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THE INVERSE VOLATILITY PROBLEM FOR EUROPEAN
OPTIONS

IAN KNOWLES, LI FENG, AJAY MAHATO

Abstract. The problem of determining equity volatility from a knowledge of
European call option prices for a range of exercise (strike) prices and expira-

tions is solved by minimization of a convex functional.

1. Introduction

The inner workings of financial markets, from a modeling perspective, are still
not well understood, despite more than a century of effort dating back to the
pioneering work of Bachelier [2]. Modern physics and its associated PDE modeling
is supported by the laws of physics, which have withstood the test of time over
centuries. Not so the “laws of finance”, which appear quite flimsy in comparison.
What we do know is that a market is a large collection of people acting individually
and collectively, each with their own goals and economic reasons for participating.
We also know that in transactions associated with future-oriented instruments, such
as stock options and other financial derivatives, a huge amount of data is available
buried inside of which is the market’s best guess as to what the future holds. We
are concerned here with the possibility of extracting information from this type of
data with the aid of certain computational inverse algorithms.

It is common to model a financial asset (such as a stock or a commodity) via a
stochastic differential equation

dSt
St

= m(St, t)dt+ σ(St, t)dBt, (1.1)

where, for each time t, St(ω) is a random variable representing the price of the
financial asset for the trial ω, m is the drift, which relates to the “trend” of the
asset, σ is the volatility (“wobble”), and Bt(ω) is the Brownian motion stochastic
process used to model the randomness. Financial derivatives are contracts that
derive their value from such an underlying asset. In particular, a European call
option on a stock is the right to buy one share of the stock at a specified price K
(the strike, or exercise, price) at a specified future time T (expiration date). In their
Nobel Prize winning paper [3] Black and Scholes showed that, under certain rather
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severe restrictions, the arbitrage-free price of a European call contract, v(S, t),
satisfies a deterministic PDE of diffusion type in time t and the value S of the
underlying asset:

∂v

∂t
+

1
2
σ2S2 ∂

2v

∂S2
+ µs

∂v

∂S
− rv = 0, (1.2)

where σ is the (assumed constant) volatility, µ is the risk-neutral drift, and r is the
short-term interest rate. For practical purposes the latter may be taken to be the
interest rate on a 13-week US government treasury bill.

Many authors over the years [9, 17, 19, 20, 22, 23, 24] have noted that several
of the assumptions laid down by Black and Scholes are basically incompatible with
market data. Notable among these are objections to the constancy of σ. As recently
as the early nineteen eighties, assertions such as “the Black-Scholes volatility is
constant” seemed to hold true, at least while the market believed it so; but then,
after the crash of 1987, volatility was anything but constant, and in fact it has
recently become fashionable to speak of (and invest in) the volatility of the volatility!
So it is common to regard the volatility as a function of S and t, σ = σ(S, t), and
we assume this in the sequel.

Now, financial data specifying the market price v of an option is readily available
in quantity at various strike values K around the current price of the underlying
asset (the “spot” price), and for values of the expiration T up to around six months
into the future. Given that the computer projections currently used by most stock
analysts are only valid for a week or so into the future, one is led quite naturally
to the so-called inverse volatility problem: determine a market-inspired estimate of
the future volatility function σ(S, t) from a knowledge of current market prices v
of options with different strikes and future expirations.

The solution of this problem generally goes as follows. The value v of an option
contract also depends on the exercise (strike) price, K, and the expiration date, T ,
of the contract. In 1994 Bruno Dupire [8] noticed that the function v(S, t;K,T )
satisfies the “dual” Black-Scholes equation

∂v

∂T
− 1

2
K2σ(K,T )

∂2v

∂K2
+ µK

∂v

∂K
− (µ− r)v = 0, (1.3)

known also as the Dupire equation. If v is known for all strikes K and expirations
T then, as was noted first in [8], the volatility is uniquely determined in principle
from the equation (1.3). But such a formula for σ is of little use in practice, as
the market data for v is not only noisy (which would make the estimation of these
derivatives highly ill-posed), but even worse, the data is both discrete in T and
somewhat sparse in K. A number of alternate approaches have been proposed
subsequent to the appearance of [8], none of which has offered a definitive solution.
Minimization methods using regularized least-squares fitting have been proposed
in [1, 4, 18]; the possible presence of spurious local minima is always an issue here.
An integral equation approach is presented in [5, 6], where convergence problems
are possible given the underlying ill-posedness, and in [7, 11] linearization of the
inherently non-linear inverse problem is discussed.

