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EXTINCTION OF WEAK SOLUTIONS OF
DOUBLY NONLINEAR NAVIER-STOKES EQUATIONS

JOCHEN MERKER

Abstract. In this article we discus the doubly nonlinear incompressible Navier-

Stokes equations

∂b(u)

∂t
+ div(b(u)⊗ u) = −dπ + div(a(∇symu)) + f , div(u) = 0 ,

where u models the velocity vector field of a homogeneous incompressible non-
Newtonian fluid whose momentum b(u) depends nonlinearly on u. Partic-

ularly, under certain regularity assumptions it is shown that u becomes ex-
tinct in finite time for sufficiently small initial values u(0), if a(∇symu) :=

(1 + |∇symu|p−2)∇symu and b(u) := |u|m−2u with 1 < p < m <∞.

1. Introduction

Doubly nonlinear incompressible Navier-Stokes equations (DNNS)
∂b(u)
∂t

+ div(b(u)⊗ u) = −dπ + div(a(∇symu)) + f

div(u) = 0
(1.1)

are a generalization of incompressible Navier-Stokes equations
∂u

∂t
+∇uu =− gradπ + div(a(∇symu))[ + f [

div(u) =0
(1.2)

for the velocity vector field u of a non-Newtonian fluid with pressure π. In fact,
while in (1.2) only the viscous stress tensor a is allowed to depend nonlinearly on
the symmetric part ∇symu of the derivative of u, in (1.1) additionally the relation
between the velocity vector field u and the momentum b(u) of the fluid is allowed
to be nonlinear. Observe that in the case b(u) = u] equation (1.1) is just the dual
of equation (1.2). In fact, the divergence of a smooth (1, 1)-tensor α ⊗ X is the
one-form defined by div(α ⊗ X) := div(X)α + ∇Xα, and div(u) = 0 as well as
(∇uu)] = ∇uu] are valid.

Abstractly (1.1) is a doubly nonlinear evolution equation. Let us refer to [1, 8,
11, 18] for general results about such equations. Usually the map b is assumed to
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have a potential φb, and in this case (1.1) generalizes (1.2) by allowing the fluid
to have kinetic energy

∫
Ω
φb(u) dx instead of the standard quadratic kinetic energy

1
2

∫
Ω
|u|2 dx. For example, φb may be given by a power law like

φb(u) :=
1
m
|u|m so that b(u) = |u|m−2u], or (1.3)

φb(u) :=

{
1
2 |u|

2 |u| ≤ 1
1
m |u|

m − ( 1
m −

1
2 ) |u| ≥ 1

so that b(u) =

{
u] |u| ≤ 1
|u|m−2u] |u| ≥ 1

, or

(1.4)

φb(u) :=
1
2
|u|2 +

1
m
|u|m so that b(u) = (1 + |u|m−2)u] (1.5)

with 1 < m <∞, m 6= 2. In this situation doubly nonlinear incompressible Navier-
Stokes equations (1.1) may be considered as model for a fluid in a medium which
interacts with the fluid. The kinetic energies (1.3) or (1.4) with m < 2 correspond
to the case of a porous medium, where the particles of the fluid are retarded for
large velocities |u| due to the interaction so that the kinetic energy of the fluid is
less than the standard quadratic kinetic energy. In the case m > 2 the particles
of the fluid are accelerated for large velocities |u|, and the kinetic energy is greater
than the standard quadratic kinetic energy. Further, in the situations (1.3) or (1.5)
with m < 2 the particles of the fluid are accelerated for small velocities |u| due to
the interaction, while for m > 2 they are retarded for small velocities |u| in the case
(1.3) resp. accelerated for large velocities |u| in the case (1.5).

Similarly, the viscous stress tensor a is often assumed to depend on the strain
tensor ∇symu by a power law like

a(∇symu) := |∇symu|p−2∇symu or (1.6)

a(∇symu) := (1 + |∇symu|p−2)∇symu , (1.7)

see e.g. [19, Chapter 1, Example 1.73]. The case p < 2 models shear thinning
(=pseudoplastic) fluids like blood, while the case p > 2 models shear thickening
(=dilatant) fluids like a thick slurry of beach sand. Note that in contrast to the
case a(∇symu) := (1+ |∇symu|)p−2∇symu equation (1.1) becomes singular at points
x with (∇symu)(x) for p < 2 and (1.6).

1.1. Outline. In the first part of this article existence of weak solutions to doubly
nonlinear incompressible Navier-Stokes equations (1.1) is discussed. The book [17]
is an excellent reference for the theory of incompressible Navier-Stokes equations
(1.2) with linear a. Existence of weak solutions to these classical equations was
first proved by [15, 13]. For nonlinear monotone a existence of weak solutions was
shown by [16] and [14] under the condition p ≥ 3n+2

n+2 . In [19] and [20, Chapter 5]
existence of weak solutions to (1.2) under periodic boundary conditions was shown
for p > 3n

n+2 and even for non-monotone a (see [20, Chapter 5, Theorem 3.97]).
Quasimonotone viscous stress tensors a were discussed in [12].

