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EXTENDED CONSTITUTIVE LAWS FOR LAMELLAR PHASES

CHI-DEUK YOO, JORGE VIÑALS

Abstract. Classically, stress and strain rate in linear viscoelastic materials
are related by a constitutive relationship involving the viscoelastic modulus

G(t). The same constitutive law, within Linear Response Theory, relates cur-

rents of conserved quantities and gradients of existing conjugate variables, and
it involves the autocorrelation functions of the currents in equilibrium. We ex-

plore the consequences of the latter relationship in the case of a mesoscale

model of a block copolymer, and derive the resulting relationship between
viscous friction and order parameter diffusion that would result in a lamellar

phase. We also explicitly consider in our derivation the fact that the dissipative
part of the stress tensor must be consistent with the uniaxial symmetry of the

phase. We then obtain a relationship between the stress and order parameter

autocorrelation functions that can be interpreted as an extended constitutive
law, one that offers a way to determine them from microscopic experiment or

numerical simulation.

1. Introduction

Modulated phases are equilibrium phases which in terms of symmetry are inter-
mediate between disordered liquids and fully ordered crystalline solids. They are
ubiquitous in soft-matter systems [21], and are currently being investigated for po-
tential applications at the nanoscale, as well as for their role in biological materials.
Their equilibrium state is characterized by a spatially periodic order parameter,
with the modulation generally resulting from the competition between effective at-
tractive interactions at short distances, and repulsive at long distances. The details
of the competition determine both the symmetry of the phase and the characteristic
length scale of its periodic structure. Dynamically, the response arising from the
system’s structural irreducible units introduces characteristic relaxation times that
may span several disparate scales. Transport at any given scale is often viscoelastic
as shorter scales do not completely decouple.

The main applications motivating our research concern the dynamical response
of block copolymer phases to shears (rheology), and the nonequilibrium evolution
of macroscopicallty disordered samples in the extended system limit. Applications
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of block copolymers in several areas of nanotechnology that leverage their self as-
sembly has spurred a large body of experimental work [3]. Much of the equilib-
rium phenomenology is well understood theoretically and through simulation. The
equilibrium free energy of the phases is determined through Self Consistent Field
Theory, a treatment that can include a fair amount of microscopic and architec-
tural detail of the polymer chains [15, 10, 12]. In fact, block copolymer phases
may well be a first example of a complex system in which a mesoscopic model
allows a quantitative description of the equilibrium phase diagram. On the other
hand, key aspects of their nonequilibrium behavior that are needed to optimize
their processing, or to describe their rheology are not well understood.

A structured fluid in equilibrium possesses some degree of broken symmetry
which is described by an appropriate mesoscopic order parameter set ψ(x, t). The
equilibrium free energy F is then a functional of ψ and its gradients. Nonequilibrium
evolution is often modeled as purely dissipative or relaxational, and assumed to be
driven by free energy reduction,

∂ψ

∂t
= −Λ

δF

δψ
, F =

∫
dxf(ψ, ∂iψ), (1.1)

where Λ is an Onsager kinetic coefficient of microscopic origin, constant in some
cases, or Λ = −M∇2 if the order parameter satisfies a conservation law, with
M a constant mobility. A number of well established methods exist that allow
a quantitative determination of F at or near equilibrium. In the case of block
copolymers, we mention Self Consistent Field Theory [11, 22, 10], and extensions
of classical density functional theory [8, 19]. A self consistent calculation of the
generalized chemical potential µ = δF/δψ is obtained by computing the partition
function of a single polymer chain in a self-consistently calculated chemical potential
field (in the commonly used mean field version of the theories).

Recent extensions of (1.1) explicitly introduce the two point direct correlation
function of the order parameter [5, 2]

C2(x− x′) = − 1
kBT

( δ2F

δψ(x)δψ(x′)

)
ψ0

, (1.2)

where the derivative is computed around a reference state ψ0, usually the equilib-
rium state. Gradient models of F in (1.1) are recovered by expanding the correlation
function in gradients

C2(x− x′) = − 1
kBT

(
Ĉ0 + Ĉ2∇2 + Ĉ4∇4 + . . .

