2t, 0.5t, 0.6t, t), t > 0};
P4 ≡ {(a, b, c, d, e) ∈ R5 : (a, b, c, d, e) = (0.1t, 0.2t, 0.5t, 0.7t, t), t > 0};
P5 ≡ {(a, b, c, d, e) ∈ R5 : (a, b, c, d, e) = (0.1t, 0.2t, 0.6t, 0.7t, t), t > 0};
P6 ≡ {(a, b, c, d, e) ∈ R5 : (a, b, c, d, e) = (0.1t, 0.2t, 0.6t, 0.8t, t), t > 0};
P7 ≡ {(a, b, c, d, e) ∈ R5 : (a, b, c, d, e) = (0.1t, 0.2t, 0.7t, 0.8t, t), t > 0};
P8 ≡ {(a, b, c, d, e) ∈ R5 : (a, b, c, d, e) = (0.2t, 0.3t, 0.5t, 0.6t, t), t > 0};
P9 ≡ {(a, b, c, d, e) ∈ R5 : (a, b, c, d, e) = (0.2t, 0.3t, 0.5t, 0.7t, t), t > 0};
P10 ≡ {(a, b, c, d, e) ∈ R5 : (a, b, c, d, e) = (0.2t, 0.3t, 0.6t, 0.7t, t), t > 0};
P11 ≡ {(a, b, c, d, e) ∈ R5 : (a, b, c, d, e) = (0.2t, 0.3t, 0.6t, 0.8t, t), t > 0};
P12 ≡ {(a, b, c, d, e) ∈ R5 : (a, b, c, d, e) = (0.2t, 0.3t, 0.7t, 0.8t, t), t > 0};
P13 ≡ {(a, b, c, d, e) ∈ R5 : (a, b, c, d, e) = (0.2t, 0.3t, 0.8t, 0.9t, t), t > 0};
P14 ≡ {(a, b, c, d, e) ∈ R5 : (a, b, c, d, e) = (0.3t, 0.4t, 0.7t, 0.8t, t), t > 0}.

(1.7)

Theorem 1.3. For each parameter group defined above in (1.7) Pi, i = 1 . . . 14,
there is an open neighborhood Ui of Pi, i = 1 . . . 14 in R5 such that the above con-
jecture holds for (a, b, c, d, e) ∈ Ui, i = 1 . . . 14.

Our proof of this theorem is based on two numerical computations, which would
constitute a “traditional” proof if their results could be analytically justified. Our
first computation shows that for each of the above parameter groups, ranges of
possible α = u(0), G(α) in ( 1.2) is very narrow and close to 0 (including numer-
ical errors), which identify the ranges of α = u(0), where bifurcation might have
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Figure 1. Solution with u(0) =alpha vs. λ =lambda, where
a = 0.1, b = 0.2, c = 0.4, d = 0.5, e = 1 with 10000 points

occurred. Our second computation shows that in these ranges of α = u(0) the func-
tion D(α) in (1.3) is negative , which means that only turns to the right is possible.
These two computations together prove the conjecture for these parameter groups
stated in the theorem above.

The paper is organized as follows: In §2 limiting behavior of the solutions on
these bifurcation branches and their stabilities are investigated; (1.2) and (1.3) are
derived and proved in [18] but for the sake of completeness in 3 we will provide a
derivation of (1.3) and in 4 we will provide a derivation of (1.2) following [18].

2. Limiting behavior and the stability of the branches

We know from Theorem 1.3 that all the positive solutions for the quintic problem
(1.1) lie on three smooth solution curves for these open sets Gi, i = 1 . . . 14. These
curves are denoted by Γ0, which is the curve that start at (0, 0) and it is increasing
in λ;the other two curves, which we denoted by Γ1, and Γ2 are parabola-like curves,
with exactly one turn to the right. We denote Γ+

i and Γ−i to be the upper and lower
branch of Γi, respectively for i = 1, 2. Although we provide a computer assisted
proof for this theorem, we also are able to prove the limiting behavior results of the
lower and upper branches of the solution curves inspired by the results in [15].