A first attempt to prove existence of weak solutions to doubly nonlinear in-
compressible Navier-Stokes equations (1.1) in the case p < n under the condition
mp′ < p∗ 1 can be found in [21]. In section 2, existence of weak solutions of (1.1)

1Note that in the case p < n the condition mp′ < p∗ is equivalent to p >
(m+1)n
m+n

and thus to

p > 3n
n+2

in the special case m = 2.
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is established using pseudomonotonicity, and the limit passage in the viscous stress
tensor is rigorously justified.

The main aim of this article is to discuss extinction of the velocity vector field u in
finite time. For doubly nonlinear reaction-diffusion equations it is well-known that
in the case p < m of fast diffusion solutions become extinct in finite time, see [9].
However, to prove a similar result for solutions u of (1.1) or (1.2), some information
about the regularity of the pressure is needed. Therefore, in section 3 the Poisson
problem for the pressure is investigated, and in section 4 under some regularity
assumptions extinction of u is proved for small initial velocities under the condition
p < m. Particularly, in the case m = 2 this result indicates that sufficiently slow
shear thinning fluids come to rest in finite time. This property agrees with the
observation that fluids like blood or honey stop flowing, if no external energy is
used to accelerate them. In contrast to the series of articles [2, 3, 4, 5, 6, 7], where
the body force f = f(b(u)) is assumed to be a feedback dissipative field satisfying
a condition like f(v)v ≤ −C|v|2, here the much more general case

f(x, v) = g(v)− dU(x)

with a continuous map g satisfying g(0) = 0 and g(v) · v ≤ C|v|2 for a constant
C < ∞ and a potential U on Ω is discussed. This condition implies that f(·, 0) is
potential and f(x, ·) has at most linear growth, but f is not restricted to point into
the opposite direction of v.

2. Existence of weak solutions

In this section doubly nonlinear incompressible Navier-Stokes equations (1.1) are
considered either under periodic boundary conditions on the fundamental domain
Ω := (0, L)n ⊂ Rn of the periodic lattice Rn/(LZ)n, L > 0, or on the whole
space Ω = Rn, or on a bounded domain Ω ⊂ Rn with smooth boundary ∂Ω under
Dirichlet boundary conditions u = 0 on ∂Ω. The aim of this section is to prove
existence of weak solutions for the prototypical power laws, i.e. for (1.3), (1.4) or
(1.5) determining the kinetic energy φb resp. the relation b between velocity and
momentum, and for (1.6) or (1.7) determining the viscous stress tensor a, where
the parameters 1 < m, p <∞ are fixed.

To realize (1.1) as an equation in a Banach space, for the power law (1.6) we
consider the Banach space

Xp,per := {u ∈W 1,p(Rn/(LZ)n,Rn) : div(u) = 0 ,
∫

Ω

u dx = 0}

in case of periodic boundary conditions on Ω = (0, L)n,

Xp,space := {u ∈W 1,p(Rn,Rn) : div(u) = 0}

in case of the whole space Ω = Rn, and

Xp,0 := {u ∈W 1,p
0 (Ω,Rn) : div(u) = 0}

in case of a bounded domain Ω ⊂ Rn with Dirichlet boundary conditions. These
Banach spaces are identical with the closure of the corresponding (periodic with
zero average resp. compactly supported) smooth divergence-free vector fields on Ω
w.r.t. the norm ‖u‖Xp := ‖∇u‖p. Equivalently, the norm ‖∇symu‖p can be chosen,
where ∇symu denotes the symmetric part of the derivative of u, see [19, 5.1.1]. For
the power law (1.7) we replace W 1,p by W 1,p ∩W 1,2 in the former definitions and



226 J. MERKER EJDE-2014/CONF/21

use the norm max(‖∇u‖p, ‖∇u‖2). In the following, denote by Xp one of these
spaces.

Further, for Ω = Rn or bounded Ω ⊂ Rn and the kinetic energies (1.3) or (1.4)
we consider the Banach space Ym := Lm(Ω,Rn). Note that the closure of Xp ∩ Ym
in Ym is Ym,div := {u ∈ Ym : div(u) = 0}, where div(u) is understood in the sense of
distributions 2. In the periodic case or for a bounded domain Ω the space Xp ∩ Ym
is compactly embedded into Ym if and only if p ≥ n, or p < n and m < p∗, where
p∗ is the Sobolev conjugate of p 3 Thus, for p < n at least m < p∗ should be
assumed. In case of the kinetic energy (1.5) we replace Lm by Lm ∩L2 and use the
norm max(‖u‖m, ‖u‖2). The Banach space Ym plays the role of the Hilbert space
L2(Ω,Rn) in the usual setting for equation (1.2).

