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OPTIMAL CONTROL OF A WASTE WATER CLEANING PLANT

ELLINA V. GRIGORIEVA, EVGENII N. KHAILOV

Abstract. In this work, a model of a waste water treatment plant is in-

vestigated. The model is described by a nonlinear system of two differential

equations with one bounded control. An optimal control problem of mini-
mizing concentration of the polluted water at the terminal time T is stated

and solved analytically with the use of the Pontryagin Maximum Principle.

Dependence of the optimal solution on the initial conditions is established.
Computer simulations of a model of an industrial waste water treatment plant

show the advantage of using our optimal strategy. Possible applications are

discussed.

1. Introduction

While water is the most abundant life sustaining substance on the planet, clean,
fresh water is in many localities often the most scarce. The supply of fresh water
over the land masses is limited by chaotic weather effects. Meanwhile, human popu-
lations and the success of our civilizations rely on stable and sustainable supplies of
clean, fresh water. As population densities increase, the maintenance of supplies of
potable water tend to become dependent on the efficiencies of fresh water recovery
methods.

The activated sludge process (ASP) is a biochemical process for treating sewage
and industrial waste-water that uses air (or oxygen) and microorganisms to bio-
logically oxidize organic pollutants, producing a waste sludge (or floc) containing
the oxidized material. The optimal operation of the waste water processes with
biological treatment is challenging because of the strong effluent requirements, the
complexity of theses processes as an object of control and the need to reduce the
operation cost. The USA has strict requirements on the effluent quality of the ASP.
Similar strict requirements were adopted during the last decade in Europe and in
South Africa [16].

In general, an activated sludge process has an aeration tank where air (or oxygen)
is injected and thoroughly mixed into the waste-water and a settling tank (usually
referred to as a ”clarifier” or ”settler”). Flocculation-agglomeration is a process
where a solute comes out of solution in the form of floc or flakes. Part of the waste
sludge is recycled to the aeration tank where the remaining waste sludge is removed
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for further treatment and ultimate disposal. A diagram of the process is shown in
Figure 1.

Figure 1. Diagram of flocculation-agglomeration process

During the last decades various control strategies for the ASP have been devel-
oped. Simple strategies are limited to the maintenance of some desired values of
easily determinable process parameters like food-microorganism ratio, sludge recy-
cle flowrate or oxygen concentration in the aeration basin [7]. In more complex
models, the behavior of the sludge process also depends on several working con-
ditions e.g. air compressor power to regulate the mean oxygen concentration [15].
Establishing optimal working conditions and control strategies is frequently accom-
plished with the aid of mathematical models [2, 3, 8, 11, 16]. Relevant work in the
investigation and comparison of control strategies was done by [4, 5, 9, 10, 13, 14].
Obviously, the solution depends on the model. What unites all these papers is that
either the considered models are so complex that they cannot be solved analytically
or that the controls are not bounded and therefore the realism of the model is ques-
tionable. The model proposed in [2] is simple enough that it can be investigated
analytically. On the other hand, it properly corresponds to the main steps of the
ASP and water cleaning control process. In [2] an optimal control problem of the
minimization of the waste concentration in the ASP was stated and the Pontryagin
Maximum Principle [12] was offered for its solution. However, the complete anal-
ysis of the corresponding boundary value problem for the Maximum Principle was
not conducted. The author simply offered a numerical solution to the problem at
different piecewise constant controls.

This work deals with the complete analysis of the model proposed by [2], but
with a different objective function. In Section 2, we discuss the model. In Section
3, we establish the properties of the state variables. In Section 4, we state optimal
control problem of minimizing water pollution concentrations at the terminal time
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T and find optimal solutions. In Section 5, we investigate how optimal solutions
depend on the initial conditions. A numerical simulation of the ASP at different
parameters of the model is conducted in Section 6. Finally, Section 7 presents our
conclusions.

2. The model

Let us consider the model of an activated sludge process. A simplified diagram
can be shown in the Figure 2.