In this article we present a new variational algorithm for computing, via the
Dupire equation (1.3), the volatility σ(K,T ) from a knowledge of European option
prices at various strikes and expirations. The method used is an adaption of the
variational approach involving the minimization of convex functionals (with the
associated distinct advantage of having unique global minima and stationary points)
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used in [16] for numerical differentiation (formulated as an inverse problem), and
in [14, 15] for solving the inverse groundwater modeling problem.

2. Reconstruction of volatility

For simplicity we assume that there is no dividend for the underlying asset. Thus
the risk-neutral drift µ in (1.2) and (1.3) is equal to the interest rate r, and the
Dupire equation (1.3) can be written as

∂v

∂T
− 1

2
K2σ2(K,T )

∂2v

∂K2
+ rK

∂v

∂K
= 0. (2.1)

Let T0 < T1 < · · · < Tn be expiration times, and for each expiration Ti, 0 ≤ i ≤ n,
let Ki1, . . . ,Kimi be the associated strike prices. We assume that the volatility is
piecewise constant in time, so that, for 1 ≤ i ≤ n, σ = σi(K) over the i-th time
sub-interval [Ti−1, Ti]. Fixing i, set

wλ(K) =
∫ Ti

Ti−1

e−λT v(K,T ) dT, (2.2)

where λ > 0 is a parameter. For each such fixed i, 1 ≤ i ≤ n, we now Laplace
transform the Dupire equation over [Ti−1, Ti] to obtain∫ Ti

Ti−1

e−λT vT dT −
1
2
K2σ2

i

∫ Ti

Ti−1

e−λT vKK dT︸ ︷︷ ︸
w′′λ

+rK
∫ Ti

Ti−1

e−λT vK dT︸ ︷︷ ︸
w′λ

= 0,

where the primes indicate differentiation with respect to K. On integrating the
first term by parts we get

[e−λT v]TiTi−1
+ λ

∫ Ti

Ti−1

e−λT v dT︸ ︷︷ ︸
wλ

−1
2
K2σ2

iw
′′
λ + rKw′λ = 0,

and rearranging terms gives,

−1
2
K2σ2

iw
′′
λ + rKw′λ + λwλ = −v(K,Ti)e−λTi + v(K,Ti−1)e−λTi−1 .

Next, dividing by 1
2K

2σ2
i throughout, we obtain

−(w′′λ −
2r
Kσ2

i

w′λ) +
λ

1
2K

2σ2
i

wλ =
−v(K,Ti)e−λTi + v(K,Ti−1)e−λTi−1

1
2K

2σ2
i

.

Finally, on multiplying by the integrating factor

P (K) = e
−2r

RK dk

kσ2
i
(k) , (2.3)

we now have an equation in Sturm-Liouville form:

− (P (K)w′λ)′ + λQ(K)wλ = β(K,λ)Q(K), (2.4)

where

Q(K) = (
2

K2σ2
i (K)

)P (K), (2.5)

β(K,λ) = −v(K,Ti)e−λTi + v(K,Ti−1)e−λTi−1 . (2.6)
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If we can recover the functions P (K) and Q(K) for each i, 1 ≤ i ≤ n, we can find
the volatility σi(K) from the formula

σi(K) =

√
2P (K)
K2Q(K)

. (2.7)