It remains to realize every term of (1.1) as an operator. Assume that the viscous
stress tensor a is given in dependence of the strain tensor ∇symu by (1.6) or (1.7),
then − div(a(∇symu)) can be realized as an operator A : Xp → X∗p by

〈Au, v〉 :=
∫

Ω

a(∇symu) · ∇symv dx .

The operator A is bounded in the sense that

‖Au‖X∗p ≤ ‖∇
symu‖p−1

p in case of (1.6) (2.1)

‖Au‖X∗p ≤ ‖∇
symu‖p−1

p + ‖∇symu‖2 in case of (1.7) (2.2)

coercive in the sense that

〈Au, u〉 ≥ ‖∇symu‖pp in case of (1.6) (2.3)

〈Au, u〉 ≥ ‖∇symu‖pp + ‖∇symu‖22 in case of (1.7) (2.4)

and monotone. In the same way, a induces a monotone operator A : Lp(0, T ;Xp)→
Lp
′
(0, T ;X∗p ) on the space Lp(0, T ;Xp) of time-dependent functions.
Similarly, assume that the kinetic energy φb and the corresponding momentum

b = dφb are given in dependence of velocity u by the power laws (1.3), (1.4) or
(1.5), then b induces a superposition operator B : Ym → Y ∗m by

〈Bu, v〉 :=
∫

Ω

b(u) · v dx .

This operator B is continuous, bounded in the sense that

‖Bu‖Y ∗m ≤ ‖u‖
m−1
m in case of (1.3), (2.5)

‖Bu‖Y ∗m ≤ C(1 + ‖u‖m−1
m ) in case of (1.4), (2.6)

‖Bu‖Y ∗m ≤ ‖u‖
m−1
m + ‖u‖2 in case of (1.4), (2.7)

coercive in the sense that

〈Bu, u〉 ≥ ‖u‖mm in case of (1.3), (2.8)

〈Bu, u〉 ≥

{
‖u‖mm m ≥ 2
C‖u‖2m m ≤ 2

in case of (1.4), (2.9)

‖Bu‖Y ∗m ≥ ‖u‖
m
m + ‖u‖22 in case of (1.4), (2.10)

2In the periodic case consider Ym := Lm(Rn/(LZ)n,Rn), then the closure of Xp ∩ Ym in Ym
is Ym,div = {u ∈ Ym : div(u) = 0 ,

R
Ω u dx = 0}.

3In the case Ω = Rn (and under the condition m < p∗ in the case p < n) merely the restriction
of functions in Xp∩Ym to bounded open subsets U ⊂ Ω is compact as an operator into Lm(U,Rn).
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strictly monotone and has the potential ΦB(u) :=
∫

Ω
φb(u) dx. Particularly, B has

a demicontinuous inverse B−1, and B : L∞(0, T ;Ym)→ L∞(0, T ;Y ∗m).
An important role in the discussion of doubly nonlinear evolution equations is

played by the Legendre transform φ̂b(u) := b(u) · u − φb(u) of φb in dependence
of u and the induced functional Φ̂B(u) :=

∫
Ω
φ̂b(u) dx on Ym. In fact, the energy

identity
d

dt
Φ̂B(uk) = 〈∂Buk

∂t
, uk〉 (2.11)

holds in the sense of scalar distributions for uk ∈ Lp(0, T,Xp) ∩ L∞(0, T ;Ym) such
that Buk ∈ L∞(0, T ;Y ∗m) has a weak derivative ∂Buk

∂t ∈ Lp′(0, T,X∗p ). Note that
(2.11) generalizes the formula d

dt
1
2‖u‖

2
H = 〈∂u∂t , u〉 for time-dependent functions

u ∈ Lp(0, T ;V ) ∩ L2(0, T ;H) with a weak derivative ∂u
∂t ∈ L

p′(0, T ;V ∗), where H
is a Hilbert space and V ⊂ H ⊂ V ∗ is a Gelfand triple.