Figure 2. Simplified diagram of an activated sludge process

Here u(t) is the inflow rate of the recirculated biomass (gal/min), b is the inflow
rate of substrate - polluted water (gal/min), a2 the concentration of substrate
(lb/gal), a1 concentration of bacteria (lb/gal).

This process can be described by the following system of differential equations

ẋ(t) = u(t)a1 + µ0
x(t)s(t)
k + s(t)

− (b+ u(t))x(t),

ṡ(t) = ba2 −
µ0

Y

x(t)s(t)
k + s(t)

− (b+ u(t))s(t), t ∈ [0, T ],

x(0) = x0 > 0, s(0) = s0 > 0.

(2.1)

We consider function u(t) as a control function and the set D(T ) is the set of
all Lebegue measurable functions u(t) such that 0 < u1 ≤ u(t) ≤ u2 for almost all
t ∈ [0, T ]. The recycle sludge rate u(t) is not allowed to take values below a certain
lower limit u1 in order to prevent the biomass from being swept out of the aeration
tank. An upper limit u2 for u(t) is given by the limited power of the recycle pump.

Here x(t) is the concentration of biomass, s(t) is the concentration of polluted
water, Y is the substrate utilization - yield coefficient, µ0 is the maximal specific
rate of bacteria growth, k the saturation coefficient.

For the model (2.1) assume k � s. This case is realistic since one normally tries
to keep the substrate-to-biomass ratio comparatively low. Denoting µ = µ0

k the
simplified system can be written as

ẋ(t) = u(t)a1 + µx(t)s(t)− (b+ u(t))x(t),

ṡ(t) = ba2 −
µ

Y
x(t)s(t)− (b+ u(t))s(t), t ∈ [0, T ],

x(0) = x0 > 0, s(0) = s0 > 0.

(2.2)
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Numerical modeling conducted in [2] shows that the second term in the first
equation of (2.2) can be ignored. Finally we obtain the following system

ẋ(t) = u(t)a1 − (b+ u(t))x(t), t ∈ [0, T ],

ṡ(t) = ba2 −
µ

Y
x(t)s(t)− (b+ u(t))s(t),

x(0) = x0 > 0, s(0) = s0 > 0.

(2.3)

This model and its investigation will be considered further.

3. Properties of the state variables

We have the following statement, which can be easily proven using direct inte-
gration of the system (2.3).

Lemma 3.1. Let u(·) ∈ D(T ) be some control function. Then there exist corre-
sponding to this control, u(t), solutions x(t), s(t) to system (2.3), which on the
closed interval [0, T ] satisfy the inequalities:

x(t) > 0, s(t) > 0.

Analyzing system of equations (2.3) with the use of Lemma 3.1 we can conclude
that if at some moment of time t ∈ [0, T ] we have that x(t) = a1, then

ẋ(t) = −ba1 < 0.

By analogy if at some moment t we have s(t) = a2, then we obtain relationship

ṡ(t) = − µ

Y
a2x(t)− u(t)a2 < 0.

The validity of these relationships leads to the following statement.

Lemma 3.2. Let u(·) ∈ D(T ) be some control function. Suppose that at some
moments of time τ1, τ2 ∈ [0, T ) the following relationships hold

x(τ1) ≤ a1, s(τ2) ≤ a2,

then we have x(t) < a1 for any t ∈ (τ1, T ] and s(t) < a2 for any t ∈ (τ2, T ].

From results of the Lemma 3.2 it follows the statement.

Lemma 3.3. Let u(·) ∈ D(T ) be some control function. Suppose that at some
moments of time η1, η2 ∈ (0, T ) the following relationships hold

x(η1) > a1, s(η2) > a2,

then we have x(t) > a1 for any t ∈ [0, η1) and s(t) > a2 for any t ∈ [0, η2).

Moreover, we have the statement.

Lemma 3.4. Let u(·) ∈ D(T ) be some control function. Suppose that at some
moments of time θ1, θ2 ∈ (0, T ) the following relationships hold

x(θ1) ≥ a1, s(θ2) ≥ a2,

then we have inequalities:
ẋ(θ1) < 0, ṡ(θ2) < 0

respectively.