)
δ(x− x′) (1.3)

The correlation function determines the linear part of (1.1), to which non linear-
ities are added phenomenologically. Different choices are now possible depending
on whether ψ is a broken symmetry variable (Ĉ0 = 0 according to Goldstone’s
Theorem), the equilibrium phase is uniform in equilibrium (the Ginzburg-Landau
free energy), or is modulated (the Brazovskii free energy, for example,[20, 9])

F =
∫
d3x
{
− r

2
ψ2 +

u

4
ψ4 +

ξ

2
[
(∇2 + q20)ψ

]2}
, (1.4)

where q0 is the characteristic wavenumber of the modulation, and r, u, and ξ are
coefficients that depend on the system in question. These extensions have allowed
quantitative descriptions of non uniform systems at the mesoscale.
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In a formal expansion in frequency (ω = 0 corresponds to equilibrium), the lowest
order transport model must correspond to reversible (non dissipative or quasi static)
motion. Incorporation of fluid flow requires consideration of an energy density that
depends on kinetic energy 1

2ρv
2. The momentum density g = ρv and the velocity

field v are then conjugate variables. Momentum density is a conserved variable,
with stress its associated current, ∂tgi + ∂jπij = 0. We will decompose the total
stress as πij = Pδij−σRij−σDij , explicitly separating the hydrostatic pressure P , and
the reversible and dissipative contributions to πij . Advection of order parameter,
vi∂iψ, can be added to Eq. (1.1) and carries with it the requirement to introduce a
reversible stress in the momentum conservation equation through a Maxwell relation
[18]

∂ψ̇

∂vi
=

∂ġi
∂(∂jαj)

with αj =
∂f

∂(∂jψ)
, (1.5)

where the dot signifies time derivative. For example if, as is often the case,
the energy density f(ψ, ∂iψ) is quadratic in the order parameter gradient f =
K
2 ‖∇ψ‖

2 + g(ψ), a so called non standard reversible stress arises which is given by
σRij = K∂iψ ∂jψ. [13, 1]

Dissipative motion then appears formally at the next order in ω. In existing
models of transport in modulated phases it arises from diffusive relaxation of ψ(x, t)
in (1.1). In addition, viscous forces in the equation of conservation of momentum
are introduced explicitly or implicitly through the dependence of the reversible body
force ∂jσRij on ψ. Such a description is incomplete for partially fluid (modulated)
phases. Consider, for example, the simplest modulated phase: a lamellar phase. Let
q̂ be the normal to the lamellar planes, and assume that the system is subjected
to a shear strain of amplitude γ. There are three possible orientations of the
lamellar planes relative to the shear velocity v0 (Figure 1): transverse (q̂ ‖ v0),
parallel (q̂ ‖ ∇v0), and perpendicular (q̂ ‖ ∇ × v0). As expected, shear along the
transverse direction leads to an elastic stress linear in γ (solid-like response).

Figure 1. Schematic representation of the three possible lamellar
orientations relative to a shear

Dissipation, however, can be shown to appear only nonlinearly (proportional
to γ3 for small γ). Furthermore, both parallel and perpendicular orientations are
completely decoupled from the flow since q̂ ·v0 = 0, and there is no effect from the
shear. To remedy this lack of linear dissipation, a Newtonian constitutive law for a
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dissipative stress σDij is introduced [9, 14]. However, while linear in γ, this relation
is not consistent with the symmetry of the phase, so that, for example, it does not
distinguish, between locally parallel and perpendicular orientations.

We explore here a direct connection between order parameter relaxation and
friction forces, and do so while allowing for a dissipative stress that is consistent
with the uniaxial symmetry of the lamellar phase.