We now focus attention on a variational approach to the recovery of one such
pair of positive coefficient functions P,Q defined on an interval a ≤ K ≤ b. It is
assumed that we are given the functions wλ(K) for K in [a, b] and all λ > 0. For
positive functions p and q also defined on [a, b], let c = (p, q). Define wλ,c(K) to be
the solution to the boundary value problem

Lp,λqwλ,c = −(p(K)w′λ,c)
′ + λq(K)wλ,c = β(K,λ)q(K), (2.8)

wλ,c(a) = wλ(a), wλ,c(b) = wλ(b). (2.9)

Let D be the set of all positive function pairs c = (p, q) such that boundary value
problem (2.8), (2.9) is disconjugate on [a,b], i.e. every non-trivial solution has
at most one zero on [a,b]. It is known [10, Theorem 6.1, p. 351] that (2.8) is
disconjugate if and only if the boundary value problem (2.8), (2.9) can always be
solved uniquely. It is also known (c.f. [16, Proposition 2.1]) that this set is open
and convex in L[a, b] × L[a, b] and L2[a, b] × L2[a, b]. For each λ > 0 define the
functional Gλ on the convex set D by

Gλ(c) =
∫ b

a

p(K)(w′2λ −w′2λ,c)+λq(K)(w2
λ−w2

λ,c)−2βq(K)(wλ−wλ,c) dK. (2.10)

3. Properties of the Functional Gλ

The main properties of the functional Gλ are summarized in the following

Theorem 3.1. (a) For any c = (p, q) in D,

Gλ(c) =
∫ b

a

p(w′λ − w′λ,c)2 + λq(wλ − wλ,c)2. (3.1)

(b) Gλ(c) ≥ 0 for all c = (p, q) in D, and Gλ(c)=0 if and only if wλ = wλ,c.
(c) The first Gâteaux derivative of Gλ is given by

G′λ(p, q)[h1, h2] =
∫ b

a

(w′2λ − w′2λ,c)︸ ︷︷ ︸
L2 gradient in p

h1 + [λ(w2
λ − w2

λ,c)− 2β(wλ − wλ,c)]︸ ︷︷ ︸
L2 gradient in q

h2. (3.2)

(d) The second Gâteaux derivative of Gλ is given by

G′′λ(c)[h, k] = 2(L−1
p,λq(e(h)), e(k)), (3.3)

where h = (h1, h2) , k = (k1, k2),

e(h) = −(h1w
′
λ,c)
′ + λh2wλ,c − βh2,

and (· , · ) denotes the usual inner product in L2[a, b].

Proof. (a) If v ∈W 1,2[a, b] and φ ∈W 1,2
0 [a, b] then by integration by parts we have∫ b

a

p(x)v′φ′ dx = p(x)v′φ|ba︸ ︷︷ ︸
=0

−
∫ b

a

φ(p(x)v′)′ dx = −
∫ b

a

φ(p(x)v′)′ dx. (3.4)
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Consequently, from (3.4) using φ = wλ − wλ,c ∈W 1,2
0 [a, b],

Gλ(c) =
∫ b

a

p(w′2λ − w′2λ,c) + λq((w2
λ − w2

λ,c)− 2βq(wλ − wλ,c)

=
∫ b

a

p(w′λ − w′λ,c)2 + 2pw′λ,c(w
′
λ − w′λ,c)

+ λq((w2
λ − w2

λ,c)− 2βq(wλ − wλ,c)

=
∫ b

a

p(w′λ − w′λ,c)2 − 2(wλ − wλ,c)(pw′λ,c)′

+ λq((w2
λ − w2

λ,c)− 2βq(wλ − wλ,c),
using (2.8) for (pw′λ,c)

′ ,

=
∫ b

a

p(w′λ − w′λ,c)2 − 2(wλ − wλ,c)(λqwλ,c − βq)

+ λq((w2
λ − w2

λ,c)− 2βq(wλ − wλ,c)

=
∫ b

a

p(w′λ − w′λ,c)2 + λq(wλ − wλ,c)2,

after some rearrangement.
(b) As p and q are chosen to be positive and λ > 0, from (a) we get (b).
(c) The first Gâteaux derivative of the functional Gλ is given by