The validity of the Lemma 3.4 follows from the equations (2.3).
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4. Optimal control problem of minimizing pollution at terminal
time T

Let s(t) be the pollution concentration at moment t. Then an integrated relative
increase of the amount of pollution by time t can be written as∫ t

0

ṡ(t)
s(t)

dt = ln
s(t)
s0

, t ∈ [0, T ].

For system (2.3) we will consider an optimal control problem of minimizing of
the integrated relative increase of the pollution by time T , which is equivalent to

J(u) = s(T ) → min
u(·)∈D(T )

. (4.1)

The existence of the optimal control u∗(t) and corresponding to it optimal solu-
tions x∗(t), s∗(t) for the optimal control problem (2.3),(4.1) follows from [6].

In order to solve problem (2.3),(4.1) we will apply the Pontryagin Maximum
Principle ([12]). For the optimal control u∗(t) and corresponding optimal trajecto-
ries x∗(t), s∗(t) there exist nontrivial solutions ψ∗(t), ϕ∗(t) of the adjoint system

ψ̇∗(t) = (b+ u∗(t))ψ∗(t) +
µ

Y
s∗(t)ϕ∗(t),

ϕ̇∗(t) =
( µ
Y
x∗(t) + (b+ u∗(t))

)
ϕ∗(t),

ψ∗(T ) = 0, ϕ∗(T ) = −1,

(4.2)

for which the control u∗(t) is given by

u∗(t) =


u2 if L(t) > 0,
∀u ∈ [u1, u2] if L(t) = 0,
u1 if L(t) < 0,

(4.3)

where
L(t) = (a1 − x∗(t))ψ∗(t)− s∗(t)ϕ∗(t), t ∈ [0, T ]

is the switching function. As it follows from (4.3), the function L(t) determines the
type of the optimal control u∗(t).

Systems of equations (2.3),(4.2) and relationships (4.3) form the two point bound-
ary value problem for the Maximum Principle. Let us study this problem in depth.

Suppose control u(t), trajectories x(t), s(t) and functions ψ(t), ϕ(t) satisfy this
boundary value problem. Then such a function u(t) is called extremal control,
trajectories x(t), s(t) are extremal trajectories and functions ψ(t), ϕ(t) are called
corresponding to them solutions of the adjoint system (4.2).

For the functions ψ(t), ϕ(t) the following statement is true.

Lemma 4.1. Let u(t) be the extremal control, x(t) and s(t) are extremal trajectories
and ψ(t), ϕ(t) are the corresponding to them solutions of the adjoint system (4.2).
Then the following inequalities hold

ψ(t) > 0, ϕ(t) < 0

for all t ∈ [0, T ).

The proof of this statement is based on integration of the system (4.2) with the
use of Lemma 3.1.
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Let L(t) be the switching function corresponding to the extremal control u(t),
extremal trajectories x(t), s(t) and solutions ψ(t), ϕ(t) of the adjoint system (4.2).
The following statements is true.

Lemma 4.2. There exists such time θ ∈ [0, T ) that for the extremal control u(t)
the equality u(t) = u2 is valid for all t ∈ (θ, T ].

Proof. For the switching function L(t) from terminal conditions of the system (4.2)
we have that

L(T ) = (a1 − x(T ))ψ(T )− s(T )ϕ(T ) = s(T ).

From Lemma 3.1 we obtain the inequality L(T ) > 0. Since L(t) is continuous func-
tion, there exists value θ ∈ [0, T ) such that L(t) > 0 for all t ∈ (θ, T ]. Furthermore,
from (4.3) we have u(t) = u2 for t ∈ (θ, T ]. �

Lemma 4.3. If x0 ≤ a1, then for the extremal control u(t) the relationship u(t) =
u2 holds for all t ∈ [0, T ].

Proof. From results of Lemma 3.1, Lemma 3.2, Lemma 4.1 for the switching func-
tion L(t) the inequality L(t) > 0 is true for all t ∈ [0, T ]. Therefore, the desired
result follows from (4.3). �

Lemma 4.4. The switching function L(t) has at most one zero in the interval
(0, T ).