Finally, the transport term div(b(u) ⊗ u) can be realized as an operator u 7→
C(Bu⊗ u) from Xp ∩ Ym into X∗p by

〈C(Bu⊗ u), v〉 := −
∫

Ω

b(u) · ∇uv dx ,

provided that p ≥ n, or p < n and mp′ ≤ p∗ (which is a stronger condition than
m < p∗). Moreover, C : Xp ∩ Ym → X∗p is totally continuous, if p ≥ n, or p < n
and mp′ < p∗, thus let us assume for p < n in the following mp′ < p∗. In fact, the
estimate

|〈C(Bu⊗ u), v〉| ≤
∫

Ω

|b(u)||u||∇v| ≤ ‖Bu‖m′p′‖u‖mp′‖∇v‖p

is valid by Hölder’s inequality due to 1
m′p′ + 1

mp′ + 1
p = 1. The growth condition

on b implies ‖Bu‖m′p′ ≤ C(‖u‖m−1
mp′ + 1) for a constant C <∞, and the Gagliardo-

Nirenberg inequality ‖u‖mp′ ≤ (C‖∇u‖p)
p∗

p(p∗−m) ‖u‖
p∗(p−1)−mp

p(p∗−m)
m holds due to the

validity of m ≤ mp′ ≤ p∗. Thus, an estimate of the norm of C(Bu ⊗ u) in X∗p is
given by

‖C(Bu⊗ u)‖X∗p ≤ (C‖∇u‖p)
mp∗

p(p∗−m) ‖u‖
m

p∗(p−1)−mp
p(p∗−m)

m ,

and an estimate in a space of time-dependent functions is

‖C(Bu⊗ u)‖
p2( 1

m−
1

p∗ )

L
p2( 1

m
− 1

p∗ )
(0,T ;X∗p )

≤ Cp‖u‖pLp(0,T ;Xp)‖u‖
p

p∗(p−1)−mp
p∗

L∞(0,T ;Ym) . (2.12)

Note that in the case mp′ < p∗ the embedding obtained from Gagliardo-Nirenberg
inequalities is compact and hence C is totally continuous 4. Further, note that the
space Lp

2( 1
m−

1
p∗ )(0, T ;X∗p ) is continuously embedded into Lp

′
(0, T ;X∗p ) if and only

if p(p− 1)(1− m
p∗ ) ≥ m, else it is a weaker space.

As all terms of (1.1) have been realized as operators, the following definition of
a weak solution of (1.1) is appropriate for an inhomogeneity f ∈ Lp′(0, T ;X∗p ).

Definition 2.1. A time-dependent vector field u ∈ Lp(0, T ;Xp) ∩ L∞(0, T ;Ym) is
called a weak solution of (1.1) to the initial value u0 ∈ Ym with div(u0) = 0, if
Bu ∈ L∞(0, T ;Ym) has the initial value Bu0 ∈ Y ∗m and a weak derivative ∂Bu

∂t ∈

4at least in the case of periodic boundary conditions or Dirichlet boundary conditions on a
bounded domain, for the whole space problem use an exhaustion by bounded subdomains
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Lp
2( 1

m−
1

p∗ )(0, T ;X∗p ) in the case p(p − 1)(1 − m
p∗ ) < m (resp. ∂Bu

∂t ∈ L
p′(0, T ;X∗p )

in the case p(p− 1)(1− m
p∗ ) ≥ m) such that

∂Bu

∂t
+Au+ C(Bu⊗ u) = f (2.13)

is valid as an equation in Lp
2( 1

m−
1

p∗ )(0, T ;X∗p ) in the case p(p − 1)(1 − m
p∗ ) < m

(resp. as an equation in Lp
′
(0, T ;X∗p ) in the case p(p− 1)(1− m

p∗ ) ≥ m).

Existence of weak solutions is guaranteed by the following theorem.

Theorem 2.2. If p ≥ n, or p < n and mp′ < p∗, if b is given by (1.3), (1.4) or
(1.5), if a is given by (1.6) or (1.7), and if f ∈ Lp

′
(0, T ;X∗p ), then to an initial

value u0 ∈ Ym with div(u0) = 0 there exists a weak solution u of doubly nonlinear
Navier-Stokes equations (1.1) in the sense of definition 2.1.

Proof. The proof is very similiar to the proof of [21, Theorem 2.2], where a Faedo-
Galerkin method is used and structural assumptions (A1-A4),(B1-B5) on a, b are
required. These assumptions are mainly satisfied, if b is given by (1.3), (1.4) or (1.5)
and a is given by (1.6) or (1.7). For example, in the case (1.7) and for Dirichlet
boundary conditions on a bounded domain not only a(e) · e ≥ |e|p is satisfied,
but even a(e) · e ≥ |e|2 + |e|p. Thus, in a Faedo-Galerkin method the first energy
estimates obtained by testing (2.13) with approximate solutions uk and using (2.11)
have the form

d

dt
Φ̂B(uk) + ‖uk‖2W 1,2

0
+ ‖uk‖pXp

≤ 〈∂Buk
∂t

, uk〉+ 〈Auk, uk〉+ 〈C(Buk ⊗ uk), uk〉

= 〈f, uk〉 ≤
1

p′εp′
(‖f‖p

′

X∗p
+ Cp

′

2 ) + 2
εp

p
‖uk‖pXp

.