G′λ(p, q)[h1, h2]

= lim
ε→0

Gλ(c+ εh)−Gλ(c)
ε

= lim
ε→0

1
ε

∫ b

a

(p+ εh1)(w′2λ − w′2λ,c+εh) + λ(q + εh2)(w2
λ − w2

λ,c+εh)

2β(q + εh2)(wλ − wλ,c+εh)− p(w′2λ − w′2λ,c)
− λq(w2

λ − w2
λ,c) + 2βq(wλ − wλ,c)

= lim
ε→0

1
ε

∫ b

a

ε(w′2λ − w′2λ,c+εh)h1 + ελ(w2
λ − w2

λ,c+εh)h2

− 2εβ(wλ − wλ,c)h2 + p(w′2λ − w′2λ,c+εh)

+ λq(w2
λ − w2

λ,c+εh)− 2qβ(wλ − wλ,c+εh)

= lim
ε→0

∫ b

a

(w′2λ − w′2λ,c+εh)h1 + [λ(w2
λ − w2

λ,c+εh)− 2β(wλ − wλ,c)]h2

+ lim
ε→0

∫ b

a

1
ε
p(w′2λ,c − w′2λ,c+εh) +

1
ε
λq(w2

λ,c − w2
λ,c+εh)

− 1
ε

2qβ(wλ,c − wλ,c+εh)

If we can show the second term is zero we get (3.2). Let the integral in the second
term be denoted by I. Now,

−(pw′λ,c)
′ + λqwλ,c = βq, (3.5)

−((p+ εh1)w′λ,c+εh)′ + λ(q + εh2)wλ,c+εh = β(q + εh2). (3.6)
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The first term in the integral I can be expanded as

ε−1

∫ b

a

p(w′2λ,c − w′2λ,c+εh)

= ε−1

∫ b

a

p(w′λ,c + w′λ,c+εh)(w′λ,c − w′λ,c+εh),

from (3.4) using φ = wλ,c − wλ,c+εh ,

= ε−1

∫ b

a

(wλ,c+εh − wλ,c)(p(w′λ,c + w′λ,c+εh))′

= ε−1

∫ b

a

(wλ,c+εh − wλ,c)[(pw′λ,c)′ + (pw′λ,c+εh)′],

using (3.5) and (3.6),

= ε−1

∫ b

a

(wλ,c+εh − wλ,c)[λqwλ,c − βq + λ(q + εh2)wλ,c+εh

− β(q + εh2)− ε(h1w
′
λ,c+εh)′]

=
∫ b

a

(wλ,c+εh − wλ,c)[λh2wλ,c+εh − βh2 − (h1w
′
λ,c+εh)′]

+ ε−1

∫ b

a

(wλ,c+εh − wλ,c)[λq(wλ,c + wλ,c+εh)− 2βq]

=
∫ b

a

(wλ,c+εh − wλ,c)[λh2wλ,c+εh − βh2 − (h1w
′
λ,c+εh)′]

+ ε−1

∫ b

a

λq(w2
λ,c+εh − w2

λ,c)(−2βq(wλ,c+εh − wλ,c)).

Substituting the above for ε−1
∫ b
a
p(w′2λ,c − w′2λ,c+εh) in I we obtain

I =
∫ b

a

(wλ,c+εh − wλ,c)[λh2wλ,c+εh − βh2 − (h1w
′
λ,c+εh)′].