Proof. Note that the derivative of the switching function L(t) is

L̇(t) = ba1ψ(t)− ba2ϕ(t) +
µ

Y
(a1 − x(t))s(t)ϕ(t), t ∈ [0, T ]. (4.4)

Let t0 ∈ (0, T ) such that L(t0) = 0. It means that

a1 − x(t0) =
s(t0)ϕ(t0)
ψ(t0)

.

Substituting this expression into the formula (4.4) we obtain

L̇(t0) = ba1ψ(t0)− ba2ϕ(t0) +
µ

Y

s2(t0)ϕ2(t0)
ψ(t0)

.

It follows from the results of Lemma 3.1, Lemma 4.1 that L̇(t0) > 0. Since L̇(t) is
continuous, then switching function L(t) has on the interval [0, T ] the form

L(t)


< 0, if 0 ≤ t < t0,

= 0, if t = t0,

> 0, if t0 < t ≤ T.

This completes the proof. �

From Lemma 4.2, Lemma 4.3, Lemma 4.4 and relationship (4.3) we obtain the
following statement.

Lemma 4.5. If L(0) ≥ 0, then the extremal control u(t) is constant function of
the type

u(t) = u2, t ∈ [0, T ].
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Alternatively, if L(0) < 0, then the extremal control u(t) is a piecewise constant
function of the type

u(t) =

{
u1, if 0 ≤ t ≤ θ,

u2, if θ < t ≤ T,

where θ ∈ (0, T ) is the moment of switching, defined from L(θ) = 0.

From the properties of the switching function L(t) and Lemma 4.5 we estab-
lished that the two point boundary value problem for the Maximum Principle
(2.3),(4.2),(4.3) has a unique solution u(t), x(t), s(t), ψ(t), ϕ(t), t ∈ [0, T ], which
as it follows from [1] is the optimal solution for problem (2.3),(4.1).

Optimal control u∗(t) has one of the two forms:

u∗(t) = u2, t ∈ [0, T ], (4.5)

and

u∗(t) =

{
u1, if 0 ≤ t ≤ θ∗,

u2, if θ∗ < t ≤ T,
(4.6)

where θ∗ ∈ (0, T ) is the moment of switching.

5. Dependence of the optimal control on initial conditions

In this section, we will find the initial conditions that correspond to optimal
controls of types (4.5) and (4.6). Therefore, consider the system (2.3) with initial
conditions (x0, s0).

Let u∗(t), x∗(t), s∗(t) be optimal solution to the problem (2.3),(4.1), and ψ∗(t),
ϕ∗(t) corresponding to them solutions of the adjoint system (4.2).

First, we will consider the case that the optimal control u∗(t), t ∈ [0, T ] is given
by formula (4.5). The inequality L(0) ≥ 0 can be rewritten as

(a1 − x0)ψ∗(0)− s0ϕ∗(0) ≥ 0,

or

s0 ≥ (a1 − x0)
ψ∗(0)
ϕ∗(0)

. (5.1)

Next, we introduce a function q(t) = ψ∗(t)
ϕ∗(t)

, which satisfies the system

q̇(t) = − µ

Y
x∗(t)q(t) +

µ

Y
s∗(t), t ∈ [0, T ],

q(T ) = 0.
(5.2)

The solution of the Cauchy problem (5.2) is written as

q(t) = − µ

Y

∫ T

t

e
µ
Y

R r
t
x∗(ξ)dξs∗(r)dr. (5.3)

Then the inequality (5.1) can be rewritten as

s0 ≥ (a1 − x0)q(0). (5.4)

From the expression (5.3) we obtain the formula

q(0) = − µ

Y

∫ T

0

e
µ
Y

R r
0 x∗(ξ)dξs∗(r)dr. (5.5)
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To show that the value q(0) depends on the initial conditions (x0, s0), integrate
the system (2.3) with control u∗(t), t ∈ [0, T ] given by (4.5). Integration yields the
formulas:

x∗(t) = x0e
−(b+u2)t +

a1u2

b+ u2

(
1− e−(b+u2)t

)
, t ∈ [0, T ], (5.6)

s∗(t) = s0e
−(b+u2)t · e−

µ
Y

R t
0 x∗(ξ)dξ

+ a2b

∫ t

0

e−(b+u2)(t−r) · e−
µ
Y

R t
r
x∗(ξ)dξdr.