(2.14)

Thus, beneath an a priori estimate of Φ̂B(uk) in L∞(0, T ) not only an a priori
estimate of uk in Lp(0, T ;Xp) can be derived, but additionally an a priori estimate
in L2(0, T ;W 1,2

0 (Ω)) holds. As Φ̂B(uk) dominates ‖Buk‖Y ∗ , also Buk is uniformly
bounded in L∞(0, T ;Y ∗m) and uk is uniformly bounded in L∞(0, T ;Ym). Finally,
Auk is uniformly bounded in L2(0, T ;W−1,2)+Lp

′
(0, T ;X∗p ), and by (2.12) C(Buk⊗

uk) is uniformly bounded in Lp
2( 1

m−
1

p∗ )(0, T ;X∗p ) (resp. in Lp
′
(0, T ;X∗p ) provided

that p(p − 1)(1 − m
p∗ ) ≥ m). As a consequence, ∂Buk

∂t is uniformly bounded in

Lp
2( 1

m−
1

p∗ )(0, T ;X∗p ) (resp. in Lp
′
(0, T ;X∗p )). Thus, a subsequence of uk can be

extracted such that

uk
∗
⇀ u in Lp(0, T ;Xp) ∩ L∞(0, T ;Ym)

Auk ⇀ (Au)ex in L2(0, T ;W−1,2) + Lp
′
(0, T ;X∗p )

Buk
∗
⇀ (Bu)ex in L∞(0, T ;Y ∗m)

C(Buk ⊗ uk) ⇀ (C(Bu⊗ u))ex in Lp
2( 1

m−
1

p∗ )(0, T ;X∗p )(resp. in Lp
′
(0, T ;X∗p ))

∂Buk
∂t

⇀ (
∂Bu

∂t
)ex in Lp

2( 1
m−

1
p∗ )(0, T ;X∗p ) (resp. in Lp

′
(0, T ;X∗p )) .
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It merely remains to show that the values (·)ex coincide with their expected values,
then the limit passage k →∞ in the approximate equation shows that u is a weak
solution of (1.1).

By time-compactness Buk → (Bu)ex is valid in L1(0, T ;Y ∗m), thus a limit passage
in
∫ T

0
〈Buk − Bv, uk − v〉 dt implies

∫ T
0
〈(Bu)ex − Bv, u − v〉 dt ≥ 0 for arbitrary

v ∈ L∞(0, T ;Ym), and Minty’s trick can be applied to conclude (Bu)ex = Bu.
Then (∂Bu∂t )ex = ∂Bu

∂t eventually is a consequence of the definition of weak time
derivatives. Further, once the weak convergence C(Buk ⊗ uk) ⇀ C(Bu ⊗ u) has
been shown, due to pseudomonotonicity of u 7→ Au+ C(Bu⊗ u) from Xp ∩ Ym to
X∗p (recall that C(Bu ⊗ u) is totally continuous and satisfies appropriate bounds)
a standard argument allows to prove Auk ⇀ Au, and hence (Au)ex = Au, see [23,
Theorem 8.27, Remark 8.29].

Thus, it merely remains to prove weak convergence of C(Buk⊗uk) to C(Bu⊗u)
in Lp

2( 1
m−

1
p∗ )(0, T ;X∗p ) (resp. in Lp

′
(0, T ;X∗p )). Therefore, consider a function

v ∈ L∞(0, T ; {ṽ ∈ W 1,∞
0 | div(ṽ) = 0}), then strong convergence Buk → Bu in

L1(0, T ;Y ∗m) and weak∗-convergence uk
∗
⇀ u in L∞(0, T ;Ym) allow to conclude∫ T

0

〈C(Buk ⊗ uk)− C(Bu⊗ u), v〉 dt

=
∫ T

0

〈C((Buk −Bu)⊗ uk), v〉 dt+
∫ T

0

〈C(Bu⊗ (uk − u)), v〉 dt→ 0 .

Hence by denseness C(Buk⊗uk) ⇀ C(Bu⊗u) is even valid in Lp
2( 1

m−
1

p∗ )(0, T ;X∗p ),
because C(Buk ⊗ uk) and C(Bu⊗ u) both lie in this space. �

Remark 2.3. If f is not an inhomogeneity but a nonlinearity, then existence of
weak solutions can be proved similarly provided that f satisfies an appropriate
growth condition. Particularly, existence can be shown for f = f(x, b(u)), where
f(x, v) := g(v)− dU(x) with U ∈ Lp′(Ω) and g satisfying g(v)v ≤ C|v|2, i.e. g has
at most linear growth.

