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LOCALIZATION PHENOMENA IN A DEGENERATE
LOGISTIC EQUATION

JOSÉ M. ARRIETA, ROSA PARDO, ANIBAL RODRÍGUEZ-BERNAL

Abstract. We analyze the behavior of positive solutions of elliptic equations

with a degenerate logistic nonlinearity and Dirichlet boundary conditions. Our
results concern existence and strong localization in the spatial region in which

the logistic nonlinearity cancels. This type of nonlinearity has applications in

the nonlinear Schrodinger equation and the study of Bose-Einstein conden-
sates. In this context, our analysis explains the fact that the ground state

presents a strong localization in the spatial region in which the nonlinearity
cancels.

1. Introduction

In this paper we analyze the behavior of positive solutions of elliptic equations
with a degenerate logistic nonlinearity and Dirichlet boundary conditions

−∆u = λu− n(x)uρ in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN , N ≥ 1, is a bounded domain, ρ > 1, λ ∈ R and n(x) ≥ 0 in Ω and
n(x) is not identically zero.

We will also assume that n(x) remains strictly positive near the boundary of Ω
and therefore

K0 = {x ∈ Ω : n(x) = 0} ⊂ Ω and K0 is a nonempty compact set. (1.2)

Despite a large amount of mathematical literature in this kind of logistic equations,
see below, this type of nonlinearity has applications in the nonlinear Schrodinger
equation and the study of Bose-Einstein condensates. In this context, assumption
(1.2) implies the fact that the ground state presents a strong localization in the
spatial region K0, see [19] and references therein.

Throughout this article we shall assume that the compact setK0 and the function
n(x) satisfy the following hypotheses:

(Hn) n(x) is a Hölder continuous function and

n(x) ≥ C
(
d0(x)

)γ for some γ > 0.
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where d0(x) := dist(x,K0), and
(HK) K0 = K1 ∪K2 ⊂ Ω, where K1 and K2 are compact sets and K1 = Ω0 is

the closure of a regular connected open set Ω0 6= ∅, K2 has zero Lebesgue
measure.

In some cases (HK) will be strengthened to
(HK’) K0 satisfies (HK) and K2 is a closed regular d-dimensional manifold, with

d ≤ N − 1.
When the set K0 is empty, that is, if n(x) is strictly bounded away from zero,

problem (1.1) is classical and well understood, see e.g. [20] and references therein.
Also, when K0 is “smooth” in the sense that in (HK) we have K0 = K1 = Ω0

where Ω0 is a smooth open set, and K2 = ∅, this problem has also been studied
in [17, 7, 8, 9, 10, 15] and further developments in [11, 12, 16]. Therefore here we
focus on the effect on the solutions of the presence of the part with empty interior
K2.

As a general notation, we will denote by λ1(U) the first eigenvalue of the Laplace
operator with Dirichlet boundary conditions in the open and smooth set U .

As will be shown below, by standard estimates on (1.1), if the parameter λ is
below the value λ1(Ω), the unique non negative solution is u ≡ 0. Moreover, as λ
crosses the value λ1(Ω), a bifurcation phenomena takes place and a unique positive
solution emanates from the trivial one. This solution can be continued in λ up until
it reaches some critical value, λc. By monotonicity properties of the first eigenvalue
(with respect to the domains and to the potentials), it is an easy task to realize
that the critical value λc is equal to λ1(Ω0), see Lemma 2.1, part (i). Note that
this is precisely the same situation as when K0 is “smooth”, i.e. K2 = ∅. When
K0 is empty, the picture is also as above, with λc =∞.

Our goal is then to give a detailed description of the behavior of this branch
of solutions for λ ∈ (λ1(Ω), λ1(Ω0)) and specially as λ → λ1(Ω0). First we show
that the solutions blow up in compact sets of Ω0 (see Lemma 3.1 below). Also, we
will show that the solutions are uniformly bounded in compact sets of Ω \K0 (see
Proposition 3.3 below). Hence, it remains to analyze the behavior of solutions in
K2, which is not so clear at all. In K2 we have two competing mechanisms: on one
hand the fact that n(x) ≡ 0 in K2 “pushes” the solution towards +∞ while the
fact that K2 is not “fat” enough means that this effect may not have enough room
to force the solution to go to infinity.

We will distinguish two situations for which we will be able to show that the
solutions remain bounded in K2. In case K2 ∩ K1 = ∅, then any solution will
be bounded in K2, actually it will be so in a neighborhood of K2. In the case
K2 ∩ K1 6= ∅, it will turn out that a balance between the geometry of K2 and
the strength of the logistic term, given by the exponent ρ and the behavior of the
function n(x) near K2, will determine the behavior of the solution. As a matter of
fact we will be able to prove the following result.