(5.7)

Substituting expressions (5.6) and (5.7) into (5.5), we obtain

q(0) = −σs0 − g(x0),

where the value
σ =

µ

(b+ u2)Y

(
1− e−(b+u2)T

)
is positive, as well as the function

g(x0) =
µa2b

Y

∫ T

0

( ∫ r

0

e−(b+u2)(r−η) · e
µ
Y

R η
0 x∗(ξ)dξdη

)
dr (5.8)

is also positive. Function (5.8) depends on x0 by formula (5.6). Then (5.4) can be
rewritten as

s0(1 + σ(a1 − x0)) ≥ −(a1 − x0)g(x0). (5.9)

If a1 − x0 ≥ 0, then (5.9) holds. This means that for any initial conditions
(x0, s0) for which a1−x0 ≥ 0, the optimal control u∗(t) has type (4.5) in agreement
with Lemma 4.3.

If a1−x0 < 0, then from (5.9) it follows that 1+σ(a1−x0) > 0. Then inequality
(5.9) becomes

s0 ≥ −
(a1 − x0)g(x0)
1 + σ(a1 − x0)

. (5.10)

Now, consider a function

s0 = f(x0) = − (a1 − x0)g(x0)
1 + σ(a1 − x0)

on the interval x0 ∈ [a1, a1 + 1
σ ). Let us examine the properties of the function

s0 = f(x0). Analyzing formulas (5.6),(5.8) we obtain relationships:

f(a1) = 0, lim
x0→a1+

1
σ

f(x0) = +∞.

Using (5.8) we will find derivatives of the function g(x0). We have the expressions:

ġ(x0) =
( µ
Y

)2
a2b

∫ T

0

( ∫ r

0

e−(b+u2)(r−η) · e
µ
Y

R η
0 x∗(ξ)dξ ·

( ∫ η

0

e−(b+u2)ξdξ
)
dη

)
dr,

g̈(x0) =
( µ
Y

)3
a2b

∫ T

0

( ∫ r

0

e−(b+u2)(r−η) · e
µ
Y

R η
0 x∗(ξ)dξ ·

( ∫ η

0

e−(b+u2)ξdξ
)2

dη
)
dr,

from which the inequalities immediately follow:

ġ(x0) > 0, g̈(x0) > 0. (5.11)
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The corresponding derivatives of the function f(x0) are:

ḟ(x0) =
g(x0)

(1 + σ(a1 − x0))2
− (a1 − x0)ġ(x0)

1 + σ(a1 − x0)
,

f̈(x0) =
2σg(x0)

(1 + σ(a1 − x0))3
+

2ġ(x0)
(1 + σ(a1 − x0))2

− (a1 − x0)g̈(x0)
1 + σ(a1 − x0)

.

Using (5.11) we see that on the interval x0 ∈ (a1, a1 + 1
σ ) the following inequalities

are valid:
ḟ(x0) > 0, f̈(x0) > 0.

Therefore, function s0 = f(x0) is increasing and concave up. The graph of this
function is shown in Figure 3.

It follows from (5.10) that for all initial values (x0, s0) for which

a1 − x0 < 0, 1 + σ(a1 − x0) > 0, s0 ≥ f(x0)

the optimal control u∗(t) has type (4.5).
Now, consider the case that the optimal control u∗(t), t ∈ [0, T ] has type (4.6).