Remark 2.4. Note that in [19] due to second energy estimates even strong con-
vergence of ∇uk can be established, which allow to conclude C(Bu ⊗ u) = ∇uBu
(with B = Id in the case m = 2, b(u) = u) and existence can be shown even in the
case of non-monotone A, see [19, 5.3.3]. For a nonlinear B the validity of second
energy estimates seems to be an open problem.

3. Regularity of the pressure

An important problem in fluid dynamics is the regularity of the pressure function
π which is implicitly defined by the incompressibility condition div(u) = 0. Here
some information about the pressure is needed, because in our proof of extinction in
finite time equation (1.1) is tested by a function with nonvanishing divergence. For
results about the regularity of pressure in case of the incompressible Navier-Stokes
equations (1.2) with linear a let us refer to [17, Theorem 3.1-3.4, Remark 3.1] and
[26, III.1 Proposition 1.1 + 1.2]. Similar as in the linear case, by definition (2.1) the
weak solution u of doubly nonlinear Navier-Stokes equations obtained in Theorem
(2.2) satisfies

∂Bu

∂t
+Au+ C(Bu⊗ u) = f (2.13)
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as an equation in Lp
2( 1

m−
1

p∗ )(0, T ;X∗p ) in the case p(p − 1)(1 − m
p∗ ) < m (resp. as

an equation in Lp
′
(0, T ;X∗p ) in the case p(p− 1)(1− m

p∗ ) ≥ m). However, it is not
directly obvious in which sense (1.1) is solved by a weak solution u.

To answer this question, note that the dual space of Xp can be identified with
the quotient

W−1,p′(Rn, (Rn)∗)/{dπ |π ∈ Lp
′
(Rn,R)}

of the dual space W−1,p′(Rn, (Rn)∗) of W 1,p
0 (Rn,Rn) w.r.t. the closed subspace

given by distributional derivatives of functions from Lp
′
(Rn,R). Similarly, Xp,per

can be identified with the quotient of W−1,p′(Rn/(LZ)n, (Rn)∗) by distributional
derivatives dπ of functions π ∈ Lp′(Rn/(LZ)n,R) and constant vectors 5. Hence,
due to this characterization of the dual and the validity of (2.13) as an equation in
X∗p for a.e. time t ∈ (0, T ), there exists a pressure function π(t) ∈ Lp′(Ω) (which
is unique up to a time-dependent constant) such that the first equation of (1.1) is
valid in the sense of distribution.

Moreover, the pressure function π is a very weak solution of an elliptic equation
(possibly with degenerate or singular coefficients in the doubly nonlinear case)
under Neumann boundary conditions. In fact, if Ω is a smooth bounded domain
with Dirichlet boundary and the external force f is given by f(x, v) := g(v)−dU(x),
then multiply the first equation of (1.1) from the left by db−1(b(u)) (which may be
degenerate or singular) and apply afterwards the divergence operator div to obtain

− div(db−1(b(u))grad (π + U))

= div(db−1(u) div(b(u)⊗ u))− div(db−1(u) div(a(∇symu)))

− div(db−1(u)g(b(u))) .

(3.1)

Further, multiply the first equation of (1.1) from the right by (an extension of) the
exterior outer normal vector field ν on ∂Ω to obtain

∂(π + U)
∂ν

= −div(b(u)⊗ u) · ν + div(a(∇symu)) · ν + g(b(u)) · ν on ∂Ω (3.2)

on ∂Ω. Hence π(t) + U ∈ Lp′(Ω) is for a.e. t ∈ (0, T ) a very weak solution of (3.1)
under Neumann boundary conditions (3.2) 6.

In the classical case of incompressible Navier-Stokes equations (1.2) for a New-
tonian fluid with standard quadratic energy and a force depending linearly on
momentum, i.e. in the case a(∇symu) = µ∇symu with µ > 0, b(u) = u] and
f(x, v) := αv− dU(x) with α ∈ R, equation (3.1) simplifies to the classical Poisson
problem

−∆(π + U) = (∇u)T · (∇u) . (3.3)
Note that due to (∇u)(t) ∈ L2(Ω,Rn×n) for a.e. t ∈ (0, T ) (as p = 2) the right
hand side lies in L1(Ω,R). In the case of (1.2) with a given by (1.6) and f(x, v) :=
αv − dU(x) with α ∈ R, the corresponding Poisson problem reads as

−∆(π + U) = (∇u)T · (∇u) + (p− 2)|∇symu|p−1

5which can be hidden in the external force f
6i.e. for every smooth test function φ such that div(db−1(b(u))gradφ) exists as a function in

Lp(Ω) and ∂φ
∂ν

= 0 holds, the integral
R

(π+U) div(db−1(b(u))gradφ) dx obtained by multiplying

the left hand side of (3.1) by φ and shifting both derivatives onto φ is the same as the corresponding
integral on the right hand side.
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under Neumann boundary conditions