Theorem 1.1. Assume K0 satisfies (HK) and n(x) satisfies (Hn). Then for any
λ ∈ (λ1(Ω), λ1(Ω0)) there exists a unique positive solution of (1.1), ϕλ, and we
have

lim
λ→λ1(Ω0)

ϕλ(x) =∞, for all x ∈ Ω0, (1.3)

and the limit is uniform in compact sets of Ω0. Moreover, we have the following
two cases:
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(i) If K1 ∩K2 = ∅, then there exists a δ > 0 and M > 0 such that

|ϕλ(x)| ≤M, ∀x, d(x,K2) ≤ δ, ∀λ ∈ (λ1(Ω), λ1(Ω0)).

(ii) If K1 ∩K2 6= ∅ and K0 satisfies (HK’) and

γ + 2 < (ρ− 1)(N − d), (1.4)

then ϕλ remains uniformly bounded on compact sets of Ω\K1. In particular
it remains bounded at each point of K2 \K1.

The proof of this result relies on the following argument. If we denote by u a
nonnegative solution of (1.1), then we obtain first an upper bound of u, independent
of λ, in compact sets of Ω \K0. If B̄(x0, a) ⊂ Ω \K0, where n(x) ≥ n0 in this ball,
we may compare the solution u with radial solutions of singular Dirichlet problems,
posed in B(x0, a), going to infinity at the boundary, see [9, 14, 18]. By radial
symmetry, the minimum of the singular solution is attained at the center of the
ball (that is in x0), and can be estimated in terms of n0, a, ρ and the dimension
N . Translating this result to our problem, we can move those balls for points in
Ω \K0 next to the boundary of K0, and state some rate for the upper bounds in
terms of some inverse power of the distance to the boundary of K0. This estimates
provide a rate at which the solution may diverge to infinity as we approach K0.
See Lemma 3.2, Proposition 3.3 and Lemma 3.5.

Once this estimate is obtained we may consider a point z ∈ K2 \K1 and consider
for instance a small ball B(z, δ), where in principle the solution u may become
unbounded as λ increases. Nevertheless, the rate obtained with the argument above
may imply that the solution u restricted to the sphere S(z, δ) = {|x − z| = δ} is
in Lr(S(z, δ)) for some r ≥ 1, with a norm independent of λ. Hence, u will be a
solution of an elliptic problem in B(z, δ) with an Lr trace at the boundary. Elliptic
regularity will imply that the solution u is bounded, independent of λ, in compact
sets of B(z, δ) and in particular in a neighborhood of z ∈ K2. Therefore, we may
obtain conditions on ρ, the dimensions N and d and the rate γ at which n(x)
approaches to zero, see (Hn), which may guarantee that the solution is bounded in
K2 \K1, see (1.4).

This article is organized as follows. In Section 2 we have collected some relevant
results on the stationary solutions of logistic degenerated equations. All those
results are essentially well know in case K2 = ∅ and we now cover the case when
K2 6= ∅. In Section 3 we state our main results.

2. Existence of the positive equilibria

Our main result in this Section states that for any λ ∈ (λ1(Ω), λ1(Ω0)), there
exists a unique classical positive solution of (1.1) and their L∞-norms approach
infinity as λ → λ1(Ω0), see Theorem 2.3. As mentioned before, this result is
already know in the particular case when n(x) is a smooth function, K2 = ∅, and
K0 = K1 = Ω0, an open set with regular boundary, see [17, 8, 7].

We first state the following preliminary result. Assuming that for a fixed value
of the parameter λ = λ0, there exists a positive stationary solution of (1.1), then
λ0 must lie inside a precise open bounded interval. Moreover, for this λ0, there is
a small δ0 such that for each λ ∈ (λ0 − δ, λ0 + δ), there exists a unique positive
solution, which is smooth and increasing in the parameter. More precisely, we have
the following lemma.
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Lemma 2.1. Assume n(x) is Hölder continuous and K0 satisfies (HK). Assume
that ϕ0 is a nontrivial nonegative classical stationary solution of (1.1) for λ = λ0.
Then the following holds:

(i) λ0 ∈ (λ1(Ω), λ1(Ω0))
(ii) For each λ in a neighborhood of λ0 there exists a unique nonnegative station-

ary solution of (1.1), ϕλ, close to ϕ0 which is moreover a smooth function
of λ.

(iii) The equilibria ϕλ is an increasing function of λ.