The inequality L(0) < 0 implies the existence of switching θ∗ ∈ (0, T ), for which

L(θ∗) = 0. (5.12)

Equality (5.12) can be rewritten as

(a1 − x∗(θ∗))ψ∗(θ∗)− s∗(θ∗)ϕ∗(θ∗) = 0,

or
s∗(θ∗) = (a1 − x∗(θ∗))q(θ∗), (5.13)

where the function q(t) is defined by the Cauchy problem (5.2). From (5.3) we
obtain the formula

q(θ∗) = − µ

Y

∫ T

θ∗

e
µ
Y

R r
θ∗
x∗(ξ)dξs∗(r)dr. (5.14)

As in the previous case, we find how the value q(θ∗) depends on the initial
conditions (x0, s0). For this we will integrate the system (2.3) with control u∗(t),
t ∈ [0, T ] given by (4.6). We have formulas:

x∗(t) =


x0e

−(b+u1)t + a1u1
b+u1

(
1− e−(b+u1)t

)
, if 0 ≤ t ≤ θ∗,(

x0e
−(b+u1)θ∗ + a1u1

b+u1

(
1− e−(b+u1)θ∗

) )
e−(b+u2)(t−θ∗)

+ a1u2
b+u2

(
1− e−(b+u2)(t−θ∗)

)
, if θ∗ < t ≤ T,

(5.15)

and

s∗(t) =



s0e
−(b+u1)te−

µ
Y

R t
0 x∗(ξ)dξ

+a2b
∫ t
0
e−(b+u1)(t−r)e−

µ
Y

R t
r
x∗(ξ)dξdr, if 0 ≤ t ≤ θ∗,(

s0e
−(b+u1)θ∗e−

µ
Y

R θ∗
0 x∗(ξ)dξ

+a2b
∫ θ∗
0
e−(b+u1)(θ∗−r)e−

µ
Y

R θ∗
r

x∗(ξ)dξdr
)

×e−(b+u2)(t−θ∗) · e−
µ
Y

R t
θ∗
x∗(ξ)dξ

+a2b
∫ t
θ∗
e−(b+u2)(t−r)e−

µ
Y

R t
r
x∗(ξ)dξdr, if θ∗ < t ≤ T.

(5.16)

Substituting expressions (5.15) and (5.16) into (5.14), we obtain

q(θ∗) = −νθ∗ (s0αθ∗(x0) + βθ∗(x0))− hθ∗(x0).
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Here the value
νθ∗ =

µ

(b+ u2)Y

(
1− e−(b+u2)(T−θ∗)

)
(5.17)

is positive, and functions:

αθ∗(x0) = e−(b+u1)θ∗ · e−
µ
Y

R θ∗
0 x∗(ξ)dξ,

βθ∗(x0) = a2b

∫ θ∗

0

e−(b+u1)(θ∗−r) · e−
µ
Y

R θ∗
r

x∗(ξ)dξdr,

hθ∗(x0) =
µa2b

Y

∫ T

θ∗

( ∫ r

θ∗

e−(b+u2)(r−η) · e
µ
Y

R η
θ∗
x∗(ξ)dξdη

)
dr

(5.18)

are also positive. Functions (5.18) depend on x0 by formula (5.15). Moreover, it is
easy to see that at θ∗ = 0 the following relationships hold

νθ∗ = σ, αθ∗(x0) = 1, βθ∗(x0) = 0, hθ∗(x0) = g(x0). (5.19)

Then equality (5.13) can be rewritten as

αθ∗(x0)s0 (1 + νθ∗(a1 − x∗(θ∗)))

= −βθ∗(x0) (1 + νθ∗(a1 − x∗(θ∗)))− (a1 − x∗(θ∗))hθ∗(x0).
(5.20)

Also from the formula (5.13) and Lemma 3.1, Lemma 4.1 it follows that x∗(θ∗) > a1.
Then from Lemma 3.3 we find that x0 > a1. It means that if the optimal control
u∗(t) has type (4.6), then for initial conditions (x0, s0) the inequality 1+σ(a1−x0) ≤
0 may be satisfied.

Let us show that if for initial conditions (x0, s0) the inequalities:

a1 − x0 < 0, 1 + σ(a1 − x0) > 0 (5.21)

hold, then the point (x0, s0) is below the graph of the function s0 = f(x0) (see
Figure 3).