It follows that I → 0 as ε→ 0.
(d) To find the second Gâteaux derivative of the functional Gλ we will need the

following result:

Lp,λq(wλ,c+εh − wλ,c) = −(p(wλ,c+εh − wλ,c)′)′ + λq(wλ,c+εh − wλ,c)
= −(pw′λ,c+εh)′ + λqwλ,c+εh − [−(pw′λ,c)

′ + λqwλ,c],

using (3.5) and (3.6),

= ε[(h1w
′
λ,c+εh)′ − λh2wλ,c+εh + βh2]

(3.7)

The second Gâteaux derivative of the functional Gλ is given by

G′′λ(c)[h, k]

= lim
ε→0

G′(c+ εh)[k]−G′(c)[k]
ε

= lim
ε→0

1
ε

∫ b

a

(w′2λ − w′2λ,c+εh)k1 + [λ(w2
λ − w2

λ,c+εh)− 2β(wλ − wλ,c+εh)]k2

− (w′2λ − w′2λ,c)k1 − [λ(w2
λ − w2

λ,c)− 2β(wλ − wλ,c)]k2
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= lim
ε→0

1
ε

∫ b

a

(w′2λ,c − w′2λ,c+εh)k1 + [λ(w2
λ,c − w2

λ,c+εh)− 2β(wλ,c − wλ,c+εh)]k2

= lim
ε→0

1
ε

∫ b

a

k1(w′λ,c + w′λ,c+εh)(w′λ,c − w′λ,c+εh)

+ [λ(w2
λ,c − w2

λ,c+εh)− 2β(wλ,c − wλ,c+εh)]k2,

from (3.4) using φ = wλ,c − wλ,c+εh ,

= lim
ε→0

1
ε

∫ b

a

(wλ,c − wλ,c+εh)(−k1(w′λ,c + w′λ,c+εh))′

+ [λ(w2
λ,c − w2

λ,c+εh)− 2β(wλ,c − wλ,c+εh)]k2,

factoring (wλ,c − wλ,c+εh) ,

= lim
ε→0

1
ε

∫ b

a

(wλ,c − wλ,c+εh) [(−k1(w′λ,c + w′λ,c+εh))′

+ (λ(wλ,c + wλ,c+εh)− 2β)k2],

using (3.7),

= lim
ε→0

∫ b

a

L−1
p,λq[−(h1w

′
λ,c+εh)′ + λh2wλ,c+εh − βh2]

× [(−k1(w′λ,c + w′λ,c+εh))′ + (λ(wλ,c + wλ,c+εh)− 2β)k2]

= lim
ε→0

∫ b

a

L−1
p,λq[−(h1(w′λ,c+εh − w′λ,c))′ + λh2(wλ,c+εh − wλ,c)]

× [(−k1(w′λ,c + w′λ,c+εh))′ + (λ(wλ,c + wλ,c+εh)− 2β)k2]

+ lim
ε→0

∫ b

a

L−1
p,λq[−(h1w

′
λ,c)
′ + λh2wλ,c)− βh2]

× [(−k1(w′λ,c + w′λ,c+εh))′ + (λ(wλ,c + wλ,c+εh)− 2β)k2],
expanding the second integral,

= lim
ε→0

∫ b

a

L−1
p,λq[−(h1(w′λ,c+εh − w′λ,c))′ + λh2(wλ,c+εh − wλ,c)]

× [(−k1(w′λ,c + w′λ,c+εh))′ + (λ(wλ,c + wλ,c+εh)− 2β)k2]

+ lim
ε→0

∫ b

a

L−1
p,λq[−(h1w

′
λ,c)
′ + λh2wλ,c)− βh2]

× [(−k1(w′λ,c+εh − w′λ,c))′ + λ(wλ,c+εh − wλ,c)k2]

+ 2
∫ b

a

L−1
p,λq[−(h1w

′
λ,c)
′ + λh2wλ,c − βh2]

× [−(k1w
′
λ,c)
′ + λk2wλ,c − βk2].