Proof. (i) Assume that (λ0, ϕ0) is a non negative nontrivial stationary solution,
then

λ0 = λ1(−∆ + n(x)ϕρ−1
0 ,Ω), (2.1)

that is, λ0 is the first eigenvalue of the operator −∆ + n(x)ϕρ−1
0 in Ω, with Dirich-

let boundary conditions. This fact, together with the monotonicity of the first
eigenvalue with respect to the potential implies that, since n(x)ϕρ−1

0 ≥ 0,

λ0 > λ1(Ω).

On the other hand, the monotonicity with respect to the domain of this eigenvalue
gives

λ0 < λ1(−∆ + n(x)ϕρ−1
0 ,Ω0).

Also note that n(x) = 0 on Ω0 and so

λ1(−∆ + n(x)ϕρ−1
0 ,Ω0) = λ1(−∆,Ω0) = λ1(Ω0),

and therefore, part (i) is already proved.
(ii) Since n is Cα Hölder continuous, we consider the map

F : (λ, u)→ −∆u− λu+ n(x)uρ

from R × C2,α
0 (Ω) → Cα(Ω) where C2,α

0 (Ω) := {u ∈ C2,α(Ω) : u = 0, on ∂Ω}.
Then F is a continuously differentiable map, and we apply the implicit function
theorem at (λ, u) = (λ0, ϕ0). By hypothesis ϕ0 is a nonnegative stationary solution
of (1.1), then F (λ0, ϕ0) = 0.

Moreover, the derivative with respect to u at (λ, u) = (λ0, ϕ0) is

DuF (λ0, ϕ0) = −∆− λ0 + ρn(x)ϕρ−1
0 .

Since ρ > 1 and taking into account the monotonicity of the first eigenvalue with
respect to the potential and (2.1) we obtain

λ1(−∆− λ0 + ρn(x)ϕρ−1
0 ) > λ1(−∆− λ0 + n(x)ϕρ−1

0 ) = 0.

This implies that the derivative DuF (λ0, ϕ0) is an isomorphism.
So, for each λ in a neighborhood of λ0 there is a unique solution ϕλ of (1.1)

in a neighborhood of ϕ0 and the map λ → ϕλ is continuously differentiable with
ϕλ0 = ϕ0, ending this part of the proof.

(iii) Let

v :=
dϕλ
dλ

,

taking derivatives with respect to λ in (1.1) we obtain

−∆v = λv + ϕ− ρn(x)ϕρ−1v in Ω
v = 0 on ∂Ω.
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We shall reason as before. Since λ = λ1(−∆ + n(x)ϕρ−1
λ ) and

λ1(−∆− λ+ ρn(x)ϕρ−1
λ ) > λ1(−∆− λ+ n(x)ϕρ−1

λ ) = 0,

the maximum principle gives

v :=
dϕλ
dλ

> 0,

therefore ϕλ is an increasing function of λ. �

The next result gives some “spectral” property of the set K0 that will be used
below.

Lemma 2.2. Assume K0 satisfies (HK). If we denote by Uδ = {x ∈ Ω : d(x,K0) <
δ}, then

λ1(Uδ)↗ λ1(Ω0), as δ → 0. (2.2)

Proof. Observe that the family Uδ is decreasing in δ and we have Ω0 ⊂ K0 ⊂ Uδ.
Therefore, λ1(Uδ) is an increasing sequence in δ with λ1(Uδ) < λ1(Ω0). Never-
theless, Uδ does not converge in the Haussdorf distances to Ω0 so the convergence
stated in (2.2) is not obvious at all.

Notice first that if K1∩K2 = ∅ then for δ < 1
2d(K1,K2), we have Uδ = U1

δ ∪U2
δ ,

where U iδ = {x ∈ Ω : d(x,Ki) < δ} for i = 1, 2 and U1
δ ∩ U2

δ = ∅. This implies that
λ1(Uδ) =min{λ1(U1

δ ), λ1(U2
δ )}. But since |K2| = 0 then |U2

δ | → 0 and therefore
λ1(U2

δ ) → +∞. To see this, we just use Faber-Krahn inequality, see for instance
[13]. This implies that λ1(Uδ) = λ1(U1

δ ) and since Ω0 is a smooth open set, then
λ1(U2

δ )→ λ1(Ω0), see [5, 4].
If K1 ∩K2 6= ∅, then the argument is not so straightforward. Nevertheless, since

|K2| = 0, we have that for each fixed ball B ⊂ RN \ Ω̄0 we have |B ∩ Uδ| → 0 as
δ → 0 and this implies, see [3, 6] that λ1(Uδ)→ λ1(Ω0). �

Next, we state the following result. For each parameter inside the interval deter-
mined in Lemma 2.1, part (i), there exists a unique positive solution. Moreover, the
L∞ norm of the solutions grows to infinity as the parameter λ approaches λ1(Ω0).