First, let us establish the positivity of the left hand side of the equality (5.20).
It is sufficient to show the validity of the inequality

1 + νθ∗(a1 − x∗(θ∗)) > 0. (5.22)

Consider the auxiliary function

ρ(θ∗) = x∗(θ∗)− a1 −
1
νθ∗

for all θ∗ ∈ [0, T ). As a consequence of the first formula of (5.19) we have at θ∗ = 0
the relationship

ρ(0) = x0 − a1 −
1
σ
< 0. (5.23)

From (5.15) and (5.17) we find expressions:

dx∗
dθ∗

(θ∗) = −(b+ u1)
(
x0 −

a1u1

b+ u1

)
e−(b+u1)θ∗ < 0, (5.24)

and
dνθ∗
dθ∗

= − µ

Y
e−(b+u2)(T−θ∗) < 0.

Note that the derivative of the function ρ(θ∗) is

ρ̇(θ∗) =
dx∗
dθ∗

(θ∗) +
1
ν2
θ∗

· dνθ∗
dθ∗

.
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By (5.24) it is seen that the function ρ(θ∗) is decreasing for all θ∗ ∈ (0, T ). From
(5.23) the negativity of the function ρ(θ∗) for θ∗ ∈ [0, T ) follows. This fact implies
the validity of the inequality (5.22). Then (5.20) can be rewritten as

s0 = Fθ∗(x0) = − (a1 − x∗(θ∗))hθ∗(x0)
αθ∗(x0) (1 + νθ∗(a1 − x∗(θ∗)))

− βθ∗(x0)
αθ∗(x0)

.

Here the right hand side of this equality defines the function Fθ∗(x0). From (5.19)
for θ∗ = 0 it is clear that

Fθ∗(x0) = f(x0).
Therefore, the initial conditions (x0, s0) for which corresponding optimal control
u∗(t) has type (4.6) belong to the graph of the function s0 = Fθ∗(x0).

The fact that we need to establish can be restate as follows. Let us show that
for the same values x0 ∈ (a1, a1 + 1

σ ) and θ∗ ∈ (0, T ) the graph of the function
s0 = Fθ∗(x0) is below the graph of the function s0 = f(x0).

To prove this fact, we consider the equality (5.12), or alternatively, (5.20) as the
implicit equation

L(θ∗, x0, s0(θ∗)) = 0. (5.25)
At θ∗ = 0 the points (x0, s0) of the graph of the function s0 = f(x0) satisfy this
equation.

Now, let us differentiate the equation (5.25) by θ∗ ∈ (0, T ). We obtain the
expression

∂L

∂t
(θ∗, x0, s0(θ∗)) +

∂L

∂s0
(θ∗, x0, s0(θ∗)) ·

ds0
dθ∗

(θ∗) = 0. (5.26)

From Lemma 4.4 and relationships (5.20),(5.22) it follows that the corresponding
partial derivatives of the function L(θ∗, x0, s0) are positive. Then from (5.26) it
follows that

ds0
dθ∗

(θ∗) < 0, θ∗ ∈ (0, T ).

Therefore, for the same values x0 ∈ (a1, a1 + 1
σ ) the value s0 of the graph of

the function s0 = Fθ∗(x0) is less than the value s0 of the graph of the function
s0 = f(x0).

Hence, when the optimal control u∗(t) has the type (4.6) and the inequalities
(5.21) hold, the initial conditions (x0, s0) satisfy the inequality

s0 < f(x0).

Thus, the desired result is established.
Finally, let us introduce the sets:

S = {(x0, s0) ∈ R2 : x0 > 0, s0 > 0},

P = {(x0, s0) ∈ S : x0 ≤ a1} ∪ {(x0, s0) ∈ S : a1 < x0 < a1 +
1
σ
, s0 ≥ f(x0)},

Q = {(x0, s0) ∈ S : a1 < x0 < a1 +
1
σ
, s0 < f(x0)}

∪ {(x0, s0) ∈ S : x0 ≥ a1 +
1
σ
}.

It is clear that S = P ∪Q. Sets P and Q are shown in Figure 3.
The preceding arguments show us the following statement.