2. Theoretical framework

2.1. Linear Viscoelastic Modulus. For an incompressible fluid of density ρ the
equation of conservation of momentum reads

ρ∂tvi + ∂jπij = 0. (2.1)

As indicated above, the reversible stress σRij is determined by the choice of gradient
terms in the free energy, (1.5). However, one still needs to introduce a constitutive
law for the dissipative stress σDij . In general, σDij is assumed to be linear in the small
strain rate vij = (∂ivj + ∂jvi)/2,

σDij = ηijkl vkl, (2.2)

where ηijkl is the viscosity tensor. The symmetry of the viscosity tensor needs to be
compatible with the broken symmetry of the modulated phase. In the simple case
of an isotropic incompressible Newtonian fluid, the coefficient of proportionality is
constant, so that ∂jσD

ij = η∂2vi where η is the shear viscosity.
More generally, a constitutive relation for viscoelastic fluids can be written as a

generalization of (2.2) including non locality in both space and time [4]

σij(x, t) =
∫ t

−∞
dt′
∫
d3x′ Gijkl(x− x′, t− t′)

[
∂′kvl(x

′, t′) + ∂′lvk(x′, t′)
]
, (2.3)

where ∂′i = ∂/∂x′i, σij = σR
ij + σD

ij and Gijkl(x, t) is the viscoelastic modulus.
Because of causality the viscoelastic modulus is nonzero only for t′ < t. The so
called complex modulus is then defined as [4]

G∗ijkl(ω) = −iω
∫ ∞

0

dt eiωtGijkl(t) = G′ijkl(ω) + iG′′ijkl(ω), (2.4)

where G′ijkl(ω) is the storage modulus and G′′ijkl(ω) is the loss modulus. The
number of independent elements of Gijkl(t) (or G∗ijkl(ω)) depends on the underlying
broken symmetry of the modulated phase.

2.2. Response Functions. In Linear Response Theory, changes in a field in re-
sponse to its conjugated external field are described through a response function.
Strictly speaking, the relaxation modulus in (2.3) is not a response function because
the strain rate is not the conjugate field to the shear stress, rather the strain tensor
uij = (∂iuj + ∂jui)/2 is the appropriate variable. The response function relating
stress to strain χσijσkl

(x, t) is [7]

σij(x, t) =
∫ t

−∞
dt′
∫
d3x′χσijσkl

(x− x′, t− t′)[∂′kul(x′, t′) + ∂′luk(x′, t′)], (2.5)

where both temporal and spatial translation invariances are assumed. The response
function χσijσkl

(x − x′, t − t′) is nonzero only for t > t′ because of causality. The
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Laplace transform is then

χσijσkl
(x− x′, z) =

∫ ∞
0

dt eiztχσijσkl
(x− x′, t), (2.6)

which is analytic in the upper half z-plane. Also, its half time Fourier transform is

χσijσkl
(x− x′, ω) = lim

ε→0
χσijσkl

(x− x′, z = ω + iε), (2.7)

which can be decomposed into real and imaginary parts

χσijσkl
(x− x′, ω) = χ′σijσkl

(x− x′, ω) + iχ′′σijσkl
(x− x′, ω). (2.8)

Then, the fluctuation-dissipation theorem states that the imaginary part of the
response function is related to the auto correlation function of the stress

χ′′σijσkl
(k, ω) =

βω

2V
〈σij(k, ω)σkl(−k, t = 0)〉 , (2.9)

where V is the volume of the system.
Of course, the viscoelastic relaxation modulus Gijkl(t) is related to the correla-

tion function as well. First, noting that vi = ∂tui, we integrate (2.3) by parts to
obtain

σij(x, t) = −
∫ t

−∞
dt′
∫
d3x′ ∂t′Gijkl(x− x′, t− t′)

[
∂′kul(x

′, t′) + ∂′luk(x′, t′)
]

+
∫
d3x′ Gijkl(x− x′, t = t′)

[
∂′kul(x

′, t) + ∂′luk(x′, t)
]
.