Theorem 2.3. Assume K0 satisfies (HK). Then the following holds:
(i) For any λ ∈ (λ1(Ω), λ1(Ω0)) there exists a unique strictly positive classical

solution ϕλ ∈ C2
0 (Ω) of (1.1).

(ii) furthermore, as λ→ λ1(Ω0), we have

‖ϕλ‖L∞(Ω) →∞. (2.3)

Proof. (i) If λ ∈ (λ1(Ω), λ1(Ω0)), by sub-supersolutions method, we will prove
that there is a bounded solution of (1.1). Specifically, observe that u := εΦ1 is a
subsolution choosing ε small enough, in particular for any ε ≤

(λ−λ1(Ω)
‖n‖∞

)1/(p−1).
On the other hand, from Lemma 2.2, we can choose regular domains Ω1, Ω2,

with
Ω0 ⊂ K0 b Ω1 b Ω2 ⊂ Ω

such that λ < λ1(Ω2) < λ1(Ω1) < λ1(Ω0). Set w ∈ C2(Ω) a function strictly
positive such that

w(x) :=

{
1 for x ∈ Ω \ Ω2

Φ1(Ω2) for x ∈ Ω1
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where Φ1(Ω2) > 0 is the first eigenfunction corresponding to the eigenvalue problem
in Ω2 with Dirichlet boundary conditions.

Then a supersolution can be chose in the following way u := Mw for M big
enough, [8]. Thus existence of a pair of ordered positive solutions ϕ1 ≤ ϕ2, follows
from [1].

To prove uniqueness, observe that if ϕ1 ≤ ϕ2 are not the same, then we would
have

λ = λ1(−∆ + n(x)ϕρ−1
2 ) > λ1(−∆ + n(x)ϕρ−1

1 ) = λ,

which is absurd.
(ii) From the monotonicity in λ, see Lemma 2.1, there exists the monotone

pointwise limit
ϕ∗(x) = lim

λ→λ1(Ω0)
ϕλ(x).

We next prove (2.3). In fact, otherwise, we get ϕ∗ ∈ L∞(Ω) and by elliptic regular-
ity we would have ‖ϕλ‖W 2,p(Ω) ≤ C, for all λ ∈ (λ1(Ω), λ1(Ω0)) and any 1 < p <∞.

Sobolev’s compact imbedding Theorem implies then that at least for a subse-
quence, ϕλ → ϕ∗ in W 1,p(Ω) ↪→ C(Ω̄), for p > N and therefore ϕ∗ is a weak
solution of

−∆ϕ∗ = λ1(Ω0)ϕ∗ − n(x)(ϕ∗)ρ in Ω

ϕ∗ = 0 on ∂Ω.

Moreover, ϕ∗ is bounded and therefore, by a bootstrap argument ϕ∗ will be a
classical solution of (1.1) with λ = λ1(Ω0), which contradicts part (i) of Lemma
2.1, which ends the proof. �

Remark 2.4. It can be shown that ϕλ is globally asymptotically stable for nonneg-
ative nontrivial solutions of (1.1); see [2].

3. Boundedness and unboundedness of solutions

The questions are now: What happens as λ→ λ1(Ω0)? Where and how solutions
become unbounded?

The first that we can say is that the blow-up is a complete blow-up at every
point in Ω0. For the for the proofs of the following results, we refer to [2].

Lemma 3.1. Assume K0 satisfies (HK) and let {ϕλ} for λ ∈ (λ1(Ω), λ1(Ω0))
denote the family of positive solutions of (1.1). Then

lim
λ→λ1(Ω0)

ϕλ(x) =∞, for all x ∈ Ω0.

To obtain upper bounds on the solutions outside Ω0 we will use the following
Lemma, see [9]. This Lemma analyzes the minimum of a radially symmetric solution
of a singular logistic equation with constant coefficients and going to infinity at the
boundary, see [14, 18].

Lemma 3.2. Assume ρ > 1 and λ, β > 0 and consider a ball in RN of radius a > 0
and the following singular Dirichlet problem

−∆z = λz − βzρ in B(0, a)

z =∞ on ∂B(0, a).
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Then, there exists a unique positive radial solution, za(x). Moreover, the solution
satisfies (λ

β

)1/(ρ−1)

≤ za(0) = inf
B(0,a)

za(x) ≤
(λ(ρ+ 1)

2β
+

B

βa2

)1/(ρ−1)

for some constant B = B(ρ,N) > 0, B independent of λ.