∂(π + U)
∂ν

= αb(u) · ν + div((∇symu)p−1) · ν

on ∂Ω. The regularity of very weak solutions of −∆v = f with right hand side
f ∈ L1(Ω) and Dirichlet boundary conditions v = 0 on ∂Ω is well-studied. For
example, in [10] the validity of

‖v‖LN′,∞ ≤ c‖f‖L1(Ω,δ) (3.4)

is shown for very weak solutions, where near the boundary f is even allowed to
grow less than 1

δ with the distance δ to the boundary. However, there are only few
articles about the corresponding Neumann problem, e.g. [22], so that in this case
a regularity result like (3.4) seems to be an open problem.

Remark 3.1. For sufficiently smooth solutions [24] and [25] even show the equiv-
alence of classical incompressible Navier-Stokes equations and the equations solved
when using the pressure Poisson method with appropriate boundary conditions.

4. Extinction

It is generally known (see e.g. [9]) that weak solutions u of doubly nonlinear
diffusion equations ∂um−1

∂t −∆pu = 0 to small initial values become extinct in finite
time in the case p < m of fast diffusion, i.e. there exists a time T > 0 such that
u(t) ≡ 0 for a.e. t ≥ T . For doubly nonlinear Navier-Stokes equations, additionally
the transport term, the pressure term and the body force term have to be handeled
to obtain a similar result. Note that in the case f(x, v) = g(v)−dU(x) with g(0) = 0
the function (u, π) = (0,−U) is a solution of (1.1).

Theorem 4.1. If 1 < m, p <∞, mp′ < p∗ and p < m, if b is given by (1.3), (1.4)
or (1.5), if a is given by (1.6) or (1.7), if the f has the form f(x, v) = g(v)−dU(x)
with U ∈ Lp′(Ω) and a continuous g satisfying g(0) = 0 and g(v)v ≤ C|v|2, then
weak solutions of (1.1) on a bounded domain Ω under Dirichlet boundary conditions
u = 0 on ∂Ω to initial values u0 6= 0 become extinct in finite time, provided that
‖Bu0‖r is sufficiently small for some sufficiently large index 1 < r <∞ and the very
weak solution π + U of (3.1) under Neumann boundary conditions (3.2) satisfies
an estimate of the form

‖π + U‖p
′

r p′
m′
≤ c‖Bu‖m

′

r with a constant c <∞ . (4.1)

Proof. Test equation (1.1) by (Bu)r−1 to obtain

d

dt

1
r
‖Bu‖rr + 〈Au, (Bu)r−1〉+ 〈C(Bu⊗ u), (Bu)r−1〉

=
∫

Ω

(π + U) div((Bu)r−1) dx+ 〈Gu, (Bu)r−1〉 ,

where G denotes the superposition operator associated with g. Note that due to
div(u) = 0 the transport term vanishes, as

〈C(Bu⊗ u), (Bu)r−1〉 = −
∫

Ω

b(u)∇ub(u)r−1 dx = − 1
r′

∫
Ω

∇u|b(u)|r dx

= − 1
r′

∫
∂Ω

|b(u)|ru · ν dS +
1
r′

∫
Ω

|b(u)|r div(u) dx = 0 .
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On the right hand side use

div((Bu)r−1) = div(|u|(r−1)(m−1)−1u)

= |u|(r−1)(m−1)−1 div(u) +∇u|u|(r−1)(m−1)−1

= ∇u|u|(r−1)(m−1)−1 = c|u|
(r−1)(m−1)−1

p′ −1∇u|u|
(p−1)+(r−1)(m−1)

p

and the assumption ‖π + U‖p
′

r p′
m′
≤ c‖Bu‖m′r , to estimate∫

Ω

(π + U) div((Bu)r−1) dx

≤ c‖π + U‖
r p′

m′
‖u

(r−1)(m−1)−1
p′ ‖ p′r(m−1)

(r−1)(m−1)−1
‖∇|u|

(p−1)+(r−1)(m−1)
p ‖p

= c‖π + U‖
r p′

m′
‖Bu‖

(r−1)(m−1)−1
p′(m−1)

r ‖∇|u|
(p−1)+(r−1)(m−1)

p ‖p

≤ c

εp′p′
‖π + U‖p

′

r p′
m′
‖Bu‖r−m

′

r +
εp

p
‖∇|u|

(p−1)+(r−1)(m−1)
p ‖pp

≤ c

εp′p′
‖Bu‖rr +

εp

p
‖∇|u|

(p−1)+(r−1)(m−1)
p ‖pp .