By comparing this equation with (2.5) we find

χσijσkl
(x−x′, t− t′) = −∂t′Gijkl(x−x′, t− t′)+Gijkl(x−x′, t− t′)δ(t′− t). (2.10)

Since both χσijσkl
and Gijkl are nonzero for t > t′ we take the Laplace transform

of the above equation. Since boundary terms at t = t′ cancel out, and by using
the fact that χσijσkl

(k, ω) = limε→0 χσijσkl
(k, z = ω + iε) and the definition of the

complex modulus (2.4) we find

χσijσkl
(k, ω) = G∗ijkl(k, ω). (2.11)

In other words, the complex modulus is the momentum current autocorrelation
function. In terms of this function, the storage and loss moduli are given by

G′′ijkl(k, ω) =
βω

2V
〈σij(k, ω)σkl(−k, t = 0)〉 , (2.12)

G′ijkl(k, ω) =
β

2V
P
∫ ∞
−∞

dω1

π

ω1 〈σij(k, ω1)σkl(−k, t = 0)〉
ω1 − ω

, (2.13)

where we have used the fluctuation-dissipation theorem (2.9), and the Kramers-
Kronig relation between χ′ and χ′′. In (2.13) P stands for the principal value of
the integral. In short, Equations (2.12) and (2.13) show that a general, but linear,
viscoelastic constitutive relation follows from the stress autocorrelation function.
We also mention that the momentum conservation equation allows one to express
the stress autocorrelation function in terms of the velocity autocorrelation function.
In general, if the fluid is incompressible, one can use the longitudinal part (parallel
to the velocity gradient) of the momentum conservation equation to eliminate the
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pressure, and from the resulting transverse part of the momentum conservation
equation one finds

〈vi(k, ω)vk(−k, t = 0)〉 =
kjkl
ρ2ω2

〈σij(k, ω)σkl(−k, t = 0)〉 . (2.14)

By inserting (2.14) into (2.11), it is possible to relate the complex modulus to the
velocity autocorrelation function.

The Green-Kubo relation follows immediately from (2.12). In the limit of small
frequency and wavenumber, one has

ηijkl = lim
ω→0

lim
k→0

G′′ijkl(k, ω)
ω

, (2.15)

which is the viscosity tensor defined in (2.2).

2.3. Extended Constitutive Relations. In the spirit of Eqs. (1.2) and (1.3),
one can ask whether it is possible to use microscopic information contained in the
stress autocorrelation function (for example, from experiments or molecular level
simulation) to formulate extended constitutive equations for the stresses that will
appear as nonlocal contributions in the momentum conservation equation. This is
analogous to nonlocal contributions from the pair correlation function C2 in the
equation governing the evolution of the order parameter. Such a representation
could be particularly useful in modulated phases in which structural correlations
will affect molecular friction.

If there exists a hydrodynamic variable associated with a broken symmetry,
flow advects the new variable, and the reversible momentum current σR

ij contains
an additional contribution associated with the restoring force to an equilibrium
ordered state when the system is driven out of equilibrium, as shown in (1.5) [18].
Assume now that (2.3) remains valid. In general, the equation of conservation of
momentum can be formally linearized as

ρ∂tvi − ∂jσD
ij = −∂iP + ∂jσ

R
ij . (2.16)

We rewrite this equation, in Fourier space,

L̂ij(k, ω)vj(k, ω) = F̂i(ψ), (2.17)

where the linear operator L̂ij(k, ω) is defined from the LHS of (2.16), and F̂i(ψ)
follows from the dependence of the reversible shear stress on the additional order
parameter fields. The velocity auto correlation function can be formally written as

〈vi(k, ω)vk(−k, t = 0)〉 = L̂−1
ij (k, ω)L̂−1

kl (−k,−ω)
〈
F̂j(ψ)(k, ω)F̂l(ψ)(−k, t = 0)

〉
,

(2.18)
where L̂−1(k, ω) is the inverse of L̂(k, ω) such as L̂−1

ij (k, ω)L̂jk(k, ω) = δij . Note
now that, in the linear regime, the RHS of Eq. (2.18) is proportional to the autocor-
relation function of the order parameter. Equation (2.18) is interesting as it shows
the formal relationship between correlations of the viscous degrees of freedom (and
hence momentum response), and the structural order parameters that characterize
the mesophase. As such, it can be thought of as a generalized constitutive equation.
We next illustrate the relationship in the specific case of a block copolymers in the
lamellar phase.
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3. Viscoelastic response of a Lamellar phase