The first and second terms equal zero. Thus we obtain

G′′λ(c)[h, k] = 2(L−1
p,λq(e(h)), e(k)), (3.8)

where

e(h) = −(h1w
′
λ,c)
′ + λh2wλ,c − βh2,

e(k) = −(k1w
′
λ,c)
′ + λk2wλ,c − βk2.
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This completes the proof of the theorem. �

With some additional work one can show that the first and second Gâteaux
derivatives of Gλ are also Fréchet derivatives. As Lp,λq is a positive operator on
W 1

0 [a, b], we have from Theorem 3.1(d) that G′′λ(c) ≥ 0 for all c in the convex set
D. By [25, Corollary 42.8] the functional Gλ is therefore convex on D. We know
from Theorem 3.1(b) that Gλ has a global minimum (zero) at c = (p, q) if and only
if wλ = wλ,c. Choose N ≥ 3 positive distinct real numbers λj , 1 ≤ j ≤ N , so that

0 < λjT < 2, T ∈ [Ti−1, Ti].

Define a convex functional G on the domain D (defined above) by

G(c) =
N∑
j=1

Gλj (c). (3.9)

From the uniqueness theorem [12, Theorem 3.5] we know that, under certain
(computer-verifiable) conditions on the nature of the flows of certain associated vec-
tor fields (which amount here to an admissibility restriction on the data v(K,T )),
the condition wλ = wλ,c for at least three distinct values of λ implies that c =
(p, q) = (P,Q). By [25, Proposition 42.6(1)] we know that if the convex functional
G has a stationary point at (p, q) then it must have a global minimum there, and
from the foregoing (assuming admissible data) that stationary point must uniquely
occur at (P,Q). So, the desired function pair (P,Q) now appears as the unique
global minimum of a convex functional with a unique stationary point. In practical
numerics this is an important consideration, as many (if not most) least-square type
minimization methods suffer greatly from the minimization process getting stuck
in spurious local minima. That this cannot happen here is one of the significant
advantages of our approach.

4. The Algorithm

G(c) is a nonnegative convex functional since it is the sum of nonnegative convex
functionals, and it also has a unique stationary point at c = (P,Q). The idea here
is that by using G rather than just one of the Gλ, in addition to gaining favourable
uniqueness properties, we are blending additional time-based data into the inverse
problem, and this is intended to improve the well-posedness of the problem. We
note in passing from [13] that this inverse recovery is conditionally well-posed in
the weak-L2 sense, so from a theoretical standpoint, the recoveries are expected to
be quite stable, which indeed is the case.

We minimize this functional for N = 20 using the steepest descent method to
recover the coefficients P (K) and Q(K). The L2-direction of steepest descent for
G at c0 = (p0, q0) with respect to p is

−∇L2,pG(c0) =
N∑
j=1

(w′2λj − w
′2
λj ,c0),

and the L2-direction of steepest descent for G at (p0, q0) with respect to the variable
q is given by

−∇L2,qG(c0) =
N∑
j=1

[λj(w2
λj − w

2
λj ,c0)− 2β(wλj − wλj ,c0)].
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Instead of using these L2-gradients we use the corresponding Neuberger-gradients
(see [21]) as the L2-gradient has numerical problems that are extensively discussed
in [16]. In particular, the L2-gradient with respect to q is zero on the boundary of
[a,b] given that wλ and wλ,c are equal there, and thus the algorithm is unable to
properly recover Q. The Neuberger-gradient smooths the L2-gradient and preserves
boundary data during the descent, an important property not shared by other
descent techniques. Our Neuberger-gradient g = ∇H1G can be found from an
L2-gradient ∇L2G by solving the boundary value problem

−g′′ + g = ∇L2G,

g(a) = g(b) = 0.
(4.1)

Below is the steepest descent algorithm used to get one descent step in p:
(1) Initialize p(K) and q(K) with c0 = (p0, q0).
(2) Find wλ,c0 and w′λ,c0 by solving (2.8),(2.9).
(3) Find the L2 gradient of G in p, ∇L2,pG(c0).
(4) Find the Neuberger gradient in p, ∇H1,pG(c0).
(5) Evaluate pnew(K) = p0(K)− α∇H1,pG(c0).
(6) Find G(p, q0) using pnew(K) for p(K).
(7) Find α that gives the lowest value of G(p, q0).
(8) Set p(K) = pnew(K).