Theorem 2.1. The first curve Γ0, starts at (λ = 0, u = 0), it is increasing in λ, and
limλ→∞ u(x, λ) = a for x ∈ (−1, 1). The second curve Γ1 has a turning point at λ1

with limλ→∞, Γ+
1

u(0, λ) = c while limλ→∞,Γ−1
u(0, λ) = γ1. The third curve Γ2 has

a turning point at λ2 with limλ→∞,Γ+
2

u(0, λ) = e while limλ→∞, Γ−2
u(0, λ) = γ2.

Where γ1 is the unique root of
∫ γ1

a
f(t) dt = 0 in (b, c) and γ2 is the unique root of∫ γ2

c
f(t) dt = 0 in (d, e).

Proof. We can view Γ0 as a curve of solution emanating from the solution (u =
0, λ = 0) as a consequence of the Implicit Function Theorem. By the standard result
in sub-super solution (subsolution ≤ supersolution) we have that the solution curve
stays below a, and since f ′(u) < 0 for u, < a by the Implicit Function Theorem
we can continue the curve for all λ > 0. Differentiating (1.1) with respect to λ to
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obtain that uλ > 0, as is was showed in [15]. Hence, we conclude that the curve
tends to a as λ →∞.

From our result above we have that at the points (λ1, u1), and (λ2, u2) the curves
of solutions turns to the right in the λu-plane, thus obtaining two parabolas-like
curves. First, we will show that Γ+

1 is increasing for all λ > λ1. Assume the contrary,
and let λ∗ be the first value such that uλ(λ∗, x1) = 0 for some x1 ∈ (0, 1). It is easy
to see that x1 is a minimum point of uλ, and u′′λ(λ∗, x1) ≥ 0. Differentiating (1.1)
with respect to λ and with respect to x:

u′′λ + f(u) + λf ′(u)uλ = 0, (2.1)

u′′x + λf ′(u)ux = 0. (2.2)

From (2.1) and the fact that uλ(λ∗, x1) = 0 and that u′′λ(λ∗, x1) ≥ 0, we have
f(u(λ∗, x1)) ≤ 0, which implies that u(λ∗, x1) ∈ [a, b]. Multiplying (2.1) by ux and
(2.2) by uλ and subtracting and integrating from 0 to x1 we obtain:

(u′λux − u′xuλ)|x1
0 +

∫ x1

0

f(u)uxdx = 0 (2.3)

Simplifying (2.3) to obtain,

u′′(0)uλ(0) +
∫ u(x1)

u(0)

f(u)uxdx = 0 (2.4)

Observe that the first term of (2.4) is less or equal to 0, it follows that the second
term must be positive. As we have mentioned that a necessary condition for u(0) is∫ u(0)

a
f(u)du > 0,which implies that

∫ u(0)

u(x1)
f(u)du >

∫ u(0)

a
f(u)du > 0. Hence the

second term in (2.4) is negative, which is a contradiction, and therefore the upper
branch is increasing. Furthermore, the upper branch is bounded by c, in that case
as λ →∞ the limit must exists. For x ∈ (−1, 1) this limit need to be b or c, but u
is convex below b and since the upper branch is increasing cannot converge towards
b. Hence the limλ→∞ Γ+

1 = c. Similar argument show the limiting behavior of the
upper branch of the third curve.

For the lower branch of Γ1, first recall that γ1 is the unique solution of equation∫ γ1

a
f(u)du = 0 in (b, c). From the analysis in [18] it was shown that the bifurcation

can only occur in the interval (max{β1, γ1}, c), which implies that Γ−1 is bounded
below by γ1, where β1 is the unique root of f ′(β1) = f(β1)

β1−a in (b, c). By a similar
argument used for the upper branch case, we will show that the lower branch is
decreasing in λ at x = 0. By assuming the contrary, let λ∗ be the first value so
that uλ(0, λ∗) = 0. By (1.1) we can conclude that u′′λ(0, λ∗) < 0 thus x = 0 is not
a minimum for uλ(x, λ∗), so uλ(x, λ∗) < 0 for x > 0, but closed to 0.