The above Lemma gives a local upper bound.

Proposition 3.3. Let x0 ∈ Ω \K0 and let ϕ > 0 be a stationary solution of (1.1)
for some λ < λ1(Ω0). Then there exists a > 0 and M > 0 independent of λ, such
that

0 ≤ ϕ(x) ≤M, ∀x ∈ B(x0, a).

Proof. Let x0 ∈ Ω \K0 and let a > 0 be such that B(x0, 3a) ⊂ Ω \K0. Denote

β = inf{n(x), x ∈ B(x0, 2a)} > 0.

For each y ∈ B(x0, a), consider z(x) the translation to B(y, a) of the function in
Lemma 3.2, with λ = λ1(Ω0). Hence z(x) is a supersolution for ϕ(x) and then

ϕ(x) ≤ z(x), x ∈ B(y, a).

In particular, taking x = y, we have

ϕ(y) ≤
(λ1(Ω0)(ρ+ 1)

2β
+

B

βa2

)1/(ρ−1)

, ∀y ∈ B(x0, a),

which proves the result with M =
(
λ1(Ω0)(ρ+1)

2β + B
βa2

)1/(ρ−1)

. �

Assume now that the two parts K1 and K2 of K0 are disjoint. The following
result shows that, for λ → λ1(Ω0), all solutions of (1.1) remain bounded in K2,
while they start to grow up in K1.

Theorem 3.4. Assume K0 satisfies (HK) and K1 ∩K2 = ∅. Then the following
holds

(i) There exists a δ > 0 and M > 0 such that

|ϕλ(x)| ≤M, ∀x : d(x,K2) ≤ δ, ∀λ ∈ (λ1(Ω), λ1(Ω0)).

(ii) For λ→ λ1(Ω0) all solution of (1.1) are bounded on K2.
(iii) If λ→ λ1(Ω0) then the pointwise limit of the solutions of (1.1) is unbounded

on K1.

Now we turn to the case in which K1 and K2 are glued together. First using
Lemma 3.2 we prove the following universal bounds for solutions of (1.1).

Lemma 3.5. Assume that n(x) satisfies (Hn). Then there exists a constant A,
independent of λ such that for any solution of (1.1) we have

0 ≤ ϕ(x) ≤ h(x) =
( A

d0(x)

) γ+2
ρ−1

with d0(x) = dist(x,K0).

The following result will be used further below and gives a criteria to check
whether a function that is infinity on a smooth compact set of measure zero, is
integrable. As shown below, this criteria depends on the dimension of the set and
the rate at which the function diverges on it.
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Lemma 3.6. Assume K ⊂ RN is a closed regular d−dimensional manifold with
d ≤ N − 1, and consider a function defined on a bounded neighborhood Ω of K of
the form

f(x) =
(
dist(x,K)

)−α for α > 0.
If r ≥ 1 satisfies rα < N − d, then f ∈ Lr(Ω).

With all these we can state the following result.

Theorem 3.7. Assume K0 satisfies (HK’) and

K1 ∩K2 6= ∅.
Assume n(x) satisfies (Hn). Assume also that

γ + 2 < (ρ− 1)(N − d).

Then, the positive solutions of (1.1) remain bounded on compact sets of Ω \K1. In
particular they remain bounded at each point of K2 \K1.

Remark 3.8. It is an interesting open problem to determine whether we always
obtain that the solution of (1.1) are bounded in compact sets of Ω \K1 or, in the
contrary, that we have cases in which ϕλ becomes infinity in K2 as λ→ λ1(Ω0).

Remark 3.9. This work is still in progress, and we refer to [2] for details and
more general results, including more general configurations for the set K0 and the
analysis of the solutions of the parabolic problem associated to (1.1).
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[11] R. Gómez-Reñasco. The effect of varying coefficients in semilinear elliptic boundary value
problems. From classical solutions to metasolutions, Ph D Dissertation, Universidad de La
Laguna, Tenerife, March 1999.



EJDE-2014/CONF/21 LOCALIZATION PHENOMENA 9
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[19] V. M. Pérez-Garćıa and R. Pardo. Localization phenomena in nonlinear Schrdinger equa-

tions with spatially inhomogeneous nonlinearities: theory and applications to Bose-Einstein
condensates. Phys. D, 238(15):1352–1361, 2009.

[20] J. Smoller, Shock waves and reaction-diffusion equations. Grundlehren der Mathematischen

Wissenschaften 258. Springer-Verlag, New York-Berlin, 1983
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