The descent in q is similar to that of descent in p. Here we find corresponding
gradients in q. The qnew(K) is given by

qnew(K) = q(K)− α∇H1,qG(c0)

The specific order of descent is somewhat problem dependent, and different com-
binations of descents in p and q were tried to get the best minimization. Typically
one needs more p-descent steps relative to q-descent steps as the descent progresses.

5. Results

One of the most popular European options traded on US exchanges is the op-
tion on the Standard & Poors 500 (SPX) index. Call option prices on the SPX
index were taken from the official website of the Chicago Board Options Exchange
(CBOE), for two consecutive maturities on the 22nd of February, 2012. The data
includes only the near-the-money options as they are the most heavily traded. To
recover the coefficient functions P (K) and Q(K) in (2.4) a computer code code was
written in the programming language C. The volatility recovered was compared to
the “implied volatility” obtained directly from the standard formula of Black and
Scholes by substituting the known option price and solving for the implied volatility
σ as an unknown.

We have option prices for discrete sets of strikes and expirations. We generated
the function v(K,T ) by linearly interpolating the option price in both strike and
expiration. The function v(K,T ) was mollified (c.f. [14, §6]) so that it could be
differentiated, and the derivative vK(K,T ) was found using central differences. For
20 fixed values of λ the functions v(K,T ) and v′K(K,T ) were Laplace transformed
using (2.2) to wλ(K) and w′λ(K) respectively. The functions p(K) and q(K) were
initialized using (2.3) and (2.5) with the initial σi chosen to be the implied volatility.
We performed a series of descents in p using the aforementioned Neuberger steepest
descent algorithm such that the functional could not be minimized any further.
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Spot Price(S0) $ 1357.66
Maturity Time (T1) 2 days
Maturity Time (T2) 22 days

Strike Price(K) v(K,T1) v(K,T2)
1300 59.40 63.00
1305 54.40 58.60
1310 49.20 54.20
1315 44.60 50.00
1320 39.40 45.80
1325 34.80 41.00
1330 29.80 37.90
1335 25.10 34.10
1340 20.60 30.50
1345 16.40 27.00
1350 12.5 23.7
1355 7.9 20.6
1360 5.1 17.7
1365 2.85 14.5
1370 1.6 12.7
1375 0.9 10
1380 0.55 8.7
1385 0.3 7
1390 0.25 5.6
1395 0.2 4.5
1400 0.2 3.6

Then a series of descents in q were performed to the point where functional likewise
could not be lowered any further. We repeated this sequence of descents in p and q.
The minimization of G(c) in α was done using the well known Brent minimization
technique, by adapting the one-variable code in the Numerical Recipes in C function
brent(). To avoid possible catastrophic cancellation in the Simpson rule formula
used in the calculation of the integrals in the formula (2.10) for the functional Gλ,
we used the alternate formula (3.1) instead. After running the code we recovered
the functions P (K) and Q(K) graphed below.

From (2.7) we calculated the volatility and compared it to the implied volatility
of the option at first and second expirations, as shown in the graph below. On taking
subsequent maturity intervals a volatility surface can in principle be plotted.

Finally, from the recovered volatility we calculated the option price in MATLAB
using the Binomial method and compared it to the actual price, as shown in the
figure below.

Conlusion. We have shown that volatility can be recovered from published option
prices using a steepest descent minimization technique. This provides a “market
view” of future volatility which in principle can used to trade options more effi-
ciently. The results obtained look promising. The analogous work on recovering
volatility for the much more ubiquitous American options is in progress. It would be
interesting to consider interest rate r (also known in this context as the risk-neutral
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drift) as function of time and asset price, instead of treating it as a constant, and
recover it in similar fashion from the option price.
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Translation: Cootner, 1964.

[3] Fischer Black and Myron Scholes; The pricing of options and corporate liabilities. Journal of
Political Economy, 81:637–654, 1973.

[4] J. N. Bodurtha and M. Jermakyan; Non-parameric estimation of an implied volatility surface.
J. Computational Finance, 2:29–61, 1999.