Multiplying (2.1) by ux and (2.2) by uλ and subtracting and integrating from 0
to 1 we obtain

(u′λux − u′xuλ)|10 +
∫ 0

u(0)

f(u)du = 0 (2.5)

We proved earlier that the integral is negative, and the first term simplify to
u′λ(1)u′(1). Hence, u′λ(1, λ∗) < 0, thus uλ(x, λ∗) is positive near 1. Then uλ(x, λ∗)
must have a zero in (0, 1). Let x1 be the smallest zero. Now, multiplying (2.1) by
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ux and (2.2) by uλ and subtracting and integrating from 0 to x1 we obtain:

(u′λux − u′xuλ)|x1
0 +

∫ u(x1)

u(0)

f(u)du = 0 (2.6)

It is easy to observe, by the same arguments that were used before that both terms
of the equation are negative, which is a contradiction. Therefore the lower branch
Γ−1 is decreasing in λ at x = 0. And similarly the lower branch Γ−2 can be shown
to be decreasing in λ at x = 0. �

Theorem 2.2. Solution on the upper branch of Γi are stable, while solution on the
lower branch of Γi are unstable, for i = 1, 2.

Proof. First it is easy to show that Γ0 is stable since f ′(u) < 0 in (0, a). Next
assume to the contrary that u = u(λ, x) is a solution on the upper branch Γ+

1 that
is unstable. That is, we can find a constant µ > 0, and w(x) > 0, such that

w′′ + λf ′(u)w = µw on (−1, 1),

w(−1) = w(1) = 0
(2.7)

We may assume that
∫ 1

0
w2dx = 1. Observe that multiplying (1.1 ) by u′ and

integrating over (0, x) we obtain

|u′| ≥
√

λK (2.8)

for some K > 0 when λ is large, for all x ∈ (η, 1), where u(η) = α and α is the
largest root of f ′(u) in (b, c). Recall that u → c, we can find a constant M and
ξ = ξ(λ) near 0, such that |u′′(ξ)| ≤ M . Next, differentiate (1.1) and multiply by
w, and multiply (2.7) by u′, and subtracting the equations to obtain,

u′′xw − w′′u′ = µwu′ (2.9)

Integrating this equation over ξ to 1, we have

−u′(1)w(1)− u′′(ξ)w(ξ) + u′(ξ)w′(ξ) + µ

∫ 1

ξ

wu′dx = 0 . (2.10)

Recall that w is bounded, and w′′ > 0 on (0, 1), it follows that w′(ξ) > 0. Thus
we know that the second term in (2.10) is bounded, and the third and fourth term
are negative. Assume the first term is positive and small, that is |w′(1)| = O

(
1√
λ

)
.

Since w(x) is convex on (0, η), it follows that it must attain its maximum on (η, 1),
and since

∫ 1

0
w2dx = 1 the maximum is at least 1. Changing the variable to t = 1−x,

we have from ( 2.7) the following estimate

w(t) ≤ cλw,w(0) = 0, w′(0) = O

(
1√
λ

)
, 0 < t <

c1√
λ

(2.11)

For some positive constants c, and c1. Thus, integrating we obtain

w(t) ≤ K1

(√
λ

∫ t

0

w(s)ds +
1
λ

)
. (2.12)

Therefore, applying the Gronwall inequality we have that w(t) = O
(

1
λ

)
, which is a

contradiction.
Computing the direction of bifurcation
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We consider positive solutions of the Dirichlet problem

u′′(x) + f(u(x)) = 0 in (−1, 1),

u(−1) = u(1) = 0.
(2.13)

It is well known that any solution u(x) is an even function, with a unique point of
maximum at x = 0, and u′(x) < 0 on (0, 1). We assume that u(x) is a singular
solution of (2.1), i.e. the corresponding linearized problem

w′′(x) + f ′(u(x))w = 0 on (−1, 1),

w(−1) = w(1) = 0
(2.14)

admits a non-zero solution w(x). It is also well known that w(x) may be assumed
to be positive, and it is an even function on (−1, 1), see [15]. For the singular
solutions the following integral is important

J ≡ −
∫ 1

−1

f ′′(u(x))w3(x) dx = −2
∫ 1

0

f ′′(u(x))w3(x) dx. (2.15)

If J 6= 0 the critical point is non-degenerate; i.e. it persists under small pertur-
bations of the equation in (2.1), see [7]. For the problem (1.1) depending on the
parameter λ, the sign of J determines the direction of bifurcation at the critical
point in the (λ, u(0)) plane. If J > 0 the curve turns to the right, and if J < 0 to the
left. We derive here a formula for J , which does not require a detailed knowledge
of u(x), and any knowledge of w(x). It depends only on the maximal value of the
critical solution u(0) ≡ α.

