Christopher Grumiau, Christophe Troestler
Abstract:
For a functional E and a peak selection that picks up a global
maximum of E on varying cones, we study the convergence up to
a subsequence to a critical point of the sequence generated by a
mountain pass type algorithm. Moreover, by carefully choosing stepsizes,
we establish the convergence of the whole sequence under a
"localization" assumption on the critical point.
We illustrate our results with two problems: an indefinite
Schrodinger equation and a superlinear Schrodinger system.
Published February 10, 2014.
Math Subject Classifications: 35J20, 58E05, 58E30, 35B38.
Key Words: Mountain Pass Algorithm; minimax; steepest descent method;
Schrodinger equation; spectral gap; strongly indefinite functional;
ground state solutions; Nehari manifold; systems.
Show me the PDF(801 K), TEX and other files for this article.
Christopher Grumiau Institut Complexys, Département de Mathématique Université de Mons, 20 Place du Parc B-7000 Mons Belgium email: christopher.grumiau@umons.ac.be |
Christophe Troestler Institut Complexys, Département de Mathématique Université de Mons, 20 Place du Parc B-7000 Mons Belgium email: christophe.troestler@umons.ac.be |
Return to the table of contents
for this conference.
Return to the EJDE web page