Theorem 5.1. The following cases are valid:
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s0

s0=f(x0)

x0a1 a1+ 1
σ

__

P Q

Figure 3. Graph of the function s0 = f(x0) and sets P , Q

(a) if the optimal control u∗(t), t ∈ [0, T ] has the type (4.5), then corresponding
initial conditions (x0, s0) satisfy the inclusion (x0, s0) ∈ P ,

(b) if the optimal control u∗(t), t ∈ [0, T ] has the type (4.6), then corresponding
initial conditions (x0, s0) satisfy the inclusion (x0, s0) ∈ Q.

The converse of this statement is also true.

Theorem 5.2. The following cases are valid:
(a) if initial conditions (x0, s0) satisfy the inclusion (x0, s0) ∈ P , then corre-

sponding optimal control u∗(t), t ∈ [0, T ] has the type (4.5),
(b) if initial conditions (x0, s0) satisfy the inclusion (x0, s0) ∈ Q, then corre-

sponding optimal control u∗(t), t ∈ [0, T ] has the type (4.6).

Proof. We will first prove the case (a). Let the initial conditions (x0, s0) satisfy
the inclusion (x0, s0) ∈ P . Then from preceding arguments it follows that the
optimal control u∗(t), t ∈ [0, T ] has the type (4.5) or type (4.6). Type (4.6) is
impossible since from Theorem 5.1 we obtain the contradictory inclusion (x0, s0) ∈
Q. Therefore, the optimal control u∗(t), t ∈ [0, T ] has type (4.5).

Case (b) is proved by analogous arguments. �

The Theorem 5.2 allows us to select the optimal control policy based on initial
concentrations (x0, s0) of biomass and substrate.

6. Computer modeling

Our theoretical results obtained in the previous section allow to select optimal
successful strategy of ASP based on the knowledge of the parameters of the model
(2.3) and initial conditions (x0, s0). In [2] parameter-estimation and verification of
the model measurement values from a waste water plant were obtained for every
hour of an operating period of one week.

Values of s(t) will be determined by total organic carbon content in the influent
and x(t) by the concentration of the suspended solid in the aeration tank.



EJDE-2010/CONF/19/ OPTIMAL CONTROL 173

Let us show our results for the following model parameters:

u1 = 0.1 lb/min, u2 = 1.0 lb/min, T = 10 hours,
a1 = 0.7 lb/gal, a2 = 0.9 lb/gal, Y = 3.0,
x0 = 1.5 lb/gal, s0 = 2.0 lb/gal, µ = 0.1.

The following relationships are valid:

a1 − x0 = −0.8 < 0, 1 + σ(a1 − x0) = 0.976 > 0.

Then the optimal control u∗(t) has the type (4.6) with one moment of switching at
θ∗ = 2 hours, which was obtained numerically. So, if we select such optimal policy
u1 → u2, then the concentration of the polluted water s(t) will be minimized at
moment T , final operation time (see Figure 4).

t

s

Figure 4. Optimal concentration of the polluted water s∗(t)

7. Conclusions

Activated sludge process involves complex and subtle relationships among a rel-
atively large number of variables. The model investigated in our paper is not
intended to be the best ASP model. However, it is nonlinear and it has a bounded
control, which makes it quite interesting from the mathematical point of view.

We found the type of optimal control by means of the so-called switching func-
tion. This allowed us to reduce a complex two point boundary value problem for
the Maximum Principle to one of finite dimensional optimization.

Our mathematical investigation of the activated sludge process can be summa-
rized by components:

(1) Complete investigation of a model (2.3) of the activated sludge process with
one bounded control.

(2) Development of an optimal control strategy for the recycle flow rate analyt-
ically.

(3) Investigation of how the selected optimal control strategy depends on the
initial conditions.

(4) Computer simulation of the controlled activated sludge process for different
model parameters.
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Based on our theory, we find that the optimal analytical solution may decrease
waste water plant operation cost. Thus, if (x0, s0) measured at moment t = 0
satisfies inclusion P , then the optimal control function u∗(t) the rate of the recycle
sludge, first must take the lower value, u1 until time θ∗ and then switch to the
upper lever u2.

Finally, it should be noted that the ideas presented in this study can be applied
to other control systems with similar properties.
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