Theorem 2.3 ([18]). At any critical solution u(x), with u(0) = α,

J = −c

∫ α

0

f ′′(u)
( ∫ α

u

f(s) ds
)( ∫ u

0

ds( ∫ α

s
f(t) dt

)3/2

)3

du = −cD(α),

where c = 1
4
√

2
u′

3(1)w′3(1) > 0.

Proof. Differentiating equation (2.1),

u′′(x) + f ′(u(x))u′(x) = 0 in (−1, 1). (2.16)

Using this equation and (2.2), we conclude that the function u′′(x)w(x)−u′(x)w′(x)
is constant, and hence

u′′(x)w(x)− u′(x)w′(x) = −C, where C = u′(1)w′(1) > 0. (2.17)

We rewrite this as ( w

u′
)′ = C

u′2
,

and then integrate, concluding that

w(x) = −Cu′(x)
∫ 1

x

1
u′2(t)

dt. (2.18)

This formula will allow us to exclude w(x) in J . (Observe that
∫ 1

x
1

u′2(t)
dt tends to

infinity as x → 0 , while u′(x) tends to zero. Hence both terms ought to be kept
together in numerical computations.) Using (2.8) in (2.3)

J = 2C3

∫ 1

0

f ′′(u(x))u′3(x)
( ∫ 1

x

1
u′2(t)

dt
)3

dx. (2.19)
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We now wish to exclude u′(x) from (2.9). Since the energy u′2

2 (x) + F (u(x)) is
constant,

u′
2

2
(x) + F (u(x)) = F (u(0)) = F (α). (2.20)

On the interval (0, 1) we express

u′(x) = −
√

2
√

F (α)− F (u(x)). (2.21)

We use this formula in the integral
∫ 1

x
1

u′(t)2
dt, and then we make a change of

variables t → s, by letting s = u(t). We have∫ 1

x

1
u′2(t)

dt = − 1
23/2

∫ 1

x

u′(t) dt

[F (α)− F (u(t))]3/2
= − 1

23/2

∫ 0

u(x)

1

[F (α)− F (s)]3/2
ds.

We then have

J = c

∫ 1

0

f ′′(u(x))u′(x) [F (α)− F (u(x))]
( ∫ u(x)

0

1

[F (α)− F (s)]3/2
ds

)3

dx,

with c = 1
4
√

2
C3. Finally, replacing F (α)−F (u) by

∫ α

u
f(s) ds, making a change of

variables u = u(x), and writing α for u(0), we obtain (2.4). �

Computing the bifurcation points
In the previous section we computed the direction of turn, assuming that bifur-

cation occurs at u(0) = α. We now provide a way to determine all possible α’s at
which bifurcation may occur, i.e. the corresponding solution of (2.1) is singular.

Theorem 2.4 ([18]). A solution of the problem (2.1) with the maximal value α =
u(0) is singular if and only if

G(α) ≡ F (α)1/2

∫ α

0

f(α)− f(τ)

[F (α)− F (τ)]3/2
dτ − 2 = 0. (2.22)

Proof. We need to show that the problem (2.2) has a non-trivial solution. As follows

by (2.8) (or by direct verification) the function w(x) = −u′(x)
∫ 1

x

1
u′2(t)

dt satisfies

the equation in (2.2). Also w(1) = 0. If we also have

w′(0) = 0 (2.23)

then since u(x) is an even function, the same is true for w(x) (by uniqueness for
initial value problems), and hence w(−1) = 0, which gives us a non-trivial solution
of (2.2). Conversely, every non-trivial solution of (2.2) is an even function, and
hence (2.23) is satisfied.