[5] Ilia Bouchouev and Victor Isakov; The inverse problem of option pricing. Inverse Problems,

13:L11–L17, 1999.



194 I. KNOWLES, L. FENG, A. MAHATO EJDE-2014/CONF/21

[6] Ilia Bouchouev and Victor Isakov; Uniqueness, stability and numerical methods for the inverse
problem that arises in financial markets. Inverse Problems, 15:R95–R116, 1999.

[7] Ilia Bouchouev and Victor Isakov; Recovery of volatility coefficient by linearization. Quant.

Finance, 2:257–263, 2002.
[8] B. Dupire; Pricing with a smile. RISK, 7:18–20, 1994.

[9] Eugene F. Fama; The behavior of stock-market prices. Journal of Business, 38:34–105, 1965.

[10] Philip Hartman; Ordinary differential equations. S. M. Hartman, Baltimore, Md., 1973. Cor-
rected reprint.

[11] Victor Isakov; The inverse problem of option pricing. Preprint, 2004.

[12] Ian Knowles; Uniqueness for an elliptic inverse problem. SIAM J. Appl. Math., 59(4):1356–
1370, 1999.

[13] Ian Knowles, Mary A. LaRussa; Conditioinal well-posedness for an elliptic inverse prob-
lem. SIAM J. Appl. Math., 71:952–971, 2011. Available online at http://www.math.uab.edu
/knowles/pubs.html.



EJDE-2014/CONF/21 INVERSE VOLATILITY FOR EUROPEAN OPTIONS 195

[14] Ian Knowles, Tuan A. Le, Aimin Yan; On the recovery of multiple flow parameters from

transient head data. J. Comp. Appl. Math., 169:1–15, 2004.

[15] Ian Knowles, Michael Teubner, Aimin Yan, Paul Rasser, Jong Wook Lee; Inverse groundwater
modelling in the Willunga Basin, South Australia. Hydrogeology Journal, 15:1107–1118, 2007.

[16] Ian Knowles, Robert Wallace; A variational method for numerical differentiation. Numerische

Mathematik, 70:91–110, 1995.
[17] S. J. Kon; Models of stock returns - a comparison. Journal of Finance, 39(1):147–165, 1984.

[18] R. Lagnado and S. Osher; A technique for calibrating derivation of the security pricing models:

numerical solution of the inverse problem. J. Computational Finance, 1:13–25, 1997.
[19] D. B. Madan and E. Seneta; The variance gamma model for share market returns. Journal

of Business, 63(4):511–524, 1990.

[20] Benoit B. Mandelbrot. The variation of certain speculative prices. Journal of Business,
36:394–41, 1963.

[21] J. W. Neuberger; Sobolev gradients and differential equations, volume 1670 of Lecture Notes
in Mathematics. Springer-Verlag, Berlin, second edition, 2010.

[22] R. R. Officer; The distribution of stock returns. Journal of the American Statistical Associ-

ation, 67(340):807–812, 1972.
[23] P. D. Praetz. The distribution of share price changes. Journal of Business, 45(1):49–55, 1972.

[24] S. J. Press; A compound events model for security prices. Journal of Business, 40(July):317–

335, 1967.
[25] Eberhard Zeidler; Nonlinear functional analysis and its applications. III. Springer-Verlag,

New York, 1985. Variational methods and optimization, Translated from the German by Leo

F. Boron.

Ian Knowles
Department of Mathematics, University of Alabama at Birmingham, Birmingham AL

35294, USA
E-mail address: iknowles@uab.edu

Li Feng

Department of Mathematics, University of Alabama at Birmingham, Birmingham AL
35294, USA

E-mail address: lifeng@uab.edu

Ajay Mahato

Department of Mathematics, University of Alabama at Birmingham, Birmingham AL

35294, USA
E-mail address: amahato7@gmail.com


	1. Introduction
	2. Reconstruction of volatility
	3. Properties of the Functional G
	4. The Algorithm
	5. Results
	Conlusion

	References