Diblock copolymers are macromolecules comprising two chemically distinct and
mutually incompatible segments (monomers) that are covalently bonded. Their
equilibrium properties are dictated by N , the degree or polymerization (i.e., the
length of the chain), f , the volume fraction of one of the monomers, and χ, the
Flory-Huggins interaction parameter between the distinct segments [10]. The first
two parameters can be controlled through processing, whereas the third is deter-
mined by the choice of monomers involved. Above an order-disorder transition
temperature TODT , the equilibrium phase is fluid like (disordered). Below TODT ,
equilibrium structures of a wide variety of symmetries have been predicted and ex-
perimentally observed. Around f = 0.5 (symmetric mixture), a so called lamellar
phase is observed, in which nanometer sized layers of A and B rich regions alternate
in space. Phases of complex symmetries, including bi-continuous structures, have
been predicted and observed in higher order multiblocks [23, 16].

At frequencies low compared with the smallest inverse relaxation time of the
polymer, chain conformation fluctuations can be adiabatically eliminated, and a
mesoscopic theory can be developed. The evolution of a melt is described by an
order parameter field ψ(x, t) which represents the local density difference of the
constituent monomers. The coarse grained free energy functional F was first given
by [20]. In the weak segregation limit near the order-disorder transition point, the
simpler free energy in (1.4) has been introduced [9, 17].

The linearized momentum conservation equation describing the dynamics of
block copolymer in lamellar phases is given by (2.16), with the reversible stress
tensor given by

∂jσ
R
ij = −ψ∂i

(δF
δψ

)
. (3.1)

We now introduce the following constitutive law for the dissipative stress tensor
σD
ij that is compatible with the uniaxial symmetry of a lamellar phase. For perfectly

ordered lamellae with q̂ being the unit normal to the layers, we have[6]

σD
ij = α1q̂iq̂j q̂kq̂lvkl + α4vij + α56q̂k(q̂ivkj + q̂jvki), (3.2)

where α1, α4 and α56 are viscosity coefficients. Now we can use this momentum
conservation equation to derive a relation in terms of the autocorrelation function
of the order parameter.

As a reference state we consider one in which flow is absent, and planar lamellae
with periodicity q are stationary. The function ψ0 = ψ1 cos(q · x) + . . . minimizes
the free energy Eq. (1.4) to lowest order in r/ξq40 with

ψ2
1 =

4
3
[ r
u
− ξ

u
(q2 − q20)2

]
. (3.3)

Next, we consider disturbances from the reference state as δψ = ψ−ψ0 and vi, and
linearize (2.16), resulting in

ρ∂tvi = ∂jδσ
R
ij + ∂jσ

D
ij , (3.4)

where

∂jδσ
R
ij = −ψ0∂i

[
µ̄(r)δψ

]
. (3.5)
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with µ̄(r) = −r+ 3uψ2
0 + ξ(∇2 + q20)2. We can then identify the linear operator L̂ij

from the terms proportional to the flow velocity in (3.4),

L̂ij(k, ω)vj(k, ω) = −iωρvi(k, ω)− ∂jσD
ij(k, ω), (3.6)

and

F̂i(ψ) = ∂jδσ
R
ij . (3.7)

The resulting relation is a function of the orientation of the lamellae relative to
the local velocity gradient. To be specific, we consider two examples: Perpendicu-
larly and transverse oriented lamellae (Figure 1).