Using the equation in (2.1), we compute

w′(x) = f(u(x))
∫ 1

x

1
u′2(t)

dt +
1

u′(x)
.

Using the formula (2.11) from the previous section and the one right below it, we
express

23/2w′(x) =
∫ u(x)

0

f(u(x))

[F (α)− F (τ)]3/2
dτ − 2

[F (α)− F (u(x))]1/2
. (2.24)
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If we try to set here x = 0, then both terms on the right are infinite. Instead, we
observe that

− 2

[F (α)− F (u)]1/2
= −

∫ u

0

d

dτ

2

[F (α)− F (τ)]1/2
dτ − 2

F (α)1/2

= −
∫ u

0

f(τ)

[F (α)− F (τ)]3/2
dτ − 2

F (α)1/2
.

(2.25)

Using (2.25) in (2.24), we obtain

23/2w′(x) =
∫ u(x)

0

f(u(x))− f(τ)

[F (α)− F (τ)]3/2
dτ − 2

F (α)1/2
. (2.26)

The integral on the right is now non-singular as we let x → 0. At x = 0 we see that
(2.23) is equivalent to (2.22). �

A computer assisted proof
For the quintic nonlinearity problem (1.4), by letting u = ev, we may assume

that e = 1, so that our nonlinearity is f(u) = −(u− a)(u− b)(u− c)(u− d)(u− 1),
with new a, b, c and d, i.e. we consider

u′′ + λ(u− a)(u− b)(u− c)(u− d)(u− 1) = 0 in (−1, 1),

u(−1) = u(1) = 0.
(2.27)

This substitution allows us to “compactify” the parameter set, since now 0 < a <
b < c < d < 1. We define the functions F (u) =

∫ u

0
f(t) dt. It is well-known ([17, 16])

that for existence of positive solutions it is necessary that
∫ c

a
f(t) dt,

∫ 1

c
f(t) dt > 0.

Now let γ1 be the unique root of
∫ γ1

a
f(t) dt = 0 in (b, c) and γ2 be the unique root

of
∫ γ2

c
f(t) dt = 0 in (d, 1). Next let β1 be the unique root of f ′(β1) = f(β1)

β−a in (b, c)

and β2 be the unique root of f ′(β2) = f(β2)
β−c in (d, 1) (the point where a straight

line through the point (a, 0) touches the graph of y = f(u) for u ∈ (a, c) and where
a straight line through the point (c, 0) touches the graph of y = f(u) for u ∈ (c, 1)
.)

We parameterize the solutions of (2.27) by their maximum value α = u(0). For
each parameter group in Theorem 1.3 we compute βi and γi, i = 1, 2. Since the
bifurcation could only occur for α ∈ (max(β1, γ1), c) and for α ∈ (max(β2,γ2), 1), we
compute G defined by (1.2) for α ∈ (max(β1, γ1), c)∪ (max(β2, γ2), 1) and produce
two ranges of α = u(0) in each case (including numerical errors). Next for these
ranges we compute the integral D defined by (1.3). Actually we have computed

II ≡ F (α)5/2

∫ α

0

f ′′(u)
( ∫ α

u

f(s) ds
)( ∫ u

0

ds( ∫ α

s
f(t) dt

)3/2

)3

du,

where the extra term F (α)5/2 is introduced to make this integral scaling invariant
in f . Our computation shows that II < 0, which implies that only turns to the
right are possible near in these ranges. Since both G and D are continuous in the
parameters (a, b, c, d, e) and D 6= 0 implies that the zero of D is not degenerate,
there exists an open neighborhood Ui for each parameter group Pi, i = 1 . . . 14.

As an example, when (a, b, c, d, e) = (0.1, 0.2, 0.4, 0.5, 1), we find that

max(β1, γ1) = 0.277989142, max(β2, γ2) = 0.83216494
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so that G is evaluated in (0.277989142, 0.4) ∪ (0.83216494, 1). We find the ranges
of where G is “close” to 0 are (0.32560, 0.32562) ∪ (0.91744, 0.91746) and compute
the values of D there to be negative in 100′s and in 10′s. �
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