(4.2)

Finally, define the exponent s = s(r) := (p−1)+(r−1)(m−1)
r(m−1) , then [m′,∞) 3 r 7→ s(r)

is increasing due to p < m, and 1
r′ < s < 1 holds for every m′ ≤ r <∞. Using this

exponent,

〈Au, (Bu)r−1〉 =
∫

Ω

(∇symu)p−1 · ∇u(r−1)(m−1) dx

= c

∫
Ω

∣∣∣∇symu
(p−1)+(r−1)(m−1)

p

∣∣∣p dx (4.3)

can be estimated from below by c‖Bu‖rsr with a constant c > 0, where Sobolev’s
(and Korn’s) inequality ‖∇symw‖pp ≥ c‖w‖pp

s
is applied (note that p

s lies between
m < p∗ and p for r ≥ m′). However, before applying this estimate use (4.3) to
compensate the last term of (4.2) by choosing ε sufficiently small. Finally, estimate
the remaining body force term by

〈Gu, (Bu)r−1〉 ≤ C‖Bu‖rr
to obtain

d

dt

1
r
‖Bu‖rr + c

(1
r
‖Bu‖rr

)s
≤ C 1

r
‖Bu‖rr .

with a constant C < ∞. Hence, as s < 1 for every m′ ≤ r < ∞, for small values
of 1

r‖Bu‖
r
r the root term C( 1

r‖Bu‖
r
r)
s dominates all other terms so that 1

r‖Bu‖
r
r

becomes extinct in finite time. �

Remark 4.2. The condition g(v)v ≤ C|v|2 may be replaced by a weaker condition,
but generally g has to vanish for Bu = 0. Particularly, extinction does not occur
for constant body forces (as in this case u = 0 is not a solution of (1.1)).

Remark 4.3. In (4.1) the constant c is even allowed to depend on u via terms like
‖∇symu‖p which can be controlled by a priori estimates. However, the validity of
(4.1) for very weak solutions of the Neumann problem (3.1), (3.2) and for the index
r needed in the proof of theorem 4.1 seems to be an open problem.
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Conclusion. In this article extinction of fluid vector fields for non-Newtonian fluids
modeled by nonlinear of doubly nonlinear Navier-Stokes equations was discussed.
A method was presented which allows to prove that slow shear-thinning fluid come
to rest in finite time. However, this method needed some information about the
regularity of the very weak solution of the corresponding pressure Poisson problem
under Neumann boundary conditions, and the validity of this regularity seems to
be an open problem.
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[3] S.N. Antontsev, J.I. Diaz, H.B. de Oliveira, Stopping a viscous fluid by a feedback dissipative

field I: The stationary Stokes problem, J. Math. Fluid Mech., 6, Vol.4 (2004), 439–461.

[4] S.N. Antontsev, J.I. Diaz, H.B. de Oliveira, Stopping a viscous fluid by a feedback dissipative
field II: The stationary Navier-Stokes problem, Atti Acadm. Naz. Lincei Cl. Sci. Fis. Mat.

Natur. Rend. Lincei Mat. Appl., 15, Vol.3-4 (2004), 257–270.

[5] S.N. Antontsev, J.I. Diaz, H.B. de Oliveira, Stopping a viscous fluid by a feedback dissipative
field: Thermal effects without phase changing, Progr. Nonlinear Differential Equations Appl.,

61 (2005), 1–14.
[6] S.N. Antontsev, J.I. Diaz, H.B. de Oliveira, Mathematical models in dynamics of non-

Newtonian fluids and in glaciology, Proceedings of the CMNE/CILAMCE Congress, Porto,

(2007), 20pp.
[7] S.N. Antontsev, H.B. de Oliveira, The Navier-Stokes problem modified by an absorption term,

Appl. Anal., 89, Vol.12 (2010), 1805–1825.

[8] (MR0529073) V. Barbu, Existence for non-linear Volterra equations in Hilbert space, SIAM
Journal on Mathematical Analysis, 10 (1979), 552–569.

[9] Chunhua Jin, Jingxue Yin, Yuanyuan Ke, Critical extinction and blow-up exponents for fast

diffusive polytropic filtration equation with sources, Proceedings of the Edinburgh Mathemat-
ical Society, 52 (2009), 419–444.

[10] J.I. Dı́az, J.M. Rakotoson, On the differentiability of very weak solutions with right-hand side

data integrable with respect to the distance to the boundary, Journal of Functional Analysis,
257 (2009), 807–831.

[11] (MR0625829) E. DiBenedetto, R.E. Showalter, Implicit Degenerate Evolution Equations and
Applications, SIAM Journal on Mathematical Analysis, 12 (1981), 731–751.

[12] P. Dreyfuss, N. Hungerbühler, Navier-Stokes system with quasimonotone viscosity tensor,

Int. J. Differ. Equ. Appl., 9, Vol.1 (2004), 59–79.
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