3.1. Perpendicular Orientation. In this case v = vx̂, q = qŷ, k = kẑ, and
there is no reversible contribution to the stress tensor because ∂jδσR

ij ∝ ki − qi is
perpendicular to vi. Then (3.4) when linearized reduces to

ρ∂tv(k, t) = −α4

2
k2v(k, t). (3.8)

Now it is straightforward to calculate the velocity-velocity correlation function.
First, we Laplace transform (3.8) to get

v(k, z) =
1

−iz + α4k2/2ρ
v(k, t = 0). (3.9)

This equation and Equation (3.14) onf [7] imply that

χvv(k, z) =
α4k

2/2ρ
−iz + α4k2/2ρ

χvv(k). (3.10)

Since χvv(k, ω) = limε→0 χvv(k, z = ω + iε) = χ′vv(k, ω) + iχ′′vv(k, ω) and χvv(k) =
ρ−1 we find from equations (2.12) and (2.13) that

G′xzxz(k, ω) =
α4

2
ω2 α4k

2/2ρ
ω2 + (α4k2/2ρ)2

, (3.11)

and

G′′xzxz(k, ω) =
α4

2
ω3

ω2 + (α4k2/2ρ)2
. (3.12)

The viscosity coefficient can be obtained by taking small k and ω limits

η⊥ = lim
ω→0

lim
k→0

G′′xzxz(k, ω)
ω

=
α4

2
. (3.13)

The lamellar phase in this orientation responds as a terminal fluid of shear viscosity
α4 (terminal behavior has at low frequencies G′′xzxz ∝ ω and G′xzxz ∝ ω2). This
is an obvious result and illustrates that there is no coupling between the order
parameter and the fluid velocity. The same is the case for the parallel orientation.
Interestingly, however, the resulting viscosity is α4 +α56. Even though the lamellar
phase responds as a terminal fluid for both orientation, the resulting viscosity is
nevertheless different.
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3.2. Transverse Orientation. Consider now a transverse orientation in which
v = vx̂, q = qx̂ and k = kẑ. In contrast to the perpendicular orientation, since
v ‖ q, F̂x(ψ) ∝ qx does not vanish, and there exists coupling between ψ and v.
Elastic and viscous response are coupled in this case. If we use the incompressibility
condition (v · k = 0), we find

L̂xx = −iωρ+
α4 + α56

2
k2, (3.14)

and

F̂x(ψ) = iq
ψ1

2
ξ
[
k4 + 2k2(q2 − q20)

][
δψ(k− q, t)− δψ(k + q, t)

]
. (3.15)

Defining the phase of the perturbation φ2(k, t) = [δψ(k + q, t)− δψ(k− q, t)]/
√

2,
we find from equations (2.12), (2.14) and (2.18),

G′xzxz(k, ω) =− β

V

ψ2
1

4
q2ξ2k2

[
k2 + (q2 − q20)

]2
× P

∫ ∞
−∞

dω1

π

ω3
1

〈
φ2(k, ω1)φ2(−k, t = 0)

〉
(ω1 − ω)[ω2

1 + (α4 + α56)2k4/4ρ2]
,

(3.16)

and
G′′xzxz(k, ω)

ω
= − β

V

ψ2
1

4
q2ξ2k2

[
k2 + 2(q2− q20)

]2ω2
〈
φ2(k, ω)φ2(−k, t = 0)

〉
ω2 + (α4 + α56)2k4/4ρ2

. (3.17)

Equations (3.16) and (3.17) directly relate the viscoelastic modulus and the order
parameter correlation function. Of course, their specific form here depend on the
functional form of the reversible stress and of the dissipative stress tensor chosen
(the prefactor and denominator in both equations respectively). The prefactor is
related to the equilibrium inverse susceptibility of the order parameter (not any
kinetics), and the denominator indicates viscous diffusion with viscosity α4 +α6. It
is quite straightforward to conduct the calculation for other free energies or forms
of the dissipative stress. Assuming, however, that both functions can be experi-
mentally determined (e.g., micro rheology and X-Ray scattering) or by numerical
simulation of a copolymer melt, including dynamical density functional theory, their
relationship would give information about the microscopic mechanisms responsible
for viscous friction. These mechanisms are, at present, unknown for block copoly-
mers, fact that hinders a solid theoretical understanding of their nonequilibrium
evolution, and, as indicated in the Introduction, underpins the need for a great
deal of empiricism in their processing.
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